JP2787366B2 - Manufacturing method of hot-dip galvanized high-tensile cold-rolled steel sheet - Google Patents

Manufacturing method of hot-dip galvanized high-tensile cold-rolled steel sheet

Info

Publication number
JP2787366B2
JP2787366B2 JP13032690A JP13032690A JP2787366B2 JP 2787366 B2 JP2787366 B2 JP 2787366B2 JP 13032690 A JP13032690 A JP 13032690A JP 13032690 A JP13032690 A JP 13032690A JP 2787366 B2 JP2787366 B2 JP 2787366B2
Authority
JP
Japan
Prior art keywords
seconds
temperature
hot
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13032690A
Other languages
Japanese (ja)
Other versions
JPH0426744A (en
Inventor
武秀 瀬沼
薫 川崎
聡 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13032690A priority Critical patent/JP2787366B2/en
Publication of JPH0426744A publication Critical patent/JPH0426744A/en
Application granted granted Critical
Publication of JP2787366B2 publication Critical patent/JP2787366B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は加工性、耐食性に優れた高強度鋼板の製造方
法に関するものである。
The present invention relates to a method for producing a high-strength steel sheet having excellent workability and corrosion resistance.

(従来の技術) 従来の高強度鋼板の溶融亜鉛めっき法は連続めっきラ
インで鋼板をA1変態点以上、A3変態点以下の温度に加熱
し、450℃前後に加熱した亜鉛浴で溶融めっきを行なう
(特開昭55−131168号公報)。また、合金化処理を付加
する場合は560℃前後の温度に短時間の再加熱を行ない
(例えば、特開昭56−142821,特開昭57−57827,特開昭5
7−57828号公報)その後保定処理などせずに冷却する。
(Prior Art) molten zinc plating of the conventional high strength steel sheet steel plate A 1 transformation point or more in a continuous plating line, and heated to a temperature below A 3 transformation point, melt plating zinc bath heated around 450 ° C. (JP-A-55-131168). When an alloying treatment is added, reheating is performed for a short time at a temperature of about 560 ° C. (for example, JP-A-56-142821, JP-A-57-57827, and JP-A-5-57827).
After that, cooling is performed without holding treatment or the like.

(発明が解決しようとする課題) 本発明は、溶融めっき工程を抜本的に見直し、従来に
ない優れた強度−延性バランスを有し、耐食性に優れた
高強度鋼板を製造する方法を提供するものである。
(Problems to be Solved by the Invention) The present invention provides a method for producing a high-strength steel sheet having a completely unprecedented strength-ductility balance and excellent corrosion resistance by drastically reviewing a hot-dip plating process. It is.

(課題を解決するための手段) 本発明の要旨とするところは、C:0.06〜0.45%、Mn:
0.5〜2.5%、Si:2.5%以下、P:0.1%以下、solAl:0.2%
以下、残部Feおよび不可避的不純物からなるスラブをAr
3変態点以上で熱延し材料を通常の酸洗、冷延を行なっ
た後、連続めっきラインにおいてAc1温度+20℃以上、A
c3温度−20℃に10秒以上5分以内加熱し、その後650℃
から溶融亜鉛浴にはいるまであるいは450℃までの平均
冷速を20℃/s以上とし、溶融亜鉛めっきをする前か後に
300℃から450℃の間の温度域で60秒から600秒の保持す
ることを特徴とする加工性に優れた高強度鋼板の製造方
法にある。
(Means for Solving the Problems) The gist of the present invention is that C: 0.06 to 0.45%, Mn:
0.5 to 2.5%, Si: 2.5% or less, P: 0.1% or less, solAl: 0.2%
Hereinafter, the slab consisting of the remaining Fe and inevitable impurities is referred to as Ar.
After hot rolling at 3 transformation point or more, and performing normal pickling and cold rolling of the material, in the continuous plating line, Ac 1 temperature + 20 ° C or more, A
c 3 Heat to -20 ° C for 10 seconds or more and within 5 minutes, then 650 ° C
The average cooling speed from 20 to 450 ° C until entering the hot-dip zinc bath or at least 20 ° C / s, before or after hot-dip galvanizing
A method for producing a high-strength steel sheet excellent in workability, characterized in that the steel sheet is maintained at a temperature range of 300 ° C to 450 ° C for 60 seconds to 600 seconds.

以下に、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明において、Cの添加量の下限を0.06%としたの
は、これよりC量が少ないと後記する残留オーステナイ
トの生成が抑制され、優れた強度−延性バランスが得ら
れないためである。上限を0.45%としたのは、これ以上
Cを添加すると硬質になり加工性が低下するためであ
る。
In the present invention, the lower limit of the added amount of C is set to 0.06% because if the amount of C is smaller than this, the generation of residual austenite described later is suppressed, and an excellent strength-ductility balance cannot be obtained. The upper limit is set to 0.45% because if C is added any more, it becomes hard and the workability is reduced.

Mn量の下限を0.5%としたのは、これ以下の添加では
十分な残留オーステナイトの生成が抑制されるためであ
り、上限を2.5%としたのは加工性が劣化するためであ
る。
The reason why the lower limit of the Mn content is set to 0.5% is that addition of less than this suppresses the generation of sufficient retained austenite, and the upper limit is set to 2.5% because workability deteriorates.

Siは強度を高め、延性をほとんど劣化しないため強度
−延性バランスを向上させるのに有効な合金元素として
知られている。一方、Siの添加はめっき性を悪くするこ
とでも知られており、通常の連続溶融めっき工程では0.
1%以上のSiの添加でめっき不良が顕著になる。しか
し、連続溶融めっき前にプリメッキあるいは表面研削を
すればめっき性は改良される。そのため、本発明でのSi
量の上限は延性の劣化が現われる2.5%とした。
Si is known as an effective alloying element for improving strength and ductility because it increases strength and hardly deteriorates ductility. On the other hand, the addition of Si is also known to impair the plating property, and in a normal continuous hot-dip plating process, it is considered to be 0.
Plating failure becomes remarkable by addition of 1% or more of Si. However, plating can be improved if pre-plating or surface grinding is performed before continuous hot-dip plating. Therefore, Si in the present invention
The upper limit of the amount was set to 2.5% at which ductility was deteriorated.

Pの添加は強化元素として好ましいが、添加量が多く
なると加工性が劣化するので、上限を0.1%とした。
Although the addition of P is preferable as a strengthening element, the workability is deteriorated when the addition amount is large.

また、Alは脱酸元素として添加が必要であるが、solA
lが多くなると加工性及びめっき性が悪くなるので上限
を0.2%とした。
Al needs to be added as a deoxidizing element.
If l increases, workability and plating property deteriorate, so the upper limit was made 0.2%.

なお本発明において、鋼の他の成分として、強度およ
び焼き入れ性の向上のために含まれる成分即ち、Cu:1.5
%以下、Ni:1.5%以下、Mo:1.0%以下、Cr:1.5%以下、
V:1.0%以下、B:0.005%以下、Ti:0.1%以下、Nb:0.1%
以下を含有せしめても本発明の趣旨を損なうものではな
い。
In the present invention, as another component of steel, a component included for improving strength and hardenability, that is, Cu: 1.5
%, Ni: 1.5% or less, Mo: 1.0% or less, Cr: 1.5% or less,
V: 1.0% or less, B: 0.005% or less, Ti: 0.1% or less, Nb: 0.1%
The inclusion of the following does not impair the spirit of the present invention.

次ぎに、製造プロセスについて説明する。 Next, the manufacturing process will be described.

熱延の仕上温度をAr3変態点以上としたのは、この温
度以下で熱延すると、組織が粗大化したり、めっき後も
強度−延性バランスが著しく劣化するためである。
The reason for setting the finishing temperature of hot rolling at or above the Ar 3 transformation point is that if hot rolling is performed at this temperature or lower, the structure becomes coarse, and the strength-ductility balance is significantly deteriorated even after plating.

連続めっきラインにおける加熱条件をAc1温度+20℃
以上、Ac3温度−20℃に10秒以上5分以内加熱すると限
定したのは、この温度域においてフェライトとオーステ
ナイトの2相組織が形成され、加熱時間の下限を10秒と
したのは、これより時間が短いと合金元素の各相への分
配が十分に起きないため、後記する残留オーステナイト
の生成が抑制されるためである。また、加熱時間の上限
を5分としたのは、この時間内で合金元素の各相への分
配はほとんど完了し、これ以上保持時間を長くする必要
がないと共にフェライト粒が粒成長を起こし、材質の劣
化を招くためである。
Heating condition in continuous plating line is Ac 1 temperature + 20 ° C
As described above, the reason why heating to Ac 3 temperature of −20 ° C. is limited to 10 seconds or more and within 5 minutes is that a two-phase structure of ferrite and austenite is formed in this temperature range, and the lower limit of the heating time is set to 10 seconds. If the time is shorter, the distribution of the alloy element to each phase does not occur sufficiently, so that the generation of residual austenite described later is suppressed. In addition, the upper limit of the heating time was set to 5 minutes because the distribution of the alloying elements to each phase was almost completed within this time, and it was not necessary to further extend the holding time, and the ferrite grains caused grain growth. This is to cause deterioration of the material.

650℃から溶融亜鉛浴にはいるまであるいは450℃まで
の平均冷速を20℃/s以上と限定したのは、これより平均
冷速が遅いとめっき処理後に優れた強度−延性バランス
が得られないためで、これは冷却中にパーライトが多く
生成し、残留オーステナイトが生成しにくくなることに
対応している。
The reason why the average cooling rate from 650 ° C to entering the molten zinc bath or from 450 ° C to 20 ° C / s or more is limited is that if the average cooling rate is slower than this, an excellent strength-ductility balance can be obtained after plating. This corresponds to the fact that a large amount of pearlite is generated during cooling, and the generation of residual austenite is difficult.

溶融亜鉛めっきをする前か後に300℃から450℃の温度
域で60秒から600秒の熱処理をインラインで行なうこと
を限定したのは、この温度域で60秒以上、600秒以下の
保持をすることにより強度−延性バランスが顕著に向上
するためである。これはこの処理によってベイナイト変
態が進行し、残ったオーステナイトにオーステナイト安
定元素であるCが濃縮し、冷却後残留オーステナイトと
して存在し、それがTRIP(Transformation induced pla
sticity)を起こし、延性を高めたためと考えられる。
保持時間の下限はベイナイト変態が十分進行するのに必
要な時間により限定され、上限は残留オーステナイトが
変態を起こし、顕著に減少しない時間として限定され
る。
The limitation of performing in-line heat treatment for 60 seconds to 600 seconds at a temperature range of 300 ° C to 450 ° C before or after hot-dip galvanizing is to hold for 60 seconds or more and 600 seconds or less in this temperature range. This is because the strength-ductility balance is significantly improved. This is because bainite transformation proceeds by this treatment, and C, which is an austenite-stable element, is concentrated in the remaining austenite, and exists as residual austenite after cooling.
sticity) and increased ductility.
The lower limit of the retention time is limited by the time required for bainite transformation to proceed sufficiently, and the upper limit is defined as the time during which the retained austenite undergoes transformation and does not decrease significantly.

このインライン熱処理を溶融亜鉛めっきをする前にす
るか後にするかは、合金化処理の有無に関連する。合金
化処理をする場合はインライン熱処理を溶融亜鉛めっき
した後に行なうことにより達成できる。
Whether this in-line heat treatment is performed before or after hot-dip galvanizing is related to the presence or absence of alloying treatment. The alloying treatment can be achieved by performing in-line heat treatment after hot-dip galvanizing.

(実施例) 表1に示す鋼板を素材として連続溶融亜鉛めっきライ
ンにおいてめっき処理を行なった。鋼種A−Dは本発明
鋼であり、E,Fは比較鋼でCおよびMn量が本発明の範囲
を満足していない。表2はこれらの鋼を連続亜鉛めっき
ラインでめっきしたときのめっき処理後の材料の機械的
性質と熱延仕上温度を示す。めっき材は酸洗後、還元雰
囲気で加熱した後めっき浴に通板した。その際のめっき
浴の温度は460℃であった。また、めっき性の悪い材料
は連続溶融亜鉛めっきラインに入る前にプリメッキある
いは表面研削を行なった。
(Example) The steel sheet shown in Table 1 was used as a raw material, and plating was performed in a continuous hot-dip galvanizing line. Steel types AD are the steels of the present invention, and E and F are comparative steels, and the amounts of C and Mn do not satisfy the range of the present invention. Table 2 shows the mechanical properties and hot-rolling finishing temperature of the material after plating when these steels were plated in a continuous galvanizing line. The plating material was pickled, heated in a reducing atmosphere, and then passed through a plating bath. At that time, the temperature of the plating bath was 460 ° C. In addition, materials having poor plating properties were subjected to pre-plating or surface grinding before entering a continuous galvanizing line.

材料11,13は亜鉛を溶融めっきする前に400℃で300秒
のインライン熱処理を行ない、他の材料はめっき後にイ
ンライン熱処理を行なった。
Materials 11 and 13 were subjected to in-line heat treatment at 400 ° C. for 300 seconds before hot-dip galvanizing zinc, and the other materials were subjected to in-line heat treatment after plating.

本発明の範囲を満足した材料1,2,10,11,12,13,14,15
は強度−延性バランス指標であるTS×Elが2400(kg/mm
×%)以上を示し、加工用高張力鋼として優れた特性を
示す。
Materials 1,2,10,11,12,13,14,15 satisfying the scope of the present invention
Is the strength-ductility balance index TS × El is 2400 (kg / mm
×%) or more, showing excellent characteristics as a high tensile strength steel for working.

一方、仕上温度がAr3以下であった材料3は強度、延
性とも本発明鋼より低く、材質の明らかな劣化が見られ
た。
On the other hand, Material 3 having a finishing temperature of Ar 3 or less was lower in both strength and ductility than the steel of the present invention, and the material was clearly deteriorated.

650℃から溶融亜鉛浴にはいるまであるいは450℃まで
の平均冷速が特許請求の範囲より遅い材料4ではパーラ
イトの生成が阻止できず、それにともない強度−延性バ
ランスも小さくなり加工用高張力鋼として本発明鋼に比
べ特性が劣る。
Material 4 whose average cooling rate from 650 ° C. to the molten zinc bath or 450 ° C. is lower than the claimed range cannot prevent the formation of pearlite, and the strength-ductility balance is reduced accordingly. As compared with the steel of the present invention.

また、冷却後の保持温度の低い材料5ではマルテンサ
イトが生成し、強度は高くなったが、延性の著しい劣化
がみられたのに対し、保持温度の高い材料6はフェライ
ト・パーライト組織を呈し、強度が低かった。保持時間
の短い材料7では残留オーステナイトが十分生成せず、
高い延性が得られなかった。
Further, the material 5 having a low holding temperature after cooling produced martensite and increased the strength, but markedly deteriorated ductility, whereas the material 6 having a high holding temperature exhibited a ferrite-pearlite structure. , The strength was low. In the material 7 having a short holding time, the retained austenite is not sufficiently generated,
High ductility was not obtained.

インライン加熱温度が670℃とAc1温度+20℃より低い
材料8はフェライト・パーライト組織を呈し、強度が低
かった。一方、インライン加熱温度が850℃とAc3温度−
20℃より高い材料9はマルテンサイトが生成し、強度は
高くなったが、延性の著しい劣化がみられた。
Material 8 having an in-line heating temperature of 670 ° C. and lower than the Ac 1 temperature + 20 ° C. exhibited a ferrite-pearlite structure and low strength. On the other hand, the in-line heating temperature was 850 ° C and the Ac 3 temperature −
Material 9 having a temperature higher than 20 ° C. produced martensite and increased the strength, but markedly deteriorated ductility.

材料成分が本発明の範囲を満足していない材料16,17
では他の製造条件を満足しているにもかかわらずパーラ
イトが生成し優れた強度−延性バランスが得られない。
Materials whose material components do not satisfy the scope of the present invention
However, pearlite is formed even though other production conditions are satisfied, and an excellent strength-ductility balance cannot be obtained.

(発明の効果) 本発明によれば、連続溶融亜鉛めっきラインで加工性
に優れた高張力鋼が製造でき、加工性ならびに耐食性を
要求されている部品への高張力鋼の適用が可能になり工
業的に価値の高い発明である。
(Effect of the Invention) According to the present invention, a high-strength steel with excellent workability can be manufactured in a continuous hot-dip galvanizing line, and high-tensile steel can be applied to parts requiring workability and corrosion resistance. This is an industrially valuable invention.

フロントページの続き (56)参考文献 特開 平2−93051(JP,A) 特開 昭58−39770(JP,A) 特開 昭56−163219(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 2/00 - 2/40 C21D 8/02 - 8/04Continuation of front page (56) References JP-A-2-93051 (JP, A) JP-A-58-39770 (JP, A) JP-A-56-163219 (JP, A) (58) Fields studied (Int .Cl. 6 , DB name) C23C 2/00-2/40 C21D 8/02-8/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.06〜0.45%、Mn:0.5〜2.5%、Si:2.5
%以下、P:0.1%以下、solAl:0.2%以下、残部Feおよび
不可避的不純物からなるスラブをAr3変態点以上で熱延
し材料を通常の酸洗、冷延を行なった後、連続めっきラ
インにおいてAc1温度+20℃以上、Ac3温度−20℃に10秒
以上5分以内加熱し、その後650℃から溶融亜鉛浴には
いるまでの平均冷速を30℃/s以上とし溶融亜鉛めっき
後、300℃と450℃の温度域で60秒から600秒の保持をす
ることを特徴とする加工性に優れた高強度鋼板の製造方
法。
(1) C: 0.06-0.45%, Mn: 0.5-2.5%, Si: 2.5
% Or less, P: 0.1% or less, solAl: 0.2% or less, slab consisting of the balance Fe and unavoidable impurities is hot rolled at the Ar 3 transformation point or higher, and the material is subjected to ordinary pickling and cold rolling, followed by continuous plating In the line, it is heated to Ac 1 temperature + 20 ° C or higher and Ac 3 temperature −20 ° C for 10 seconds or more within 5 minutes, and then the average cooling rate from 650 ° C to entering the molten zinc bath is 30 ° C / s or more, and hot dip galvanizing Thereafter, a method for producing a high-strength steel sheet excellent in workability, characterized in that the steel sheet is held at a temperature range of 300 ° C. and 450 ° C. for 60 seconds to 600 seconds.
【請求項2】C:0.06〜0.45%、Mn:0.5〜2.5%、Si:2.5
%以下、P:0.1%以下、solAl:0.2%以下、残部Feおよび
不可避的不純物からなるスラブをAr3変態点以上で熱延
し材料を通常の酸洗、冷延を行なった後、連続めっきラ
インにおいてAc1温度+20℃以上、Ac3温度−20℃に10秒
以上5分以内加熱し、その後650℃から450℃までの平均
冷速を20℃/s以上とし、300℃と450℃の温度域で60秒か
ら600秒の保持をした後、溶融亜鉛めっきをすることを
特徴とする加工性に優れた高強度鋼板の製造方法。
2. C: 0.06-0.45%, Mn: 0.5-2.5%, Si: 2.5
% Or less, P: 0.1% or less, solAl: 0.2% or less, slab consisting of the balance Fe and unavoidable impurities is hot rolled at the Ar 3 transformation point or higher, and the material is subjected to ordinary pickling and cold rolling, followed by continuous plating In the line, it is heated to Ac 1 temperature + 20 ° C or higher and Ac 3 temperature −20 ° C for 10 seconds to 5 minutes, and then the average cooling rate from 650 ° C to 450 ° C is set to 20 ° C / s or more. A method for producing a high-strength steel sheet excellent in workability, characterized by performing hot-dip galvanizing after holding for 60 seconds to 600 seconds in a temperature range.
JP13032690A 1990-05-22 1990-05-22 Manufacturing method of hot-dip galvanized high-tensile cold-rolled steel sheet Expired - Lifetime JP2787366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13032690A JP2787366B2 (en) 1990-05-22 1990-05-22 Manufacturing method of hot-dip galvanized high-tensile cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13032690A JP2787366B2 (en) 1990-05-22 1990-05-22 Manufacturing method of hot-dip galvanized high-tensile cold-rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH0426744A JPH0426744A (en) 1992-01-29
JP2787366B2 true JP2787366B2 (en) 1998-08-13

Family

ID=15031677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13032690A Expired - Lifetime JP2787366B2 (en) 1990-05-22 1990-05-22 Manufacturing method of hot-dip galvanized high-tensile cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP2787366B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312536B1 (en) 1999-05-28 2001-11-06 Kabushiki Kaisha Kobe Seiko Sho Hot-dip galvanized steel sheet and production thereof
JP3750789B2 (en) 1999-11-19 2006-03-01 株式会社神戸製鋼所 Hot-dip galvanized steel sheet having excellent ductility and method for producing the same
US6811624B2 (en) 2002-11-26 2004-11-02 United States Steel Corporation Method for production of dual phase sheet steel
US7311789B2 (en) 2002-11-26 2007-12-25 United States Steel Corporation Dual phase steel strip suitable for galvanizing
JP4998756B2 (en) 2009-02-25 2012-08-15 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4883216B2 (en) 2010-01-22 2012-02-22 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same
JP5793971B2 (en) 2011-06-01 2015-10-14 Jfeスチール株式会社 Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent material stability, workability, and plating appearance
CN102828127B (en) * 2011-06-14 2014-12-31 鞍钢股份有限公司 High-strength steel plate with good corrosion resistance for hot-dip tinned zinc fuel tank and manufacturing method thereof
JP5338873B2 (en) 2011-08-05 2013-11-13 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability with a tensile strength of 440 MPa or more and its production method

Also Published As

Publication number Publication date
JPH0426744A (en) 1992-01-29

Similar Documents

Publication Publication Date Title
CN104928569B (en) A kind of low density steel of 800MPa level high ductibility and its manufacture method
CA3025451C (en) Twip steel sheet having an austenitic matrix
JPS6240405B2 (en)
JP4855442B2 (en) Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method
CN112301293A (en) Cold-rolled hot-galvanized steel and manufacturing method thereof
CN112689684B (en) Cold rolled and coated steel sheet and method for manufacturing the same
CN113840930A (en) Cold rolled and coated steel sheet and method for manufacturing the same
JP2006283071A (en) Method for producing galvannealed high strength steel sheet excellent in workability
JP2787366B2 (en) Manufacturing method of hot-dip galvanized high-tensile cold-rolled steel sheet
JPS6256209B2 (en)
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP3473480B2 (en) Hot-dip galvanized steel sheet excellent in strength and ductility and method for producing the same
KR100933882B1 (en) Manufacturing method of hot dip galvanized steel sheet with excellent workability
JP4679195B2 (en) Low yield ratio high tension hot dip galvanized steel sheet manufacturing method
JP2563021B2 (en) Method for producing high-strength hot-rolled hot-dip galvannealed steel sheet with excellent stretch flangeability
JPS6049698B2 (en) Manufacturing method of alloyed hot-dip galvanized high-strength steel sheet with excellent workability
JP4140962B2 (en) Manufacturing method of low yield ratio type high strength galvannealed steel sheet
JP2001234281A (en) High strength thin steel sheet excellent in adhesion for galvanizing and formability and producing method therefor
JP3125397B2 (en) Manufacturing method of high tensile alloyed hot-dip galvanized steel sheet with excellent stretch flangeability
JP3334646B2 (en) Manufacturing method of hot dip galvannealed steel sheet
JPH09209039A (en) Production of high strength cold rolled steel sheet excellent in deep drawability
JP2806121B2 (en) Method for producing high-strength hot-dip galvanized steel with excellent workability and material stability
JPH05311244A (en) Manufacture of galvannealed steel sheet excellent in stretch flanging property using high strength hot rolled original steel sheet
JPH11279682A (en) High strength steel sheet good in workability and spot weldability and its production
JP2782468B2 (en) Manufacturing method of hot-dip galvanized high-strength hot-rolled steel sheet