JP2786747B2 - Semiconductor vibration / acceleration sensor - Google Patents

Semiconductor vibration / acceleration sensor

Info

Publication number
JP2786747B2
JP2786747B2 JP3018143A JP1814391A JP2786747B2 JP 2786747 B2 JP2786747 B2 JP 2786747B2 JP 3018143 A JP3018143 A JP 3018143A JP 1814391 A JP1814391 A JP 1814391A JP 2786747 B2 JP2786747 B2 JP 2786747B2
Authority
JP
Japan
Prior art keywords
thick portion
central
portions
thin
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3018143A
Other languages
Japanese (ja)
Other versions
JPH04256864A (en
Inventor
光男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Fuji Electric Co Ltd
Original Assignee
Denso Ten Ltd
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd, Fuji Electric Co Ltd filed Critical Denso Ten Ltd
Priority to JP3018143A priority Critical patent/JP2786747B2/en
Publication of JPH04256864A publication Critical patent/JPH04256864A/en
Application granted granted Critical
Publication of JP2786747B2 publication Critical patent/JP2786747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば自動車の加速度
状態, 揺れの状態などを検出し、その検出信号を処理し
て各種制御などに使用される、特に3次元の振動あるい
は加速度を検出することができる半導体振動・加速度セ
ンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects, for example, an acceleration state and a shaking state of an automobile, processes the detection signal, and detects a three-dimensional vibration or acceleration used for various controls. The present invention relates to a semiconductor vibration / acceleration sensor.

【0002】[0002]

【従来の技術】3次元の振動あるいは加速度を検出する
ことができる半導体振動・加速度センサとして特開昭63
−169078に開示されたものが知られている。図4はこの
半導体振動・加速度センサの平面図、図5はx方向成分
検出について説明するための図4のA−Aにおける断面
図、図6はz方向成分検出について説明するための図4
のA−Aにおける断面図である。図4において、5はそ
の平面形状が正方形で、厚肉状の中央厚肉部、6は中央
厚肉部5と所定の間隔を有し、その中央厚肉部5を囲う
ように口の字形に形成された厚肉状の周辺厚肉部であ
る。中央厚肉部5と周辺厚肉部6との間には、中央厚肉
部5の平面形状における正方形の各外辺の略中央より、
各辺の長さより短い所定の幅をもって周辺厚肉部6側に
のび、周辺厚肉部6と中央厚肉部5とを連結する薄肉状
の薄肉支持部8〜11が形成されている。なお、この薄肉
支持部8〜11の図中正のz方向側表面は、中央厚肉部5
および周辺厚肉部6の同表面と同一平面上に形成されて
いる。そして各々の薄肉支持部8〜11の上側にはピエゾ
抵抗素子である4個の歪ゲージからなる歪ゲージ群1〜
4が拡散などにより形成されており、また、各々の歪ゲ
ージ群1〜4は、例えば中央厚肉部5より周辺厚肉部6
側に向かう方向にその長手方向を有する2個の歪ゲージ
と、その方向に直交する方向にその長手方向を有する2
個の歪ゲージとからなり、互いに電気的に接続しフルブ
リッジを構成している。
2. Description of the Related Art As a semiconductor vibration / acceleration sensor capable of detecting three-dimensional vibration or acceleration, Japanese Patent Laid-Open Publication No.
No. 169078 is known. 4 is a plan view of the semiconductor vibration / acceleration sensor, FIG. 5 is a cross-sectional view taken along the line AA in FIG. 4 for explaining x-direction component detection, and FIG. 6 is a diagram for explaining z-direction component detection.
FIG. 3 is a sectional view taken along line AA of FIG. In FIG. 4, 5 is a thick central thick portion having a square planar shape, 6 is a mouth-shaped portion having a predetermined distance from the central thick portion 5 and surrounding the central thick portion 5. This is a thick peripheral thick portion formed in the above. Between the central thick part 5 and the peripheral thick part 6, from the approximate center of each outer side of the square in the planar shape of the central thick part 5,
Thin peripheral support portions 8 to 11 are formed extending to the peripheral thick portion 6 side with a predetermined width shorter than the length of each side, and connecting the peripheral thick portion 6 and the central thick portion 5. The surface of the thin support portions 8 to 11 on the positive z direction side in the drawing is the central thick portion 5.
And on the same plane as the same surface of the peripheral thick portion 6. On the upper side of each of the thin supporting portions 8 to 11, a strain gauge group 1 including four strain gauges which are piezoresistive elements.
4 are formed by diffusion or the like, and each of the strain gauge groups 1 to 4 has, for example, a peripheral thick portion 6 rather than a central thick portion 5.
Two strain gauges having the longitudinal direction in the direction toward the side, and the two strain gauges having the longitudinal direction in the direction orthogonal to the direction.
And a plurality of strain gauges, which are electrically connected to each other to form a full bridge.

【0003】振動, 加速度などによる力を受けて中央厚
肉部5および薄肉支持部8〜11が変位し、その変位状態
に応じた信号を歪ゲージ群1〜4によって電気信号の状
態で検出される。ここで振動, 加速度などによる力の
x, y方向成分は次のようにして検出される。すなわ
ち、例えばx方向成分について考えると、図5の断面図
に示すように中央厚肉部5の重心点Gと支持点P1 ( 支
持点P2 ) との間にはz方向において距離lのずれが生
じており、このずれのためにx方向に力が作用した場
合、支持点P1 は図中正のz方向へ変位し、支持点P2
は負のz方向へ変位する。従って、薄肉支持部9側と薄
肉支持部11では表面応力の加わり方が逆になる。すなわ
ち、薄肉支持部9側においては台座12に近接するほど圧
縮応力が作用し、中央厚肉部5に近接するほど引っ張り
応力が作用するのに対し、薄肉支持部11側においては、
台座12に近接するほど引っ張り応力が作用し、中央厚肉
部5に近接するほど圧縮応力が作用することになる。そ
こで、各々の薄肉支持部9, 11に形成される歪ゲージ群
2, 4が形成するブリッジ回路の出力信号の差を検出す
ることによりx方向に受ける力に応じた電気信号を得る
ことができる。なお、y方向成分についてはその説明を
省略するが、前述したx方向成分における説明と同様に
考えることができる。
The central thick portion 5 and the thin supporting portions 8 to 11 are displaced by a force due to vibration, acceleration, or the like, and signals corresponding to the displaced state are detected by the strain gauge groups 1 to 4 in the form of electric signals. You. Here, the components in the x and y directions of the force due to vibration, acceleration, and the like are detected as follows. That is, for example, considering the x-direction component, as shown in the cross-sectional view of FIG. 5, the distance l in the z direction is between the center of gravity G of the central thick portion 5 and the support point P 1 (support point P 2 ). When a shift has occurred and a force acts in the x direction due to this shift, the support point P 1 is displaced in the positive z direction in the figure, and the support point P 2
Is displaced in the negative z direction. Therefore, the manner in which the surface stress is applied is opposite between the thin supporting portion 9 and the thin supporting portion 11. That is, on the side of the thin supporting portion 9, a compressive stress acts on the pedestal 12, and on the side of the thin supporting portion 11, a compressive stress acts on.
The closer to the pedestal 12, the more tensile stress acts, and the closer to the central thick portion 5, the more compressive stress acts. Therefore, by detecting the difference between the output signals of the bridge circuits formed by the strain gauge groups 2 and 4 formed in the thin supporting portions 9 and 11, an electric signal corresponding to the force received in the x direction can be obtained. . The description of the y-direction component is omitted, but can be considered in the same manner as the description of the x-direction component described above.

【0004】また、z方向成分については、図6の断面
図に示すように、例えば負のz方向に力が作用した場
合、薄肉支持部9側と薄肉支持部11側には共に、台座12
に近接するほど引っ張り応力が作用し、中央厚肉部5に
近接するほど圧縮応力が作用する。また、図示はしない
が薄肉支持部8, 10側においても同様に応力が作用して
おり、従って、各々の薄肉支持部8〜11に形成される歪
ゲージ群1〜4が形成するブリッジ回路の出力信号の
和、あるいはその平均を検出することによりz方向に受
ける力に応じた電気信号を得ることができる。
As for the z-direction component, as shown in the sectional view of FIG. 6, for example, when a force acts in the negative z-direction, both the pedestal 12 and the thin support portion 11 are mounted on the thin support portion 9 and the thin support portion 11 side.
, A tensile stress acts, and a compressive stress acts as it approaches the central thick portion 5. Although not shown, the stress also acts on the thin supporting portions 8 and 10 in the same manner, and therefore, the bridge circuits formed by the strain gauge groups 1 to 4 formed on the thin supporting portions 8 to 11 respectively. By detecting the sum of the output signals or the average thereof, an electric signal corresponding to the force received in the z direction can be obtained.

【0005】[0005]

【発明が解決しようとする課題】前述の半導体振動・加
速度センサにおいては、以下のような問題点がある。図
4〜図6において振動, 加速度などのx方向成分は薄肉
支持部9, 11の変形によって、これらに形成された歪ゲ
ージ群の出力信号の差として検出されるが、薄肉支持部
9, 11と直角方向にある薄肉支持部8, 10が反時計方向
に捩じれ、この捩じれは薄肉支持部9, 11の変形を妨
げ、x方向成分の検出感度を低下させるとともに、薄肉
支持部8, 10がその捩じれで出力信号を発生する。この
出力信号は干渉出力であり検出精度を低下させる。y方
向成分に対しても全く同様である。また、z方向成分は
薄肉支持部8〜11の変形によって、これらに形成された
歪ゲージ群の出力信号の和、あるいは平均で検出される
が、x方向あるいはy方向の力による薄肉支持部8, 10
あるいは9, 11の捩じれによる出力信号が干渉出力とな
り検出精度が低下する。
The aforementioned semiconductor vibration / acceleration sensor has the following problems. 4 to 6, the x-direction components such as vibration and acceleration are detected as a difference between the output signals of the strain gauge groups formed on the thin supporting portions 9 and 11 due to the deformation of the thin supporting portions 9 and 11. The thin support portions 8, 10 in a direction perpendicular to the direction are twisted in the counterclockwise direction, and this twist hinders the deformation of the thin support portions 9, 11 and lowers the detection sensitivity of the x-direction component. An output signal is generated by the twist. This output signal is an interference output and lowers detection accuracy. The same is true for the y-direction component. The z-direction component is detected as a sum or an average of the output signals of the strain gauge groups formed on the thin support portions 8 to 11 due to the deformation of the thin support portions 8 to 11. However, the thin support portion 8 due to a force in the x direction or the y direction is detected. , Ten
Alternatively, an output signal due to the torsion 9 or 11 becomes an interference output, and the detection accuracy decreases.

【0006】本発明の目的は、前述の問題点を解決し、
検出感度が高く、かつ、x, y, z方向間の干渉出力を
なくし、検出精度を向上した半導体・加速度センサを提
供することにある。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a semiconductor / acceleration sensor having high detection sensitivity, eliminating interference output between the x, y, and z directions and improving detection accuracy.

【0007】[0007]

【課題を解決するための手段】前述の課題を解決するた
めに、本発明においては、半導体材料よりなり、四角形
の厚肉状の中央厚肉部と、この中央厚肉部と所定の間隔
を有し、かつ、この中央厚肉部を囲うように形成された
周辺厚肉部と、前記中央厚肉部の各外辺とそれぞれ対面
する周辺厚肉部の各内辺とを連結し、かつ、それぞれ前
記外辺と平衡な部分を有する4個の薄肉支持部と、中央
厚肉部の一外角およびこの外角と対角線上にある他外角
とそれぞれ対面する周辺厚肉部の各内隅とを連結する2
個の薄肉支持部とを備え、前記各薄肉支持部にそれぞれ
歪ゲージが形成されるようにする。
In order to solve the above-mentioned problems, in the present invention, a rectangular thick central portion made of a semiconductor material and a predetermined distance from the central thick portion are defined. And having a peripheral thick portion formed so as to surround the central thick portion, and connecting each inner edge of the peripheral thick portion facing each outer edge of the central thick portion, and The four thin supporting portions each having a portion balanced with the outer side, the outer corner of the central thick portion, and each inner corner of the peripheral thick portion facing the other outer angle diagonally opposite to the outer angle. Connect 2
And a plurality of thin supporting portions, and a strain gauge is formed on each of the thin supporting portions.

【0008】[0008]

【作用】本発明によれば、半導体材料よりなる四角形の
中央厚肉部の各外辺とそれぞれ対面する周辺厚肉部の各
内辺とを連結する4個の各薄肉支持部の一部にそれぞれ
前記各外辺と平行な部分を設けるようにしたので振動,
加速度などによる力が加わった場合、そのy方向成分に
よって図3に示すように中央厚肉部は矢印P方向に動か
され、薄肉支持部231, 232は圧縮あるいは引っ張りを受
け、薄肉支持部233, 234は横方向に曲げられる。この場
合、これら薄肉支持部の一部に設けられた外辺と平行な
部分によって、薄肉支持部231, 232はこの外辺と平行な
部分が主として曲げられ、それ以外の部分は軸方向に力
が加わるためほとんど変形せず、薄肉支持部233, 234は
この外辺と平行な部分は軸方向に力が加わるためほとん
ど変形せず、それ以外の個所が主として曲がるようにな
る。これによって、薄肉支持部231, 232の上側に形成さ
れた歪ゲージによってy方向成分が検出できるととも
に、薄肉支持部233, 234の上側に形成された歪ゲージは
出力信号を発生しないので、干渉出力は生じない。ま
た、薄肉支持部233, 234は中央厚肉部と周辺厚肉部の間
隔を比較的大きくとることによって横方向の曲げ剛性を
弱めることができるので、中央厚肉部の変位を妨げない
ようにできる。また、x方向成分については前述のy方
向成分における説明と同様に考えることができる。
According to the present invention, a part of each of the four thin supporting portions connecting each outer side of the central thick portion of the square made of the semiconductor material and each inner side of the peripheral thick portion facing each other is provided. Vibration,
When a force due to acceleration or the like is applied, the central thick portion is moved in the direction of arrow P as shown in FIG. 3 by the y-direction component, and the thin support portions 231 and 232 undergo compression or tension, and the thin support portions 233 and 234 is bent laterally. In this case, the thin-walled supporting portions 231 and 232 are bent mainly by the portions parallel to the outer side provided on a part of the thin-walled supporting portions, and the other portions are forced in the axial direction by the other portions. Is applied, so that the thin supporting portions 233 and 234 are hardly deformed because a force is applied in the axial direction in a portion parallel to the outer side, and the other portions mainly bend. As a result, the y-direction component can be detected by the strain gauges formed above the thin supporting portions 231 and 232, and the strain gauge formed above the thin supporting portions 233 and 234 does not generate an output signal. Does not occur. In addition, since the thin supporting portions 233 and 234 can reduce the bending rigidity in the lateral direction by setting a relatively large interval between the central thick portion and the peripheral thick portion, so as not to hinder the displacement of the central thick portion. it can. Further, the x-direction component can be considered in the same manner as described above for the y-direction component.

【0009】また、z方向成分は中央厚肉部の一外角お
よびこの外角と対角線上にある他外角とそれぞれ対面す
る周辺厚肉部の各内隅とを連結する2個の薄肉支持部の
241,242の上側に形成された歪ゲージによって中央厚肉
部21および薄肉支持部241, 242の変位状態を検出するよ
うにしたので、x方向成分, y方向成分の検出と独立し
ており、これら成分検出用の歪ゲージの出力信号からの
干渉出力は生じない。更に、歪ゲージを中央厚肉部の外
角と周辺厚肉部の内隅とをむすぶ線上に形成することに
より、この線はx方向成分, y方向成分の力が加わった
場合の薄肉支持部の横方向の曲がりの中心線であり、こ
の上側に形成された歪ゲージはx方向成分, y方向成分
の力に対し出力信号を発生せず、これらx方向成分, y
方向成分の力による干渉出力も生じない。
The z-direction component is defined by two thin supporting portions connecting one outer angle of the central thick portion and each inner corner of the peripheral thick portion facing the outer angle diagonally to another outer angle.
Since the displacement state of the central thick part 21 and the thin supporting parts 241 and 242 is detected by the strain gauge formed on the upper side of 241,242, these components are independent of the detection of the x-direction component and the y-direction component. No interference output is generated from the output signal of the strain gauge for detection. Furthermore, by forming the strain gauge on a line extending between the outer corner of the central thick part and the inner corner of the peripheral thick part, this line becomes the thin supporting part when a force in the x-direction component and the y-direction component is applied. The strain gauge formed on the upper side does not generate an output signal with respect to the force in the x-direction component and the y-direction component.
There is no interference output due to the force of the directional component.

【0010】[0010]

【実施例】図1は本発明の半導体振動・加速度センサの
一実施例を示し、図1(a) は平面図、図1(b) は図1
(a) のA−Aにおける断面図、図1(c) は図1(a) のB
−Bにおける断面図である。図1において21は半導体材
料よりなる四角形で厚肉状の中央厚肉部、22は中央厚肉
部21と所定の間隔を有し、その中央厚肉部を囲うように
口の字形に形成された厚肉状の半導体材料よりなる周辺
厚肉部である。中央厚肉部21と周辺厚肉部22との間に
は、四角形の中央厚肉部の各外辺から、これら外辺の長
さより短い所定の幅をもって周辺厚肉部22側にのび、周
辺厚肉部22と中央厚肉部21とを連結する薄肉状の4個の
半導体材料よりなる薄肉支持部231 〜234が形成されて
いる。これら薄肉支持部231 〜234 の一部には、それぞ
れ前記各外辺と平行な部分231A〜234Aが設けられてい
る。また、中央厚肉部の一外角およびこの外角と対角線
上にある他外角とそれぞれ対面する周辺厚肉部の各内隅
とを連結する薄肉状の2個の薄肉支持部241, 242が形成
されている。薄肉支持部231 〜234 の外辺と平行な部分
231A〜234Aの上側にはそれぞれ歪ゲージ251, 252と253,
254と263, 264と261, 262が形成され、薄肉支持部241,
242の上側にはそれぞれ歪ゲージ271, 272と273, 274と
が形成されている。これら歪ゲージは同じ軸上にある、
例えばy軸上にある薄肉支持部231, 232に形成されてい
る歪ゲージ251, 252, 253, 254を一組として図2に示す
ようなフルブリッジを構成している。また、x軸上にあ
る薄肉支持部233, 234に形成されている歪ゲージ261, 2
62, 263, 264も同様である。更に、四角形の中央厚肉部
の外角に設けられた薄肉支持部241,242に形成されてい
る歪ゲージ271, 272, 273, 274を一組として同様フルブ
リッジを構成している。
1 shows an embodiment of a semiconductor vibration / acceleration sensor according to the present invention. FIG. 1 (a) is a plan view, and FIG.
1A is a cross-sectional view taken along the line AA, and FIG.
It is sectional drawing in -B. In FIG. 1, reference numeral 21 denotes a quadrangular thick thick central portion made of a semiconductor material, 22 denotes a square-shaped portion having a predetermined distance from the central thick portion 21 and surrounding the central thick portion. Peripheral thick portion made of a thick semiconductor material. Between the central thick part 21 and the peripheral thick part 22, from each outer side of the square central thick part, it extends to the peripheral thick part 22 side with a predetermined width shorter than the length of these outer sides, and Thin supporting portions 231 to 234 made of four thin semiconductor materials connecting the thick portion 22 and the central thick portion 21 are formed. Some of the thin supporting portions 231 to 234 are provided with portions 231A to 234A, respectively, which are parallel to the outer sides. Also, two thin-walled thin supporting portions 241 and 242 are formed to connect one outer angle of the central thick portion and each inner corner of the peripheral thick portion facing the other outer angle diagonally to the outer angle. ing. A part parallel to the outer edge of the thin supporting parts 231 to 234
On the upper side of 231A to 234A are strain gauges 251, 252 and 253, respectively.
254 and 263, 264 and 261, 262 are formed, and the thin support portion 241,
On the upper side of 242, strain gauges 271, 272 and 273, 274 are formed, respectively. These strain gauges are on the same axis,
For example, a set of strain gauges 251, 252, 253, 254 formed on the thin supporting portions 231, 232 on the y-axis constitutes a full bridge as shown in FIG. The strain gauges 261, 2 formed on the thin supporting portions 233, 234 on the x-axis
The same applies to 62, 263, and 264. Further, the strain gauges 271, 272, 273, 274 formed on the thin supporting portions 241, 242 provided at the outer corners of the quadrangular central thick portion constitute a full bridge similarly.

【0011】振動, 加速度などによる力を受けて中央厚
肉部21および薄肉支持部231 〜234および241 〜242 が
変位し、その変位状態に応じた信号を歪ゲージ251 〜25
4, 261〜264 および271 〜274 によって電気信号の状態
で検出される。ここで、振動, 加速度などによる力の
x, y方向成分は次のようにして検出される。すなわ
ち、例えばy方向成分について考えると図3に示すよう
に中央厚肉部は矢印P方向に動かされ、薄肉支持部231,
232は圧縮あるいは引っ張りを受け、薄肉支持部233, 2
34は横方向に曲げられる。この場合、これら薄肉支持部
の一部に設けられた外辺と平行な部分231A〜234Aによっ
て、薄肉支持部231, 232はこの外辺と平行な部分が主と
して曲げられ、それ以外の部分は軸方向に力が加わるた
めほとんど変形せず、薄肉支持部233, 234はこの外辺と
平行な部分は軸方向に力が加わるためほとんど変形せず
それ以外の個所が主として曲がるようになる。これによ
って、薄肉支持部231, 232の外辺と平行な部分231A, 23
2Aの上側に形成された歪ゲージ251 〜254 によりy方向
成分が検出できるとともに、薄肉支持部233, 234の外辺
と平行な部分233A, 234Aの上側に形成された歪ゲージ26
1 〜264 は出力信号を発生しないので干渉出力は生じな
い。また、薄肉支持部233,234 は中央厚肉部21と周辺厚
肉部22の間隔を比較的大きくとることによって、その横
方向の曲げ剛性を弱めることができるので、中央厚肉部
の変位を妨げないようにできる。また、x方向成分につ
いては前述のy方向成分における説明と同様に考えるこ
とができる。
The central thick part 21 and the thin supporting parts 231-234 and 241-242 are displaced by the force of vibration, acceleration or the like, and a signal corresponding to the displaced state is transmitted to the strain gauges 251-25.
4, 261 to 264 and 271 to 274 are detected in the state of electric signals. Here, the x and y direction components of the force due to vibration, acceleration, and the like are detected as follows. That is, for example, considering the y-direction component, the central thick portion is moved in the direction of arrow P as shown in FIG.
232 is compressed or stretched and the thin supports 233, 2
34 is bent laterally. In this case, the thin supporting portions 231 and 232 are bent mainly at the portions parallel to the outer sides by the portions 231A to 234A parallel to the outer side provided at a part of the thin supporting portions, and the other portions are the shafts. Since the force is applied in the direction, the portion is hardly deformed, and the thin-walled support portions 233, 234 are hardly deformed in the portion parallel to the outer side because the force is applied in the axial direction, and the other portions mainly bend. Thereby, the portions 231A, 23 parallel to the outer sides of the thin support portions 231, 232 are formed.
The components in the y-direction can be detected by the strain gauges 251 to 254 formed on the upper side of 2A, and the strain gauge 26 formed on the upper side of the portions 233A and 234A parallel to the outer sides of the thin supporting portions 233 and 234.
1 to 264 do not generate an output signal, so that no interference output occurs. The thin supporting portions 233 and 234 can reduce the bending rigidity in the lateral direction by relatively setting the space between the central thick portion 21 and the peripheral thick portion 22 so that the displacement of the central thick portion is not hindered. I can do it. Further, the x-direction component can be considered in the same manner as described above for the y-direction component.

【0012】また、z方向成分は中央厚肉部21の一外角
およびこの外角と対角線上にある他外角とそれぞれ対面
する周辺厚肉部の各内隅とを連結する2個の薄肉支持部
241,242の上側に形成された歪ゲージ271〜274 によっ
て、中央厚肉部のz方向の変位から検出する。これはx
方向成分, y方向成分の検出と独立しており、これら成
分の出力信号からの干渉出力は生じない。更に、歪ゲー
ジを中央厚肉部の外角とこれと対面する周辺厚肉部の内
隅とをむすぶ線上に形成することにより、この線はx方
向成分,y方向成分の力が加わった場合の薄肉支持部の
横方向の曲がりの中心線であり、この上側に形成された
歪ゲージはx方向成分, y方向成分の力に対し出力信号
を発生せず、干渉出力は生じない。
The z-direction component is composed of two thin supporting portions connecting one outer angle of the central thick portion 21 and other outer angles on the diagonal line to the inner corners of the peripheral thick portions facing each other.
Strain gauges 271 to 274 formed above 241 and 242 detect the displacement of the central thick part in the z direction. This is x
The detection of the directional component and the y-direction component is independent, and no interference output is generated from the output signals of these components. Further, by forming the strain gauge on a line connecting the outer corner of the central thick part and the inner corner of the peripheral thick part facing the strain gauge, this line is formed when an x-direction component and a y-direction component force are applied. This is the center line of the lateral bending of the thin supporting portion, and the strain gauge formed on the upper side does not generate an output signal with respect to the force of the x-direction component and the y-direction component, and does not generate interference output.

【0013】[0013]

【発明の効果】本発明によれば、半導体振動・加速度セ
ンサにおいて、四角形の中央厚肉部の各外辺とそれぞれ
対面する周辺厚肉部の各内辺とを連結する4個の各薄肉
支持部の一部にそれぞれ前記各外辺と平行な部分を設
け、この外辺と平行な部分の上側にそれぞれ歪ゲージを
形成し、振動・加速度などによる力のx方向成分あるい
はy方向成分を検出し、また、中央厚肉部の一外角およ
びこの外角と対角線上にある他外角とそれぞれ対面する
周辺厚肉部の各内隅とを連結する2個の各薄肉支持部の
上側にそれぞれ歪ゲージを形成し、z方向成分を検出す
るようにしたので、振動・加速度を極めて高感度で、か
つ、x方向成分, y方向成分, z方向成分間の干渉がな
く高精度で検出可能となる。
According to the present invention, in a semiconductor vibration / acceleration sensor, four thin supporting members for connecting each outer edge of a square central thick portion and each inner edge of a peripheral thick portion facing each other are provided. A part parallel to each of the outer sides is provided in a part of the part, and a strain gauge is formed above the part parallel to the outer side to detect an x-direction component or a y-direction component of a force due to vibration, acceleration, or the like. In addition, a strain gauge is provided above each of the two thin supporting portions which connect one outer angle of the central thick portion and each inner corner of the peripheral thick portion facing the other angle which is diagonally opposite to the outer angle. Is formed, and the z-direction component is detected, so that the vibration / acceleration can be detected with extremely high sensitivity and with high accuracy without interference between the x-direction component, the y-direction component, and the z-direction component.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体振動・加速度センサの一実施例
を示し、図1(a) は平面図、図1(b) は図1(a) のA−
Aにおける断面図、図1(c) は図1(a) のB−Bにおけ
る断面図
FIG. 1 shows an embodiment of a semiconductor vibration / acceleration sensor according to the present invention. FIG. 1 (a) is a plan view, and FIG.
1A is a cross-sectional view taken along a line BB in FIG. 1A.

【図2】図1の歪ゲージの接続を示す回路図FIG. 2 is a circuit diagram showing connection of the strain gauge of FIG. 1;

【図3】図1に示す本発明の半導体振動・加速度センサ
の動作を説明するための平面図
FIG. 3 is a plan view for explaining the operation of the semiconductor vibration / acceleration sensor of the present invention shown in FIG. 1;

【図4】従来の半導体振動・加速度センサの一例を示す
平面図
FIG. 4 is a plan view showing an example of a conventional semiconductor vibration / acceleration sensor.

【図5】図4に示す従来の半導体振動・加速度センサの
x方向成分検出動作を説明するための図4のA−Aにお
ける断面図
5 is a cross-sectional view taken along the line AA of FIG. 4 for explaining an x-direction component detection operation of the conventional semiconductor vibration / acceleration sensor shown in FIG.

【図6】図4に示す従来の半導体振動・加速度センサの
z方向成分検出動作を説明するための図4のA−Aにお
ける断面図
6 is a cross-sectional view taken along the line AA of FIG. 4 for explaining the z-direction component detection operation of the conventional semiconductor vibration / acceleration sensor shown in FIG.

【符号の説明】[Explanation of symbols]

21 中央厚肉部 22 周辺厚肉部 231 薄肉支持部 231A 外辺と平行部分 231 薄肉支持部 231A 外辺と平行部分 233 薄肉支持部 233A 外辺と平行部分 234 薄肉支持部 234A 外辺と平行部分 241 薄肉支持部 242 薄肉支持部 251 歪ゲージ 252 歪ゲージ 253 歪ゲージ 254 歪ゲージ 261 歪ゲージ 262 歪ゲージ 263 歪ゲージ 264 歪ゲージ 271 歪ゲージ 272 歪ゲージ 273 歪ゲージ 274 歪ゲージ 21 Central Thick Part 22 Peripheral Thick Part 231 Thin Support 231A Part Parallel to Outer Side 231 Thin Support 231A Parallel to Outer 233 Thin Support 233A Parallel to Outer 234 Thin Support 234A Parallel to Outer 241 Thin support portion 242 Thin support portion 251 Strain gauge 252 Strain gauge 253 Strain gauge 254 Strain gauge 261 Strain gauge 262 Strain gauge 263 Strain gauge 264 Strain gauge 271 Strain gauge 272 Strain gauge 273 Strain gauge 274 Strain gauge

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−186676(JP,A) 特開 平1−301176(JP,A) 特開 昭63−169078(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01P 15/10 G01P 15/12 H01L 29/84──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-186676 (JP, A) JP-A-1-301176 (JP, A) JP-A-63-169078 (JP, A) (58) Investigation Field (Int.Cl. 6 , DB name) G01P 15/10 G01P 15/12 H01L 29/84

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体材料よりなり、四角形の厚肉状の中
央厚肉部と、この中央厚肉部と所定の間隔を有し、か
つ、この中央厚肉部を囲うように形成された周辺厚肉部
と、前記中央厚肉部の各外辺とそれぞれ対面する周辺厚
肉部の各内辺とを連結し、かつ、それぞれ前記外辺と平
行な部分を有する4個の薄肉支持部と、中央厚肉部の一
外角およびこの外角と対角線上にある他外角とそれぞれ
対面する周辺厚肉部の各内隅とを連結する2個の薄肉支
持部とを備え、前記各薄肉支持部にそれぞれ歪ゲージが
形成されることを特徴とする半導体振動・加速度セン
サ。
1. A rectangular thick central portion made of a semiconductor material and a peripheral portion formed to have a predetermined distance from the central thick portion and to surround the central thick portion. A thick portion and four thin supporting portions connecting the respective outer edges of the central thick portion and the respective inner edges of the peripheral thick portions facing each other, and each having a portion parallel to the outer edge; Two thin supporting portions that connect one outer angle of the central thick portion and each inner corner of the peripheral thick portion facing the outer angle and the other outer angle that is diagonally opposite to the outer angle. A semiconductor vibration / acceleration sensor wherein a strain gauge is formed.
【請求項2】請求項1記載の半導体振動・加速度センサ
において、中央厚肉部の各外辺とそれぞれ対面する周辺
厚肉部の各内辺とを連結し、かつ、それぞれ前記外辺と
平行な部分を有する4個の各薄肉支持部に形成される歪
ゲージは各薄肉支持部の外辺と平行な部分の上側にそれ
ぞれ形成されることを特徴とする半導体振動・加速度セ
ンサ。
2. The semiconductor vibration / acceleration sensor according to claim 1, wherein each outer side of the central thick part is connected to each inner side of the peripheral thick part facing each other, and each is parallel to the outer side. The semiconductor vibration / acceleration sensor is characterized in that the strain gauges formed on each of the four thin supporting portions having various portions are formed above portions parallel to the outer sides of the thin supporting portions.
【請求項3】請求項1記載の半導体振動・加速度センサ
において、中央厚肉部の一外角およびこの外角と対角線
上にある他外角とそれぞれ対面する周辺厚肉部の各内隅
とを連結する2個の各薄肉支持部に形成される歪ゲージ
は各薄肉支持部の中央厚肉部の外角とこれと対面する周
辺厚肉部の内隅とをむすぶ線上の上側に形成されること
を特徴とする半導体振動・加速度センサ。
3. The semiconductor vibration / acceleration sensor according to claim 1, wherein one outer angle of the central thick portion and another outer angle on a diagonal line with the outer angle are connected to respective inner corners of the peripheral thick portion facing each other. The strain gauge formed on each of the two thin supporting portions is formed on an upper side on a line connecting an outer angle of a central thick portion of each thin supporting portion and an inner corner of a peripheral thick portion facing the outer portion. Semiconductor vibration / acceleration sensor.
JP3018143A 1991-02-12 1991-02-12 Semiconductor vibration / acceleration sensor Expired - Fee Related JP2786747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3018143A JP2786747B2 (en) 1991-02-12 1991-02-12 Semiconductor vibration / acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3018143A JP2786747B2 (en) 1991-02-12 1991-02-12 Semiconductor vibration / acceleration sensor

Publications (2)

Publication Number Publication Date
JPH04256864A JPH04256864A (en) 1992-09-11
JP2786747B2 true JP2786747B2 (en) 1998-08-13

Family

ID=11963389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3018143A Expired - Fee Related JP2786747B2 (en) 1991-02-12 1991-02-12 Semiconductor vibration / acceleration sensor

Country Status (1)

Country Link
JP (1) JP2786747B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5734105A (en) 1992-10-13 1998-03-31 Nippondenso Co., Ltd. Dynamic quantity sensor

Also Published As

Publication number Publication date
JPH04256864A (en) 1992-09-11

Similar Documents

Publication Publication Date Title
US6185814B1 (en) Method of manufacturing a sensor detecting a physical action as an applied force
US7578162B2 (en) Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus
JPH05203667A (en) Capacitive three-axis acceleration sensor
JPH05118942A (en) Device for detecting force, acceleration, magnetism related with multidimensional direction
JP2841240B2 (en) Force / acceleration / magnetism detection device
JPH02163628A (en) Measuring instrument
JPH1026571A (en) Detector for force, acceleration and magnetism
JPH05118943A (en) Load detecter
JP2786747B2 (en) Semiconductor vibration / acceleration sensor
JPH0772026A (en) Strain generating construction and multiaxis force detection sensor using the same
JP3010725B2 (en) Semiconductor acceleration sensor
JP3043477B2 (en) Sensor using change in capacitance
CN110501521B (en) Piezoelectric accelerometer
JP2865266B2 (en) Semiconductor acceleration sensor
JPS6157825A (en) Multiaxial force sensor
JP3034620B2 (en) 3D acceleration sensor
JP3586696B2 (en) Thin load cell
JPH04279867A (en) Three-dimensional acceleration sensor
CN117607489B (en) Sensitive structure of piezoresistive acceleration sensor and acceleration sensor
JP3060259B2 (en) 3 component force meter
JPH11101697A (en) Apparatus for detecting force, acceleration, and magnetism
JPH04158226A (en) Acceleration sensor
JPH01259264A (en) Semiconductor acceleration sensor
JPH0830716B2 (en) Semiconductor acceleration detector
JP6958533B2 (en) Vibration type sensor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980519

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees