JP2786172B2 - Thermal response valve for controlling the refrigerant circuit of an automobile engine - Google Patents

Thermal response valve for controlling the refrigerant circuit of an automobile engine

Info

Publication number
JP2786172B2
JP2786172B2 JP19167396A JP19167396A JP2786172B2 JP 2786172 B2 JP2786172 B2 JP 2786172B2 JP 19167396 A JP19167396 A JP 19167396A JP 19167396 A JP19167396 A JP 19167396A JP 2786172 B2 JP2786172 B2 JP 2786172B2
Authority
JP
Japan
Prior art keywords
valve
thermally responsive
expansion
refrigerant
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19167396A
Other languages
Japanese (ja)
Other versions
JPH1019160A (en
Inventor
滋 佐藤
和弘 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI TOMUSON KK
Original Assignee
FUJI TOMUSON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI TOMUSON KK filed Critical FUJI TOMUSON KK
Priority to JP19167396A priority Critical patent/JP2786172B2/en
Publication of JPH1019160A publication Critical patent/JPH1019160A/en
Application granted granted Critical
Publication of JP2786172B2 publication Critical patent/JP2786172B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車エンジンの
冷媒(冷却水)をラジエータ回路およびバイパス回路に
循環させる冷媒循環回路を制御するための熱応動弁の改
良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a heat responsive valve for controlling a refrigerant circulation circuit for circulating a refrigerant (cooling water) of an automobile engine through a radiator circuit and a bypass circuit.

【0002】[0002]

【従来の技術】ラジエータ回路およびバイパス回路を開
閉制御する熱応動弁を備えている自動車エンジン冷却水
循環回路においては、バイパス回路を経てエンジン側に
流通する冷却水の温度を熱応動伸縮素子が感知すること
で、前記ラジエータ回路およびバイパス回路を開閉する
弁を駆動している。このため、エンジン側へ通じる管路
の入口制御の熱応動弁においては、バイパス管路からの
冷却水を弁駆動のための感温部、つまり熱応動伸縮素子
に積極的に当てないと、前記ラジエータ回路およびバイ
パス回路の開閉制御が正確に行なわれないことがあり、
この不具合を解消するため、従来、種々の工夫がなされ
ている。
2. Description of the Related Art In an automotive engine cooling water circulation circuit having a heat responsive valve for controlling the opening and closing of a radiator circuit and a bypass circuit, a heat responsive expansion and contraction element senses the temperature of the cooling water flowing to the engine via the bypass circuit. This drives a valve that opens and closes the radiator circuit and the bypass circuit. For this reason, in the thermally responsive valve for controlling the entrance of the pipeline leading to the engine side, the cooling water from the bypass pipeline must be positively applied to the temperature sensing portion for valve drive, that is, the thermally responsive expansion and contraction element. Open / close control of the radiator circuit and bypass circuit may not be performed accurately,
Conventionally, various measures have been taken to solve this problem.

【0003】図11〜図14によって従来例を説明す
る。図14は自動車用エンジン冷却水循環系統を示すも
のであって、自動車用エンジン1における冷却室の入口
およびラジエータ2の被冷却水出口を接続する管路(以
下エンジン側管路という)9の一端部との分岐接続部
に、冷却水循環路制御用熱応動弁3が設けられている。
ラジエータ2の冷却水出口に一端部が接続されているラ
ジエータ戻り管路4(図11参照)の他端部と、前記バ
イパス管路5の他端部とは、循環用ポンプ(図示省略す
る)を介して自動車用エンジン1の冷却室の温水出口と
接続されている。
A conventional example will be described with reference to FIGS. FIG. 14 shows an engine cooling water circulation system for an automobile. One end of a pipe (hereinafter referred to as an engine-side pipe) 9 connecting an inlet of a cooling chamber of the automobile engine 1 and an outlet of a cooling water of the radiator 2 is shown. The cooling water circulation path control thermal responsive valve 3 is provided at a branch connection portion between the two.
The other end of the radiator return pipe 4 (see FIG. 11), one end of which is connected to the cooling water outlet of the radiator 2, and the other end of the bypass pipe 5 are circulating pumps (not shown). Is connected to the hot water outlet of the cooling chamber of the vehicle engine 1 via the.

【0004】冷却水循環路制御用熱応動弁3は図11〜
図13に示される構造であって、ラジエータ戻り管路4
にパッキン14を介して設けられた通水窓孔19を有す
るフレーム6の周縁部に環状弁座7が設けられ、かつフ
レーム6の中央部にプランジャ8の上端がねじ結合部1
1を介して固着されている。このプランジャ8に対し、
軸状のワックス式熱応動伸縮素子10の中心部がスライ
ド伸縮自在に保持されている。
The heat responsive valve 3 for controlling the cooling water circuit is shown in FIGS.
13. The structure shown in FIG.
An annular valve seat 7 is provided at a peripheral portion of a frame 6 having a water passage window hole 19 provided through a packing 14, and an upper end of a plunger 8 is provided at a central portion of the frame 6 with a screw coupling portion 1.
1 is fixed. For this plunger 8,
The central portion of the axially-shaped thermally responsive elastic element 10 is slidably held.

【0005】熱応動伸縮素子10の上部には、ゴムパッ
キング12Aが加硫接着された主弁体12が昇降可能に
嵌合しており、かつ弁閉塞用スプリング13の上端で押
上げられ、テーパ部30で上動が制限された状態で支持
されている。弁閉塞用スプリング13の下端は、熱応動
伸縮素子10の下部外周に設けられた環状ばね受け座1
5に係止されている。このばね受け座15の対称位置か
ら起立片16が立上っており、起立片16の上部に円弧
状にかつ水平に伸びる腕部17が設けられ、腕部17の
上縁から突出する突起18を、環状弁座7の周縁の係合
孔20に差込み、その嵌合部を溶接することで、起立片
16が固定されている。
[0005] A main valve body 12 to which a rubber packing 12A is vulcanized and bonded is fitted on the upper part of the thermally responsive expansion / contraction element 10 in a vertically movable manner. The portion 30 is supported in a state where the upward movement is restricted. The lower end of the valve closing spring 13 is connected to an annular spring receiving seat 1 provided on a lower outer periphery of the thermally responsive expansion / contraction element 10.
5. An erecting piece 16 rises from the symmetrical position of the spring receiving seat 15, and an arm 17 extending in an arc shape and horizontally is provided on the upper part of the erecting piece 16, and a projection 18 projecting from an upper edge of the arm 17. Is inserted into the engagement hole 20 in the peripheral edge of the annular valve seat 7 and the fitting portion is welded, so that the upright piece 16 is fixed.

【0006】熱応動伸縮素子10の下端の径小軸部21
には、略皿状断面の弁体22の中心部に開設された円孔
部23がスライド自在に嵌合しており、弁付勢用スプリ
ング24で下向きに付勢され、スナップリング25に係
止することで下方向の移動が制限されている。
The small diameter shaft portion 21 at the lower end of the thermally responsive expansion / contraction element 10
A circular hole 23 formed at the center of the valve body 22 having a substantially dish-shaped cross section is slidably fitted therein, urged downward by a valve urging spring 24, and engaged with the snap ring 25. Stopping restricts downward movement.

【0007】前記の熱応動弁において、ハウジング26
内で熱応動伸縮素子10の周囲におけるバイパス管路5
から流出する冷却水の水温が一定以下、例えば60℃以
下であるときは、熱応動伸縮素子10が短縮しているの
で、主弁体12が環状弁座7と接触しており、それによ
りラジエータ戻り管路4からエンジン側管路9へ通じる
流路が閉じられ、かつ弁体22は、弁付勢用スプリング
24が最大限伸長した状態で、バイパス管路5の内端面
の弁座28から離間してバイパス管路5は全開になって
おり、そのため自動車用エンジン1の冷却水は、ラジエ
ータ2を通ることなく図11の矢印のように流れてバイ
パス回路を循環する。
In the above-mentioned thermal responsive valve, the housing 26
Pipe 5 around the thermally responsive expansion element 10
When the temperature of the cooling water flowing out of the chiller is equal to or lower than a predetermined value, for example, equal to or lower than 60 ° C., the main valve body 12 is in contact with the annular valve seat 7 because the thermally responsive expansion and contraction element 10 is shortened. The flow path from the return pipe 4 to the engine-side pipe 9 is closed, and the valve element 22 is moved from the valve seat 28 on the inner end face of the bypass pipe 5 in a state where the valve urging spring 24 is extended to the maximum. The bypass pipe 5 is fully opened at a distance, so that the cooling water of the vehicle engine 1 flows as shown by the arrow in FIG. 11 without passing through the radiator 2 and circulates in the bypass circuit.

【0008】次に、熱応動伸縮素子10の周囲の水温が
例えば60℃〜80℃になると、この熱応動伸縮素子1
0が伸長することにより弁体22が下り、バイパス管路
5の内端面の弁座28に接近または接触し、バイパス管
路5の開口部27が絞られ又は閉じられてバイパス管路
5からエンジン側管路9に通じる流路が制御される。
Next, when the water temperature around the thermoresponsive expansion / contraction element 10 becomes, for example, 60 ° C. to 80 ° C., the thermoresponsive expansion / contraction element 1
As the valve 0 extends, the valve body 22 descends, approaches or contacts the valve seat 28 on the inner end face of the bypass pipe 5, the opening 27 of the bypass pipe 5 is narrowed or closed, and the engine is moved from the bypass pipe 5 to the engine. The flow path leading to the side conduit 9 is controlled.

【0009】次に、熱応動伸縮素子10の周囲の水温が
例えば82℃を越えて上昇すると、この熱応動伸縮素子
10のさらなる伸長により、熱応動伸縮素子10のテー
パ部30での接触により、この位置から上方への移動を
制限されている主弁体12が熱応動伸縮素子10と一体
に下降して、図13に示されるように環状弁座7と離間
し、ラジエータ戻り管路4からエンジン側管路9に通じ
る流路が開放される。このようにして、自動車エンジン
の温水は、ラジエータ回路を循環し、さらにバイパス回
路をも少量の温水が循環する。
Next, when the water temperature around the thermally responsive expansion and contraction element 10 rises above, for example, 82 ° C., the thermal expansion and contraction element 10 is further extended, so that the thermal responsive expansion and contraction element 10 comes into contact with the tapered portion 30, The main valve body 12, which is restricted from moving upward from this position, descends integrally with the thermally responsive expansion / contraction element 10, separates from the annular valve seat 7 as shown in FIG. The flow path leading to the engine side pipe 9 is opened. In this way, the hot water of the automobile engine circulates through the radiator circuit, and a small amount of hot water also circulates through the bypass circuit.

【0010】図11に示すように、バイパス管路5が全
開した状態において、バイパス管路5から流出する冷却
水が、同図矢印のように流れ、その一部が熱応動伸縮素
子10の周囲を流れてエンジン側管路9へと流れると
き、バイパス管路5から流出する冷却水が直進して、出
来るだけ多くの冷却水がバイパス管路の直上位置にある
熱応動伸縮素子10に回り込んでからエンジン側管路9
に流れるのが、熱応動伸縮素子10をより正確に駆動さ
せるうえで望ましい。
As shown in FIG. 11, when the bypass pipe 5 is fully opened, the cooling water flowing out of the bypass pipe 5 flows as shown by the arrow in FIG. When the cooling water flows to the engine side pipe 9, the cooling water flowing out of the bypass pipe 5 goes straight, and as much cooling water as possible goes around to the thermally responsive expansion / contraction element 10 located immediately above the bypass pipe. From the engine side pipeline 9
Is desirable in order to drive the thermally responsive expansion / contraction element 10 more accurately.

【0011】しかるに、バイパス管路5の直上方向には
熱応動伸縮素子10の下端部に設けられた断面皿状の弁
体22が存在するため、バイパス管路5から流出する冷
却水は、前記弁体22にぶつかって直接エンジン側管路
9に流れ、熱応動伸縮素子10の部分に十分な量の冷却
水が当らず、そのため熱応動伸縮素子10が正確に駆動
しないことがある。
However, since the valve element 22 having a dish-shaped cross section provided at the lower end of the thermally responsive expansion / contraction element 10 exists directly above the bypass pipe 5, the cooling water flowing out of the bypass pipe 5 There is a possibility that the coolant flows directly into the engine-side pipe line 9 while hitting the valve element 22 and a sufficient amount of cooling water does not hit the portion of the thermally responsive expansion and contraction element 10, so that the thermally responsive expansion and contraction element 10 may not be driven accurately.

【0012】このような不具合に対処するために、図
7,図8に示すようにバイパス管路5とエンジン側管路
9との間におけるハウジング内側に平面からみて略半円
筒形のガイド壁(堰)31を設けることで、熱応動伸縮
素子10に向う冷却水の流れを強くすることがある。ま
た図9,図10に示されるように、弁体32に円弧状の
流通口33を設け、この流通口33をバイパス管路5に
設けられた弁座28に接触させると共に、弁体32の平
板面で、前記流通口33の外周縁側に先端が熱応動伸縮
素子10を向いた傾斜ガイド壁34を切り起して設ける
ことで流通口33を流れる冷却水を熱応動伸縮素子10
に向わせることがある。さらに、弁閉塞用スプリング1
3の下端を係止する環状ばね受座15の内側傾斜壁35
に流出口36を開設して、熱応動伸縮素子10に向う冷
媒の流れを促進させることもある。
In order to cope with such inconveniences, as shown in FIGS. 7 and 8, a substantially semi-cylindrical guide wall (in plan view) is provided inside the housing between the bypass line 5 and the engine-side line 9. By providing the weir 31, the flow of the cooling water toward the thermally responsive expansion / contraction element 10 may be increased. As shown in FIGS. 9 and 10, an arc-shaped flow port 33 is provided in the valve body 32, and this flow port 33 is brought into contact with the valve seat 28 provided in the bypass pipe 5, and On the flat plate surface, a cooling water flowing through the flow opening 33 is provided by cutting and raising an inclined guide wall 34 whose front end faces the thermally responsive expansion / contraction element 10 on the outer peripheral edge side of the flow opening 33.
May be turned to. Further, the valve closing spring 1
The inner inclined wall 35 of the annular spring seat 15 for locking the lower end of the third spring 3
In some cases, the outlet 36 may be opened to promote the flow of the refrigerant toward the thermally responsive expansion / contraction element 10.

【0013】しかし、前述の各構造ではハウジング26
内での冷却水の抵抗増加や熱応動弁の製作コストの増加
を伴なう場合があり、特にウォータポンプに近い現象が
生じる時は、抵抗増加でキャビティションの問題が発生
する場合がある。
However, in each of the above structures, the housing 26
In some cases, the resistance of the cooling water in the chamber may increase, and the production cost of the thermally responsive valve may increase. In particular, when a phenomenon close to a water pump occurs, a problem of cavitation may occur due to the increase in the resistance.

【0014】[0014]

【発明が解決しようとする課題】従来の熱応動弁では、
熱応動伸縮素子にバイパス管路から流出する冷却水を積
極的に、かつ最も効率よく当てることができない構造で
あり、さらに、冷却水の抵抗増加や製作コストの増加を
伴なうという欠点があり、その結果、熱応動伸縮素子の
作動が不正確になりがちで、ラジエータ戻り管路とバイ
パス管路の切換え制御がうまく効かないという不具合が
あった。
SUMMARY OF THE INVENTION In a conventional thermal responsive valve,
The structure is such that the cooling water flowing out of the bypass pipe cannot be applied to the thermally responsive expansion / contraction element positively and most efficiently.Furthermore, the cooling water resistance increases and the manufacturing cost increases. As a result, the operation of the thermally responsive expansion and contraction element tends to be inaccurate, and the switching control between the radiator return line and the bypass line is not effectively performed.

【0015】本発明は前記の欠点を解決した自動車エン
ジン冷媒循環回路制御用熱応動弁を提供することを目的
とする。
An object of the present invention is to provide a thermally responsive valve for controlling a refrigerant circuit of an automobile engine which solves the above-mentioned disadvantages.

【0016】[0016]

【課題を解決するための手段】前記の目的を達成するた
め、本発明は、熱応動伸縮素子に同軸的に設けられ、か
つ前記熱応動伸縮素子で駆動されて、冷媒のラジエータ
戻り管路と、ラジエータバイパス管路とを制御する2つ
の弁を持ち、前記バイパス管路からの冷媒が前記熱応動
伸縮素子の周りを流れる部分流により前記熱応動伸縮素
子が駆動することで前記バイパス管路からエンジン側へ
の流出口を制御する機構を有した、エンジンの冷媒循環
回路における熱応動弁であって、前記バイパス管路から
エンジン側への流出口を制御する弁は、一端が前記バイ
パス管路に係止され、他端が前記熱応動伸縮素子に係止
され、かつバイパス管路側が拡径しており、前記熱応動
伸縮素子で駆動されて伸縮し、コイル部間が密着・離間
することで、コイル部間に形成される冷媒流通間隙が開
閉されるコイル状スプリングで構成することを特徴とす
る。前記コイル状スプリングの他端は、このコイル状ス
プリングよりも高荷重の支承スプリングにより下向きに
付勢されて、熱応動伸縮素子に可動的に係止させるとよ
い。また、前記バイパス管路の開口端部に前記コイル状
スプリングの一端が係止される拡径段差部を設け、その
ガイド周壁によりバイパス管路から流出する冷媒の流れ
の方向を制御するようにした構成とするとよい。前記バ
イパス管路の開口端部に前記コイル状スプリングの一端
が係止される断面カップ状のばね受座が設けられ、この
ばね受座は前記バイパス管路を流れる冷媒の流通口及
び、冷媒の流れる方向を制御する環状ガイド壁を有する
構成とするのがよい。また、前記ラジエータ戻り管路か
らエンジン側管路への流路を制御する弁を付勢する弁閉
塞用スプリングの下端を環状ばね受座に係止し、この環
状ばね受座から立上る起立片の上端部を前記ラジエータ
戻り管路に設けたフレームに固着し、さらに、前記環状
ばね受座には、バイパス管路から熱応動伸縮素子に向う
冷媒の流通促進用の流通口を開設した構成とすることが
できる。
In order to achieve the above object, the present invention provides a thermo-responsive telescopic element which is provided coaxially and is driven by the thermo-responsive telescopic element to form a radiator return line for refrigerant. Having two valves for controlling the radiator bypass line, and the refrigerant from the bypass line is driven by the heat responsive expansion / contraction element by a partial flow flowing around the heat responsive expansion / contraction element, so that the refrigerant flows out of the bypass line. A heat responsive valve in a refrigerant circuit of an engine having a mechanism for controlling an outlet to the engine side, wherein a valve for controlling an outlet from the bypass line to the engine side has one end connected to the bypass line. The other end is locked to the thermally responsive expansion and contraction element, and the diameter of the bypass pipe is enlarged. The expansion and contraction is driven by the thermally responsive expansion and contraction element, and the coil portions are closely contacted and separated. And carp Wherein the refrigerant flow gap formed between the parts is constituted by a coiled spring that is opened and closed. The other end of the coiled spring may be urged downward by a bearing spring having a higher load than the coiled spring to movably engage the thermally responsive expansion and contraction element. In addition, an enlarged diameter step portion at which one end of the coil spring is locked is provided at the open end of the bypass pipe, and the direction of the flow of the refrigerant flowing out of the bypass pipe is controlled by the guide peripheral wall. It is good to have composition. An open end of the bypass conduit is provided with a spring seat having a cup-shaped cross section in which one end of the coil-shaped spring is locked, and the spring seat is provided with a flow port for a refrigerant flowing through the bypass conduit and a refrigerant passage. It is preferable to have a configuration having an annular guide wall for controlling the flowing direction. Further, a lower end of a valve closing spring for urging a valve for controlling a flow path from the radiator return pipe to the engine-side pipe is locked to an annular spring seat, and a standing piece rising from the annular spring seat. The upper end of the radiator is fixed to a frame provided in the radiator return pipe, and the annular spring seat is provided with a flow opening for promoting the flow of refrigerant from the bypass pipe toward the thermally responsive expansion / contraction element. can do.

【0017】本発明によると、バイパス管路の冷媒流出
口を開閉する弁がコイル状スプリングにより構成されて
いるので、部品点数が少なく、簡潔な構成でバイパス管
路を開閉でき、しかもバイパス管路から流出する冷媒
は、コイル状スプリングが伸長した際の環状部間の流出
間隙を通って少ない抵抗で、障害物に当たることなくス
ムーズに熱応動伸縮素子に向けて流れることができる。
According to the present invention, since the valve for opening and closing the refrigerant outlet of the bypass line is constituted by a coil spring, the number of parts is small, and the bypass line can be opened and closed with a simple structure. The refrigerant flowing out of the coil can flow toward the thermally responsive expansion / contraction element smoothly without hitting an obstacle through the outflow gap between the annular portions when the coil spring extends.

【0018】[0018]

【発明の実施の形態】以下本発明の実施の形態を図を参
照して説明する。図1〜図3は本発明の第1の実施の形
態を示す図で、図1は、バイパス管路5の弁体37が開
き、このバイパス管路5とエンジン側管路9とが通じ、
ラジエータ戻り管路4の主弁体12が閉じ、このラジエ
ータ戻り管路4とエンジン側管路9が遮断された状態を
示し、図2はその側面図である。図3は、図1と逆の状
態、つまり、バイパス管路5の弁体37が閉じ、ラジエ
ータ戻り管路4の主弁体12が開いた状態が示されてい
る。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 show a first embodiment of the present invention. FIG. 1 shows a state in which a valve element 37 of a bypass pipe 5 is opened, and the bypass pipe 5 and the engine side pipe 9 communicate with each other.
FIG. 2 is a side view showing a state in which the main valve body 12 of the radiator return line 4 is closed and the radiator return line 4 and the engine side line 9 are cut off. FIG. 3 shows a state opposite to that of FIG. 1, that is, a state in which the valve element 37 of the bypass pipe 5 is closed and the main valve element 12 of the radiator return pipe 4 is open.

【0019】第1実施の形態の熱応動弁において、バイ
パス管路5の流出口を開閉する弁体37の弁構造と、主
弁体12を支持する弁閉塞用スプリング13の下端を係
止する環状ばね受座15の構造が、図11に示した熱応
動弁の構造と相違し、他の構造は、この図11に示す熱
応動弁の構造と同じであるので、同一要素には同一符号
を付して説明する。
In the thermally responsive valve of the first embodiment, the valve structure of the valve element 37 for opening and closing the outlet of the bypass pipe 5 and the lower end of the valve closing spring 13 for supporting the main valve element 12 are locked. The structure of the annular spring seat 15 is different from the structure of the thermally responsive valve shown in FIG. 11, and the other structure is the same as the structure of the thermally responsive valve shown in FIG. The description will be made with reference to FIG.

【0020】図1〜図3において、ラジエータ戻り管路
4にパッキン14を介して設けられた通水窓孔19を有
するフレーム6の周縁部に、環状弁座7が一体設けら
れ、かつフレーム6の中央部にプランジャ8の上端がね
じ結合部11を介して固着されている。このプランジャ
8に、軸状のワックス式熱応動伸縮素子10の中心部が
スライドして昇降移動自在に保持されている。ワックス
式の熱応動伸縮素子10の構造は、例えば特公昭61−
20697号に開示されたごとき構造である。すなわ
ち、熱応動伸縮素子10は、プランジャ8に嵌挿された
ゴムスリーブと有底筒状の容器との間の密閉室内にワッ
クスを充填して構成されている。そして、プランジャ8
の下端が先細のテーパ状に構成されておりワックスの熱
膨張することで、前記テーパ部を介してゴムスリーブが
プランジャ8を押上げる方向に力が作用し、プランジャ
8の上端がフレーム6に固定されているので、相対的に
熱応動伸縮素子10がプランジャ8に沿って下降するも
ので、ワックスが収縮することで熱応動伸縮素子10は
前記と逆動作し、このように熱変化で熱応動伸縮素子1
0が伸縮することで、この熱応動伸縮素子10に支持さ
れた主弁体12と弁体37とが動作するものである。
1 to 3, an annular valve seat 7 is provided integrally with a peripheral portion of a frame 6 having a water passage window hole 19 provided through a packing 14 in a radiator return line 4, and an annular valve seat 7 is provided. The upper end of the plunger 8 is fixed to the central portion of the plunger via a screw coupling portion 11. The central portion of the shaft-shaped wax-type thermally responsive expansion / contraction element 10 is slidably held by the plunger 8 so as to be movable up and down. The structure of the wax-type thermally responsive expansion and contraction element 10 is described in, for example,
No. 20697. That is, the thermally responsive expansion / contraction element 10 is configured by filling wax into the closed chamber between the rubber sleeve fitted into the plunger 8 and the bottomed cylindrical container. And plunger 8
The lower end of the plunger is formed in a tapered shape, and the thermal expansion of the wax causes a force to act on the plunger 8 in the direction in which the rubber sleeve pushes up the plunger 8 via the tapered portion, so that the upper end of the plunger 8 is fixed to the frame 6. Since the thermally responsive expansion and contraction element 10 relatively descends along the plunger 8, the thermally responsive expansion and contraction element 10 operates in the opposite direction to the above as the wax shrinks. Telescopic element 1
The main valve body 12 and the valve body 37 supported by the thermally responsive expansion / contraction element 10 operate by the expansion and contraction of 0.

【0021】熱応動伸縮素子10の上部には、前記の主
弁体12が昇降可能に嵌合しており、かつ弁閉塞用スプ
リング13の上端で押上げられ、テーパ部30で上動が
制限された状態で支持されている。弁閉塞用スプリング
13の下端は熱応動伸縮素子10の下部外周を取囲んで
設けられた環状ばね受け座15に係止されている。この
環状ばね受け座15の対称位置から起立片16が立上っ
ており、起立片16の上部に円弧状にかつ水平に伸びる
腕部17が設けられ、腕部17の上縁から突出する突起
18を、環状弁座7の周縁の係合孔20に差込み、その
嵌合部を溶接することで、起立片16が固定されてい
る。
The main valve body 12 is fitted on the upper part of the thermally responsive expansion / contraction element 10 so as to be able to move up and down, and is pushed up by the upper end of the valve closing spring 13 so that the upward movement is restricted by the tapered portion 30. It is supported in the state where it was done. The lower end of the valve closing spring 13 is engaged with an annular spring seat 15 provided around the lower periphery of the thermally responsive expansion and contraction element 10. An erecting piece 16 rises from a symmetrical position of the annular spring receiving seat 15, and an arm 17 extending in an arc shape and horizontally is provided on the upper part of the erecting piece 16, and a projection protruding from an upper edge of the arm 17. The upright piece 16 is fixed by inserting the 18 into the engaging hole 20 in the peripheral edge of the annular valve seat 7 and welding the fitting portion.

【0022】前記フレーム6の下端に設けられる環状ば
ね受け座15は、その底面15Aから、熱応動伸縮素子
10に向う傾斜壁35を有し、この傾斜壁35には、冷
媒が流通できる複数の流通口36が開設されている。
The annular spring seat 15 provided at the lower end of the frame 6 has an inclined wall 35 extending from the bottom surface 15A to the thermally responsive expansion / contraction element 10, and a plurality of inclined walls 35 through which a refrigerant can flow. A distribution port 36 is opened.

【0023】前記熱応動伸縮素子10の下端の径小軸部
21には、バイパス管路5の開口部を開閉する弁体37
の上端部と、この弁体37の上端を下向きに付勢する支
承スプリング38がスライド自在に嵌合している。
A valve 37 for opening and closing the opening of the bypass pipe 5 is provided on the small diameter shaft portion 21 at the lower end of the thermally responsive expansion and contraction element 10.
And a support spring 38 that urges the upper end of the valve body 37 downward, is slidably fitted.

【0024】前記弁体37は、下端側つまりバイパス管
路5側が拡径している略円錐形状のコイル状スプリング
37Aで構成されており、このコイル状スプリング37
Aの拡径側の端部は、バイパス管路5の開口端部を段状
に切削してなる拡径段差部39に係合させている。コイ
ル状スプリング37Aの上端部は、熱応動伸縮素子10
の下端部の径小軸部21にスライド自在に嵌合された断
面コ字状のスライドリング40の凹溝41に係合してい
る。このスライドリング40の上側において、径小軸部
21にはコイル状の支承スプリング38が嵌合されてお
り、この支承スプリング38の上端は、径小軸部21の
上段の係合段部42に係止されており、支承スプリング
38の下端は、前記コイル状スプリング37Aの上端を
前記スライドリング40を介して下向きに付勢してい
る。スライドリング40は、径小軸部21の下端部の環
状溝43に係合されたスナップリング44と係合するこ
とで、その下動が制限される。
The valve body 37 is constituted by a coil spring 37A having a substantially conical shape whose diameter is enlarged at the lower end side, that is, the bypass pipe 5 side.
The end on the larger diameter side of A is engaged with a larger diameter step 39 formed by cutting the open end of the bypass pipe 5 stepwise. The upper end of the coiled spring 37A is
Is engaged with a concave groove 41 of a slide ring 40 having a U-shaped cross section which is slidably fitted to the small-diameter shaft portion 21 at the lower end of the slide ring 40. Above the slide ring 40, a coil-shaped support spring 38 is fitted to the small-diameter shaft 21, and the upper end of the support spring 38 is fitted to the upper engaging step 42 of the small-diameter shaft 21. The lower end of the support spring 38 urges the upper end of the coil spring 37A downward via the slide ring 40. The slide ring 40 is engaged with the snap ring 44 engaged with the annular groove 43 at the lower end of the small diameter shaft portion 21, whereby the downward movement is restricted.

【0025】第1実施形態の熱応動弁において、ハウジ
ング26内で熱応動伸縮素子10の周囲におけるバイパ
ス管路5から流出する冷却水の水温が一定以下、例えば
60℃以下であるときは、熱応動伸縮素子10が短縮し
ているので、主弁体12が環状弁座7と接触しており、
それによりラジエータ戻り管路4からエンジン側管路9
へ通じる流路が閉じられ、他方、弁体37にあっては、
コイル状スプリング37Aが最大限伸長しており、その
コイル部間に形成される冷媒流通間隙45を通って、バ
イパス管路5から流出する冷媒は円滑に矢印で示すよう
に上方に流れ、熱応動伸縮素子10に十分に回り込んで
からエンジン側管路9へと流通する。このとき、弁閉塞
用スプリング13の下端を係止する環状ばね受け座15
の内側の傾斜壁35に複数の流通口36が開設されてい
ることで、冷媒の熱応動伸縮素子10部への流通は一層
スムーズになる。さらにコイル状スプリング37Aの拡
径の下端を係止するために、バイパス管路5の開口端に
切削形成された拡径段差部39のガイド周壁46によっ
て、バイパス管路5から流出する冷媒の流出方向が熱応
動伸縮素子10に向かうように制御することができる。
前述のようにして、図1においては、自動車用エンジン
1の冷却水は、ラジエータ2を通ることなく図1の矢印
のように流れてバイパス回路を循環する。
In the thermally responsive valve of the first embodiment, when the temperature of the cooling water flowing out of the bypass pipe 5 around the thermally responsive expansion and contraction element 10 in the housing 26 is lower than a certain value, for example, 60 ° C. or lower, Since the responsive expansion / contraction element 10 is shortened, the main valve body 12 is in contact with the annular valve seat 7,
Thereby, the radiator return line 4 to the engine side line 9
The channel leading to the valve body 37 is closed.
The coil spring 37A is extended to the maximum extent, and the refrigerant flowing out of the bypass pipe 5 through the refrigerant flow gap 45 formed between the coil portions smoothly flows upward as indicated by the arrow, and is thermally responsive. After sufficiently wrapping around the expansion / contraction element 10, it flows to the engine-side pipeline 9. At this time, the annular spring receiving seat 15 for locking the lower end of the valve closing spring 13 is provided.
Since the plurality of flow ports 36 are opened in the inclined wall 35 inside, the flow of the refrigerant to the thermally responsive expansion / contraction element 10 becomes even smoother. Further, in order to lock the lower end of the enlarged diameter of the coil spring 37A, the guide peripheral wall 46 of the enlarged diameter stepped portion 39 cut and formed at the open end of the bypass pipe 5 causes the refrigerant flowing out of the bypass pipe 5 to flow out. It can be controlled so that the direction is toward the thermally responsive expansion and contraction element 10.
As described above, in FIG. 1, the cooling water of the vehicle engine 1 flows as shown by the arrow in FIG. 1 without passing through the radiator 2 and circulates in the bypass circuit.

【0026】次に、熱応動伸縮素子10の周囲の水温が
例えば60℃〜80℃になると、熱応動伸縮素子10が
伸長することにより弁体37を構成するコイル状スプリ
ング37Aの上端が押下げられ、コイル部間の冷媒流通
間隙45が絞られ、最終的には間隙が閉じられてバイパ
ス管路5からエンジン側管路9に通じる流路が制御され
る。
Next, when the temperature of the water around the thermally responsive expansion and contraction element 10 becomes, for example, 60 ° C. to 80 ° C., the upper end of the coiled spring 37A constituting the valve element 37 is pushed down by the expansion of the thermally responsive expansion and contraction element 10. Then, the refrigerant flow gap 45 between the coil portions is narrowed, and finally the gap is closed, and the flow path from the bypass pipe 5 to the engine-side pipe 9 is controlled.

【0027】次に、熱応動伸縮素子10の周囲の水温が
例えば82℃を越えて上昇すると、この熱応動伸縮素子
10の伸長により、熱応動伸縮素子10のテーパ部30
での接触位置より上方への移動を制限されている主弁体
12が下降して、図3に示されるように環状弁座7から
離間し、ラジエータ戻り管路4からエンジン側管路9に
通じる流路が開放される。このようにして、自動車エン
ジンの温水は、ラジエータ回路を循環し、さらにバイパ
ス回路をも少量の温水が循環する。
Next, when the temperature of the water around the thermoresponsive expansion / contraction element 10 rises above, for example, 82 ° C., the expansion of the thermoresponsive expansion / contraction element 10 causes the tapered portion 30 of the thermoresponsive expansion / contraction element 10 to extend.
The main valve body 12, which is restricted from moving upward from the contact position at the position, descends, separates from the annular valve seat 7 as shown in FIG. 3, and moves from the radiator return line 4 to the engine side line 9. The communicating flow path is opened. In this way, the hot water of the automobile engine circulates through the radiator circuit, and a small amount of hot water also circulates through the bypass circuit.

【0028】図4〜図6には、本発明の第2の実施形態
に係る熱応動弁が示されている。この第2の実施の形態
では、弁体37を構成するコイル状スプリング37Aの
下端と上端の係止構造及び、熱応動伸縮素子10の下端
の径小軸部21をガイドする構造が第1の実施の形態と
少し相異している。
FIGS. 4 to 6 show a thermally responsive valve according to a second embodiment of the present invention. In the second embodiment, the locking structure at the lower end and the upper end of the coiled spring 37A constituting the valve body 37 and the structure for guiding the small diameter shaft portion 21 at the lower end of the thermally responsive expansion / contraction element 10 are the first. It is slightly different from the embodiment.

【0029】第2の実施の形態では、バイパス管路5の
内端は熱応動弁のハウジング26内にストレートに伸長
しており、かつこのバイパス管路5の内端面47に、中
心部にガイド孔48を有する略カップ状断面のばね受座
49の底面周縁50が固着されている。このばね受座4
9は、底面にバイパス管路5と連通する冷媒の流通口5
1を有し、かつ周縁に環状ガイド壁52を有している。
In the second embodiment, the inner end of the bypass pipe 5 extends straight into the housing 26 of the thermally responsive valve, and the inner end face 47 of the bypass pipe 5 has a guide at the center. A bottom peripheral edge 50 of a spring receiving seat 49 having a substantially cup-shaped cross section having a hole 48 is fixed. This spring seat 4
9 is a refrigerant outlet 5 communicating with the bypass pipe 5 on the bottom surface.
1 and an annular guide wall 52 on the periphery.

【0030】一方、熱応動伸縮素子10の下端の径小軸
部21の上部に鍔状ばね受け座53がスライド自在に嵌
合され、かつ径小軸部21に形成された環状溝54に嵌
合したスナップリング55により下動が制限されるよう
に設けられており、この鍔状ばね受け座53の上面で、
径小軸部21に嵌合された支承スプリング38の下端が
係止されており、鍔状ばね受け座53の下面で弁体37
を構成する略円錐形のコイル状スプリング37Aの上端
を係止している。コイル状スプリング37Aの下端は、
断面カップ状のばね受座49の内底面周縁部に係止され
ている。
On the other hand, a flange-shaped spring receiving seat 53 is slidably fitted over the small diameter shaft portion 21 at the lower end of the thermally responsive expansion / contraction element 10, and is fitted into an annular groove 54 formed in the small diameter shaft portion 21. The lower movement is provided by the combined snap ring 55, and on the upper surface of the flange-shaped spring receiving seat 53,
The lower end of the support spring 38 fitted to the small diameter shaft portion 21 is locked, and the valve body 37
Is locked at the upper end of the substantially conical coiled spring 37A. The lower end of the coil spring 37A is
The spring receiving seat 49 having a cup-shaped cross section is engaged with an inner bottom surface peripheral portion.

【0031】また、径小軸部21の下部は、前記ばね受
座49の底部中心のガイド孔48にスライド自在に嵌合
しており、径小軸部21の下端の環状溝56に係合した
スナップリング57が前記ガイド孔48の下部周縁と係
合することで、径小軸部21のガイド孔48からの脱嵌
が制止される構造となっている。
The lower portion of the small-diameter shaft portion 21 is slidably fitted in a guide hole 48 at the center of the bottom of the spring seat 49 and engages with the annular groove 56 at the lower end of the small-diameter shaft portion 21. By engaging the snap ring 57 with the lower peripheral edge of the guide hole 48, the small-diameter shaft portion 21 is prevented from being detached from the guide hole 48.

【0032】本発明の第2の実施の形態によると、第1
実施形態のようにバイパス管路5の内端拡径段差部39
のガイド周壁46を有していないが、ばね受座49は環
状ガイド壁52を有しているので、図4に示すように、
弁体37が開いたときは、バイパス管路5から流出する
冷媒は、ばね受座49の底面の流通口51を通り、さら
に略円錐状のコイル状スプリング37Aのコイル間の冷
媒流通間隙45を通り、前記環状ガイド壁52でその流
通方向が制御されて、環状ばね受け座15の傾斜壁35
の流通口36を流れ、熱応動伸縮素子10の方向に円滑
に回り込んだ後エンジン側管路9へ流通する。
According to the second embodiment of the present invention, the first
As in the embodiment, the inner end enlarged diameter step portion 39 of the bypass conduit 5 is provided.
However, since the spring receiving seat 49 has the annular guide wall 52, as shown in FIG.
When the valve body 37 is opened, the refrigerant flowing out of the bypass pipe 5 passes through the circulation port 51 on the bottom surface of the spring seat 49 and further flows through the refrigerant circulation gap 45 between the coils of the substantially conical coil spring 37A. As described above, the flow direction is controlled by the annular guide wall 52 and the inclined wall 35 of the annular spring seat 15 is formed.
, Flows smoothly in the direction of the thermally responsive expansion and contraction element 10, and then flows to the engine-side pipe 9.

【0033】また、本発明の第2の実施の形態では、径
小軸部21がばね受座49の底部中心のガイド孔48に
スライド自在に嵌合していることで、熱応動伸縮素子1
0が安定して上下動できる構造とされている。その他の
構成と作用は、発明の第1の実施の形態と同じであるの
で、同一要素には同一符号を付して重複説明を省略す
る。
In the second embodiment of the present invention, the small-diameter shaft portion 21 is slidably fitted in the guide hole 48 at the center of the bottom of the spring seat 49 so that the thermally responsive expansion and contraction element 1 can be slid.
0 can move up and down stably. Other configurations and operations are the same as those of the first embodiment of the present invention. Therefore, the same components are denoted by the same reference numerals and the description thereof will not be repeated.

【0034】[0034]

【発明の効果】以上説明したように、本発明では、自動
車エンジン冷媒循環回路制御用熱応動弁において、バイ
パス管路の流出口を制御する弁体を、バイパス管路側が
拡径しており、熱応動伸縮素子で駆動されて伸縮し、コ
イル部間が密着・離間することで、コイル部間に形成さ
れる冷媒流通間隙が開閉されるコイル状スプリングで構
成しているので、バイパス管路から流出する冷媒は、前
記冷媒流通間隙を通って熱応動伸縮素子に円滑に流れ、
従来構造のようにばね受座等がないので、熱応動伸縮素
子に向う冷媒の流れが阻害されず、アイドリング時のよ
うなバイパス管路から流出する冷媒の流れが低流量の条
件下でも、前記熱応動伸縮素子の感温部に向う冷媒の積
極的な流れを作ることができ、しかも構成が簡潔で、製
作も容易である。
As described above, according to the present invention, in the thermally responsive valve for controlling the refrigerant circuit of an automobile engine, the diameter of the valve body for controlling the outlet of the bypass pipe is increased on the bypass pipe side. Driven by the thermally responsive expansion and contraction element, it expands and contracts, and the coil section is formed of a coil-shaped spring that opens and closes the refrigerant flow gap formed between the coil sections due to close contact and separation between the coil sections. The refrigerant flowing out flows smoothly to the thermally responsive expansion / contraction element through the refrigerant flow gap,
Since there is no spring seat or the like as in the conventional structure, the flow of the refrigerant toward the thermally responsive expansion and contraction element is not hindered, and even when the flow of the refrigerant flowing out of the bypass pipe at a low flow rate such as at the time of idling, An aggressive flow of the refrigerant toward the temperature sensing part of the thermally responsive expansion and contraction element can be created, and the configuration is simple and easy to manufacture.

【0035】さらに、バイパス管路部の内端に前記コイ
ル状スプリングを係止する拡径段差部を設けた場合にお
ける、その拡径段差部のガイド周壁や、バイパス管路部
の開口端に前記コイル状スプリングを係止する有底カッ
プ状のガイド部材を設けた場合におけるそのガイド部材
の環状ガイド壁がガイドとなって、バイパス管路から流
出する冷媒の熱応動伸縮素子に向う流れを一層促進し、
さらにその流れは、主弁体を持上げ支持する弁閉塞用ス
プリングの下端を係止する環状ばね受座の傾斜壁に流通
口を設けることでなお一層促進されるという効果があ
る。
Further, in the case where a diameter-enlarged step portion for locking the coil spring is provided at the inner end of the bypass line portion, the guide peripheral wall of the diameter-enlarged step portion or the opening end of the bypass line portion may be provided. When a cup-shaped guide member with a bottom that locks the coil spring is provided, the annular guide wall of the guide member serves as a guide, further promoting the flow of the refrigerant flowing out of the bypass pipe toward the thermally responsive expansion / contraction element. And
Further, the flow is further promoted by providing a flow opening in the inclined wall of the annular spring seat for locking the lower end of the valve closing spring that lifts and supports the main valve body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示し、バイパス管
路が開き、ラジエータ戻り管路が閉じた状態の断面図で
ある。
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention, in a state where a bypass pipe is opened and a radiator return pipe is closed.

【図2】図1の側面図である。FIG. 2 is a side view of FIG.

【図3】図1において、バイパス管路が閉じ、ラジエー
タ戻り管路が開いた状態の断面図である。
FIG. 3 is a cross-sectional view showing a state in which a bypass line is closed and a radiator return line is opened in FIG. 1;

【図4】本発明の第2の実施の形態を示し、バイパス管
路が開き、ラジエータ戻り管路が閉じた状態の断面図で
ある。
FIG. 4 is a sectional view showing a second embodiment of the present invention, in a state where a bypass pipe is opened and a radiator return pipe is closed.

【図5】図4の側面図である。FIG. 5 is a side view of FIG. 4;

【図6】図4において、バイパス管路が開き、ラジエー
タ戻り管路が開いた状態の断面図である。
FIG. 6 is a cross-sectional view showing a state where a bypass pipe is opened and a radiator return pipe is opened in FIG. 4;

【図7】第1比較例として示す熱応動弁において、バイ
パス管路が開き、ラジエータ戻り管路が閉じた状態の断
面図である。
FIG. 7 is a cross-sectional view of the thermally responsive valve shown as the first comparative example in a state where a bypass pipe is opened and a radiator return pipe is closed.

【図8】図7の側面図である。FIG. 8 is a side view of FIG. 7;

【図9】第2比較例として示す熱応動弁において、バイ
パス管路が開き、ラジエータ戻り管路が閉じた状態の断
面図である。
FIG. 9 is a cross-sectional view of a thermally responsive valve shown as a second comparative example in a state where a bypass pipe is opened and a radiator return pipe is closed.

【図10】図9における弁体の平面図である。FIG. 10 is a plan view of the valve body in FIG. 9;

【図11】従来の熱応動弁において、バイパス管路が開
き、ラジエータ戻り管路が閉じた状態の断面図である。
FIG. 11 is a cross-sectional view showing a state in which a bypass pipe is opened and a radiator return pipe is closed in a conventional thermally responsive valve.

【図12】図9の側面図である。FIG. 12 is a side view of FIG. 9;

【図13】図11において、バイパス管路が閉じ、ラジ
エータ戻り管路が開いた状態の断面図である。
FIG. 13 is a cross-sectional view showing a state in which a bypass line is closed and a radiator return line is opened in FIG. 11;

【図14】自動車エンジン冷却水循環系統図である。FIG. 14 is an automobile engine cooling water circulation system diagram.

【符号の説明】[Explanation of symbols]

1 自動車用エンジン 2 ラジエータ 3 冷却水循環路の制御用熱応動弁 4 ラジエータ戻り管路 5 バイパス管路 6 フレーム 7 環状弁座 8 プランジャ 9 エンジン側管路 10 熱応動伸縮素子 11 ねじ結合部 12 主弁体 13 弁閉塞用スプリング 14 パッキン 15 環状ばね受座 15A 底面 16 起立片 17 腕部 18 突起 19 通水窓孔 20 係合孔 21 径小軸部 22 弁体 23 円孔部 24 弁付勢用スプリング 25 スナップリング 26 ハウジング 27 開口部 28 弁座 30 テーパ部 31 ガイド壁(堰) 32 弁体 33 流通口 34 傾斜ガイド壁 35 傾斜壁 36 流通口 37 弁体 37A コイル状スプリング 38 支承スプリング 39 拡径段差部 40 スライドリング 41 凹溝 42 係合段部 43 環状溝 44 スナップリング 45 冷媒流通間隙 46 ガイド周壁 47 内端面 48 ガイド孔 49 ばね受座 50 底面周縁 51 流通口 52 環状ガイド壁 53 鍔状ばね受座 54 環状溝 55 スナップリング 56 環状溝 57 スナップリング REFERENCE SIGNS LIST 1 automotive engine 2 radiator 3 heat-responsive valve for controlling cooling water circulation path 4 radiator return line 5 bypass line 6 frame 7 annular valve seat 8 plunger 9 engine-side line 10 thermal-responsive expansion / contraction element 11 screw connection part 12 main valve Body 13 Spring for closing a valve 14 Packing 15 Annular spring seat 15A Bottom surface 16 Standing piece 17 Arm 18 Projection 19 Water window hole 20 Engagement hole 21 Small diameter shaft portion 22 Valve body 23 Circular hole portion 24 Valve spring Reference Signs List 25 snap ring 26 housing 27 opening 28 valve seat 30 taper portion 31 guide wall (weir) 32 valve body 33 flow port 34 inclined guide wall 35 inclined wall 36 flow port 37 valve body 37A coiled spring 38 support spring 39 expanding step Part 40 slide ring 41 concave groove 42 engagement step part 43 annular groove 44 snap ring 45 refrigerant flow gap 46 guide jacket 47 inner end face 48 guide hole 49 spring seat 50 bottom peripheral edge 51 flow ports 52 annular guide wall 53 a flange-like spring seat 54 an annular groove 55 snap ring 56 annular groove 57 snap ring

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F16K 31/68 F01P 7/16 502 F16K 13/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) F16K 31/68 F01P 7/16 502 F16K 13/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱応動伸縮素子に同軸的に設けられ、か
つ前記熱応動伸縮素子で駆動されて、冷媒のラジエータ
戻り管路と、ラジエータバイパス管路とを制御する2つ
の弁を持ち、前記バイパス管路からの冷媒が前記熱応動
伸縮素子の周りを流れる部分流により前記熱応動伸縮素
子が駆動することで前記バイパス管路からエンジン側へ
の流出口を制御する機構を有した、エンジンの冷媒循環
回路における熱応動弁であって、前記バイパス管路から
エンジン側への流出口を制御する弁は、一端が前記バイ
パス管路に係止され、他端が前記熱応動伸縮素子に係止
され、かつバイパス管路側が拡径しており、前記熱応動
伸縮素子で駆動されて伸縮し、コイル部間が密着・離間
することで、コイル部間に形成される冷媒流通間隙が開
閉されるコイル状スプリングで構成されてなる自動車エ
ンジン冷媒循環回路制御用熱応動弁。
And a valve for controlling a radiator return line of the refrigerant and a radiator bypass line, the valve being provided coaxially with the thermally responsive expansion and contraction element and being driven by the thermally responsive expansion and contraction element. The engine having a mechanism for controlling the outlet from the bypass line to the engine side by driving the thermoresponsive expansion / contraction element by a partial flow in which the refrigerant from the bypass conduit flows around the thermoresponsive expansion / contraction element, One end of the valve for controlling the outlet from the bypass line to the engine side, which is a thermoresponsive valve in the refrigerant circuit, is locked at the bypass line, and the other end is locked at the thermoresponsive expansion / contraction element. The diameter of the bypass pipe is enlarged, and expanded and contracted by being driven by the thermally responsive expansion and contraction element. The gap between the coil sections is brought into close contact with and separated from each other, thereby opening and closing the refrigerant flow gap formed between the coil sections. Coiled coil A thermally responsive valve for controlling the vehicle engine refrigerant circuit, which is composed of a pulling.
【請求項2】 前記コイル状スプリングの他端は、この
コイル状スプリングよりも高荷重の支承スプリングによ
り下向きに付勢されて、熱応動伸縮素子に可動的に係止
されている請求項1に記載の自動車エンジン冷媒循環回
路制御用熱応動弁。
2. The coil spring according to claim 1, wherein the other end of the coil spring is urged downward by a bearing spring having a higher load than the coil spring and is movably locked to the thermally responsive expansion and contraction element. A heat responsive valve for controlling a refrigerant circuit of an automobile engine according to the above.
【請求項3】 前記バイパス管路の開口端部に前記コイ
ル状スプリングの一端が係止される拡径段差部を設け、
そのガイド周壁によりバイパス管路から流出する冷媒の
流れの方向を制御するようにした構成を特徴とする請求
項1または2に記載の自動車エンジン冷媒循環回路制御
用熱応動弁。
3. An enlarged-diameter stepped portion to which one end of the coiled spring is locked at an open end of the bypass conduit,
3. The thermally responsive valve for controlling a refrigerant circuit of an automobile engine according to claim 1, wherein a direction of a flow of the refrigerant flowing out of the bypass pipe is controlled by the guide peripheral wall.
【請求項4】 前記バイパス管路の開口端部に前記コイ
ル状スプリングの一端が係止される断面カップ状のばね
受座が設けられ、このばね受座は前記バイパス管路を流
れる冷媒の流通口及び、冷媒の流れの方向を制御する環
状ガイド壁を有している請求項1または2に記載の自動
車エンジン冷媒循環回路制御用熱応動弁。
4. A spring seat having a cup-shaped cross section, at which one end of the coil spring is locked, is provided at an open end of the bypass line, and the spring seat is used to flow refrigerant flowing through the bypass line. 3. The thermally responsive valve according to claim 1, further comprising an opening and an annular guide wall for controlling a flow direction of the refrigerant.
【請求項5】 前記ラジエータ戻り管路からエンジン側
管路への流路を制御する弁を付勢する弁閉塞用スプリン
グの下端を環状ばね受座に係止し、この環状ばね受座か
ら立上る起立片の上端部を前記ラジエータ戻り管路に設
けたフレームに固着し、さらに、前記環状ばね受座に
は、バイパス管路から熱応動伸縮素子に向う冷媒の流通
促進用の流通口を開設した構成を特徴とする請求項1か
ら4のいずれかに記載の自動車エンジン冷媒循環回路制
御用熱応動弁。
5. A lower end of a valve closing spring for urging a valve for controlling a flow path from the radiator return line to the engine side line is engaged with an annular spring seat, and stands from the annular spring seat. The upper end of the rising up piece is fixed to a frame provided in the radiator return pipe, and a flow port for promoting the flow of refrigerant from the bypass pipe to the thermally responsive expansion element is opened in the annular spring seat. The heat responsive valve for controlling a refrigerant circuit of an automobile engine according to any one of claims 1 to 4, wherein:
JP19167396A 1996-07-03 1996-07-03 Thermal response valve for controlling the refrigerant circuit of an automobile engine Expired - Lifetime JP2786172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19167396A JP2786172B2 (en) 1996-07-03 1996-07-03 Thermal response valve for controlling the refrigerant circuit of an automobile engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19167396A JP2786172B2 (en) 1996-07-03 1996-07-03 Thermal response valve for controlling the refrigerant circuit of an automobile engine

Publications (2)

Publication Number Publication Date
JPH1019160A JPH1019160A (en) 1998-01-23
JP2786172B2 true JP2786172B2 (en) 1998-08-13

Family

ID=16278560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19167396A Expired - Lifetime JP2786172B2 (en) 1996-07-03 1996-07-03 Thermal response valve for controlling the refrigerant circuit of an automobile engine

Country Status (1)

Country Link
JP (1) JP2786172B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037889A (en) * 2004-07-29 2006-02-09 Nissan Motor Co Ltd Confluent structure of cooling water route of internal combustion engine
JP4448747B2 (en) * 2004-08-31 2010-04-14 愛知機械工業株式会社 Internal combustion engine
KR101102110B1 (en) 2004-11-18 2012-01-02 니폰 서모스탯 가부시키가이샤 Thermostat apparatus
KR100755264B1 (en) 2006-03-17 2007-09-04 고려전자주식회사 Thermostat apparatus
JP4412368B2 (en) 2007-08-28 2010-02-10 トヨタ自動車株式会社 Vehicle cooling device
JP5424567B2 (en) * 2008-03-19 2014-02-26 富士精工株式会社 THERMO VALVE AND HEAT MEDIUM CIRCUIT HAVING THE THERMO VALVE
JP5164281B2 (en) * 2010-04-27 2013-03-21 日本サーモスタット株式会社 Fluid control valve device

Also Published As

Publication number Publication date
JPH1019160A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
US20080029246A1 (en) Heat exchanger bypass system
JP4262346B2 (en) thermostat
EP1942257A1 (en) Thermostat device
US6742716B1 (en) Thermostat
JP2786172B2 (en) Thermal response valve for controlling the refrigerant circuit of an automobile engine
CN101065637B (en) By-pass valve for heat exchanger
US8827172B2 (en) Thermostat valve
US6598565B2 (en) Electronically controlled thermostat
CN105019996A (en) Expansion reservoir for engine cooling system
JP3005606B2 (en) Thermal response valve for controlling the refrigerant circuit of an automobile engine
US20130334328A1 (en) Dual-valve thermostat
US2479034A (en) Thermostatic valve
JP5424567B2 (en) THERMO VALVE AND HEAT MEDIUM CIRCUIT HAVING THE THERMO VALVE
JP3582055B2 (en) Mounting structure of thermostat
US20200124200A1 (en) Fluid control valve
US4424776A (en) Fuel supply for a diesel engine
US5813598A (en) Thermostat device for protecting an engine of a vehicle from overheating
EP1304517B1 (en) Thermostat and mounting structure of the thermostat
US3365130A (en) Waterline thermostat
JP7350669B2 (en) Cooling water temperature control device
JPS6112461Y2 (en)
JP4408539B2 (en) Thermostat case structure
CA3133196A1 (en) Thermostat device
JP2939244B1 (en) Thermal response valve for controlling the refrigerant circuit of an automobile engine
US4059881A (en) Vent valve arrangement and method of making the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090529

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100529

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110529

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 16

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term