JP2785202B2 - Optical disk drive - Google Patents

Optical disk drive

Info

Publication number
JP2785202B2
JP2785202B2 JP1099222A JP9922289A JP2785202B2 JP 2785202 B2 JP2785202 B2 JP 2785202B2 JP 1099222 A JP1099222 A JP 1099222A JP 9922289 A JP9922289 A JP 9922289A JP 2785202 B2 JP2785202 B2 JP 2785202B2
Authority
JP
Japan
Prior art keywords
light
pair
photodetectors
movable portion
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1099222A
Other languages
Japanese (ja)
Other versions
JPH02278122A (en
Inventor
友之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1099222A priority Critical patent/JP2785202B2/en
Publication of JPH02278122A publication Critical patent/JPH02278122A/en
Application granted granted Critical
Publication of JP2785202B2 publication Critical patent/JP2785202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光学ピックアップ等の位置検出に好適な
光学式ディスク装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical disk device suitable for detecting the position of an optical pickup or the like.

〔発明の概要〕[Summary of the Invention]

この発明は、光学式ディスク装置において、発光素子
及び1対の光検出器の間の光路に光量制御手段を介在さ
せ、光路及び光量制御手段の相対的移動に伴って、1対
の光検出器の検出光量を差動的に変化させることによ
り、変位量の大きい移動体に対しても小型低価格の光検
出器を使用して的確な位置検出信号が得られるようにし
たものである。
According to the present invention, in an optical disk device, a light quantity control means is interposed in an optical path between a light emitting element and a pair of light detectors, and a pair of light detectors is provided with relative movement of the light path and the light quantity control means. By changing the detected light amount differentially, an accurate position detection signal can be obtained using a small and inexpensive photodetector even for a moving body having a large displacement amount.

〔従来の技術〕[Conventional technology]

従来、光ディスク再生用の光学ピックアップは、一般
的に、ムービングコイル,永久磁石及びヨークからなる
ムービングコイル型のリニアモータによって、その全体
がディスクの半径方向に摺動され、次いで、トラッキン
グ・アクチュエータによって所望のトラックに正対する
ように構成される。そして、摺動の場合、光学ピックア
ップの位置は例えばリニアエンコーダにより検出され
る。或は、リニアモータと同様構成のヨークに結合した
検出コイルから得られる速度情報を積分して、光学ピッ
クアップの位置が検出される。
2. Description of the Related Art Conventionally, an optical pickup for reproducing an optical disc is generally slid in the radial direction of the disc by a moving coil type linear motor including a moving coil, a permanent magnet, and a yoke, and then moved by a tracking actuator. Is configured to face the track. In the case of sliding, the position of the optical pickup is detected by, for example, a linear encoder. Alternatively, the position of the optical pickup is detected by integrating speed information obtained from a detection coil coupled to a yoke having the same configuration as the linear motor.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、検出コイルを用いる場合、ヨーク及び永久
磁石のような、かなりの体積,重量を有する高価な素子
を必要とするという問題があった。
However, when the detection coil is used, there is a problem that an expensive element having a considerable volume and weight, such as a yoke and a permanent magnet, is required.

また、リニアエンコーダの場合、検出精度を上げるた
めには多数の検出素子を有する、高分解能の高価なもの
を用いなければならないという問題があった。
Further, in the case of the linear encoder, there is a problem that an expensive high-resolution one having a large number of detection elements must be used in order to increase the detection accuracy.

かかる問題を解消するために、本出願人は実願昭63−
86942号において、次のような「光学位置検出装置」を
既に提案している。
In order to solve such a problem, the applicant of the present application
No. 86942 has already proposed the following “optical position detecting device”.

既提案の光学位置検出装置は光ディスク等の光学記録
媒体に対向して移動可能に配され、光学記録媒体に光ビ
ームを入射させる可動光学系の光学記録媒体に対する位
置の検出にあたり、可動光学系における光反射部に位置
検出用光ビームを入射させる光ビーム発生部と、可動光
学系における光反射部で反射された位置検出用光ビーム
が到達してビームスポットを形成するものとされた受光
面部を有する光検出部と、光検出部から得られる出力信
号を処理する信号処理部とを用いて、可動光学系の光学
記録媒体に対する位置を精度良くあらわす検出出力を得
ることができ、しかも、可動光学系が光学記録媒体にお
ける比較的広範囲に亘って移動する場合にも、光検出部
における受光面部を比較的小寸法とすることができて、
光検出部の小型化と低価格化とを図ることができるもの
である。
The previously proposed optical position detecting device is movably disposed to face an optical recording medium such as an optical disk, and detects a position of a movable optical system that makes a light beam incident on the optical recording medium with respect to the optical recording medium. A light beam generating unit that causes the position detecting light beam to enter the light reflecting unit, and a light receiving surface unit that is configured to receive the position detecting light beam reflected by the light reflecting unit in the movable optical system and form a beam spot. Using a light detection unit having a light detection unit and a signal processing unit for processing an output signal obtained from the light detection unit, a detection output that accurately represents the position of the movable optical system with respect to the optical recording medium can be obtained. Even when the system moves over a relatively wide range in the optical recording medium, the light receiving surface portion in the light detection section can be made relatively small in size,
It is possible to reduce the size and cost of the light detection unit.

まず、第4図〜第6図を参照しながら、既提案装置に
ついて説明する。
First, the proposed device will be described with reference to FIGS.

既提案装置の全体の構成を第4図に示し、その要部の
構成を第5図及び第6図に示す。
FIG. 4 shows the overall configuration of the proposed device, and FIGS. 5 and 6 show the configuration of the main parts thereof.

第4図において、光ディスクDがターンテーブル
(1)に載置され、回転駆動部(2)により所定速度で
回転される。光ディスクDに対向して配された可動光学
系(10)は、対物レンズ(11)及びプリズム(12)を備
え、光ビーム発生・検出ブロック(13)から放射された
光ビームをディスクDに導くと共に、ディスクDで反射
された光ビームを発生・検出ブロック(13)に還すよう
に構成される。この可動光学系(10)は、図示を省略し
た駆動部により、ディスクDの半径方向に移動される。
In FIG. 4, an optical disk D is placed on a turntable (1) and rotated at a predetermined speed by a rotation drive unit (2). The movable optical system (10) arranged opposite to the optical disk D includes an objective lens (11) and a prism (12), and guides the light beam emitted from the light beam generation / detection block (13) to the disk D. At the same time, the light beam reflected by the disk D is returned to the generation / detection block (13). The movable optical system (10) is moved in the radial direction of the disk D by a drive unit (not shown).

(20)は固定光学系であって、例えば発光ダイオード
のような発光素子(21)が、可動光学系(10)に対して
光ビーム発生・検出ブロック(13)と反対側に設けら
れ、発光素子(21)からの放射光が平板(22)に穿設さ
れたスリット(23)を通ってプリズム(12)に導かれ、
プリズム(12)の反射光が光検出部(24)に導かれるよ
うに構成される。
Reference numeral (20) denotes a fixed optical system, in which a light emitting element (21) such as a light emitting diode is provided on the side opposite to the light beam generation / detection block (13) with respect to the movable optical system (10). Light emitted from the element (21) is guided to the prism (12) through a slit (23) formed in the flat plate (22),
The light reflected from the prism (12) is guided to the light detection unit (24).

この光検出部(24)は、第5図に示すように、それぞ
れが直角三角形状の1対の光検出器(25)及び(26)か
らなり、各斜辺(25b)及び(26b)が対向すると共に、
全体が可動光学系の移動方向に長い方形となるように配
設される。
As shown in FIG. 5, the photodetector (24) comprises a pair of photodetectors (25) and (26) each having a right-angled triangular shape, and the oblique sides (25b) and (26b) face each other. Along with
The whole is arranged so as to be rectangular in the moving direction of the movable optical system.

可動光学系(10)の摺動に伴って、プリズム(12)か
らの反射光の照射領域Pが移動し、光検出部(24)の1
対の光検出器(25)及び(26)の受光面積が差動的に変
化し、それぞれの受光面積に応じたレベルの1対の検出
信号S1及びS2が得られる。
With the sliding of the movable optical system (10), the irradiation area P of the reflected light from the prism (12) moves, and one of the light detection units (24) moves.
Light receiving area of the pair of optical detectors (25) and (26) are differentially changed, the detection signals S 1 and S 2 of the pair of levels corresponding to the respective light receiving areas are obtained.

この検出信号S1及びS2が第6図に示すような構成の信
号処理回路(30)に供給されて、次式で示すような信号
処理により、各信号S1及びS2のレベル変動の影響が除去
されて、可動光学系(10)の位置に的確に対応した位置
検出信号Sdが得られる。
The detection signals S 1 and S 2 is supplied to the configuration of the signal processing circuit (30) as shown in FIG. 6, the signal processing as shown in the following equation, the level variation of the signals S 1 and S 2 The influence is removed, and the position detection signal Sd accurately corresponding to the position of the movable optical system (10) is obtained.

Sd=(S1−S2)/(S1+S2) ところが、上述のような既提案装置では、光検出部
(24)の1対の光検出器(25)及び(26)の長さが、可
動光学系(10)の全移動範囲と少くとも等しいことが必
要である。例えば直径が12cmのコンパクトディスクの場
合、所要長は約55mmとなり、光検出器が高価なものとな
ってしまうという問題があった。
Sd = (S 1 −S 2 ) / (S 1 + S 2 ) However, in the above-described proposed device, the length of the pair of photodetectors (25) and (26) of the photodetector (24) is Must be at least equal to the entire moving range of the movable optical system (10). For example, in the case of a compact disk having a diameter of 12 cm, the required length is about 55 mm, and there is a problem that the photodetector is expensive.

また、この光検出器は、常時、その一部分だけが使用
されており、使用効率が低いという問題もあった。
Also, this photodetector has a problem that its use efficiency is low because only a part thereof is used at all times.

かかる点に鑑み、この発明の目的は、変位量の大きい
移動体に対しても小型低価格の光検出器を使用して的確
な位置検出信号が得られる光学式ディスク装置を提供す
るところにある。
In view of the foregoing, an object of the present invention is to provide an optical disk device that can obtain an accurate position detection signal using a small and inexpensive photodetector even for a moving body having a large displacement. .

〔課題を解決するための手段〕[Means for solving the problem]

この発明は、「発光素子(41)」との間に「対物レン
ズ(11)を保持し、ディスクDの半径方向に移動する可
動部(10)と、可動部(10)に向けて光を発する発光素
子(41)と、この発光素子の放射光を検出する1対の光
検出器(42),(43)と、発光素子及び1対の光検出器
の間の光路に介在して当該1対の光検出器に検出される
光量を制御する光量制御手段(45),(46)とを備える
光学式ディスク装置であって、1対の光検出器が上記光
路及び光量制御手段の相対的移動方向に対して垂直な方
向に隣接して配列され、光量制御手段はその1対の端縁
(45b),(46b)が相対的移動方向に平行な基準線(45
a),(46b)を介して対向すると共に、1対の端縁の一
方と基準線との距離が相対的移動方向に関して可動部
(10)の移動範囲に亘り漸次増大し、1対の端縁の他方
と基準線との距離が相対的移動方向に関して可動部(1
0)の移動範囲に亘り漸次減少するように形成され、可
動部(10)のディスク半径方向への移動による光路及び
光量制御手段の相対的移動に伴い、当該光量制御手段を
介した検出光量を差動的に変化する1対の光検出器の検
出出力の差を位置検出信号とした光学式ディスク装置で
ある。
According to the present invention, a movable part (10) that holds an objective lens (11) between the light emitting element (41) and moves in the radial direction of the disk D, and emits light toward the movable part (10). A light emitting element (41) for emitting light, a pair of photodetectors (42) and (43) for detecting light emitted from the light emitting element, and a light path between the light emitting element and the pair of photodetectors. An optical disc device comprising light quantity control means (45) and (46) for controlling the light quantity detected by a pair of photodetectors, wherein the pair of photodetectors is a light path and a light quantity control means. Are arranged adjacent to each other in the direction perpendicular to the target moving direction, and the light quantity control means includes a pair of edges (45b) and (46b) whose reference lines (45) are parallel to the relative moving direction.
a) and (46b), the distance between one of the pair of edges and the reference line gradually increases in the relative movement direction over the moving range of the movable part (10), and The distance between the other end of the edge and the reference line is
0) is formed so as to gradually decrease over the moving range of (0). With the relative movement of the optical path and the light amount control means due to the movement of the movable portion (10) in the disk radial direction, the detected light amount via the light amount control means is reduced. The optical disk device uses a difference between detection outputs of a pair of photodetectors that change differentially as a position detection signal.

〔作用〕[Action]

この発明によれば、変位量の大きい移動体に対しても
小型低価格の光検出器を使用して的確な位置検出信号が
得られる。
According to the present invention, an accurate position detection signal can be obtained using a small and low-cost photodetector even for a moving body having a large displacement.

〔実施例〕〔Example〕

以下、第1図を参照しながら、この発明による光学式
ディスク装置の一実施例について説明する。
Hereinafter, an embodiment of an optical disk device according to the present invention will be described with reference to FIG.

この発明の一実施例の要部の構成を第1図に示す。 FIG. 1 shows the configuration of the main part of an embodiment of the present invention.

第1図において、(40)は位置検出光学系を全体とし
て示し、光学素子(41)に対向して、1対の光検出器
(42)及び(43)が大きい矢印で示した可動光学系の移
動方向に垂直に整列配置される。
In FIG. 1, reference numeral (40) denotes a position detecting optical system as a whole, and a pair of photodetectors (42) and (43) oppose an optical element (41). Are arranged perpendicularly to the moving direction of.

発光素子(41)と光検出器(42)及び(43)との中間
に介在する平板(44)に、それぞれが直角三角形状の1
対のスリット(45)及び(46)が、直角を挟む各長辺
(45a)及び(46a)を可動光学系の移動方向に平行な基
準線として対向させると共に、各斜辺(45b)及び(46
b)が互いに平行になるように、境界部(47)を残して
穿設される。
Each flat plate (44) interposed between the light emitting element (41) and the photodetectors (42) and (43) has a right-angled triangular shape.
The pair of slits (45) and (46) make the long sides (45a) and (46a) sandwiching the right angle face each other as a reference line parallel to the moving direction of the movable optical system, and the oblique sides (45b) and (46)
b) are drilled so that they are parallel to each other, leaving a boundary (47).

なお、この中間部(47)と、1対の光検出器(42)及
び(43)の各内側端部(42a)及び(43a)と、発光素子
(41)とは略同一平面上に整列配置される。
The intermediate portion (47), the inner ends (42a) and (43a) of the pair of photodetectors (42) and (43), and the light emitting element (41) are aligned on substantially the same plane. Be placed.

第1図の実施例の動作は次のとおりである。 The operation of the embodiment shown in FIG. 1 is as follows.

可動光学系(図示せず)の摺動に伴って、例えば平板
(44)が移動すると、発光素子(41)から放射され、ス
リット(45)及び(46)を通過した光により光検出器
(42)及び(43)上にそれぞれ形成される照射領域P45
及びP46の境界、スリットの各斜辺(45b)及び(46b)
の投影は両光検出器(42)及び(43)の整列方向に移動
する。また、可動光学系の摺動方向に対する照射領域P
45及びP46の拡がりはそれぞれ光検出器(42)及び(4
3)自体の幅で制限される。
When, for example, the flat plate (44) moves as the movable optical system (not shown) slides, the light detector (41) emits light from the light emitting element (41) and passes through the slits (45) and (46) to generate a light detector ( Irradiated area P 45 formed on 42) and (43) respectively
And the boundary of the P 46, the hypotenuse of the slit (45b) and (46b)
Moves in the direction of alignment of the two photodetectors (42) and (43). In addition, the irradiation area P with respect to the sliding direction of the movable optical system
The spread of 45 and P 46 is due to the photodetectors (42) and (4
3) Limited by its own width.

これにより、本実施例においても、前述の既提案例と
同様に、両光検出器(42)及び(43)の受光面積が差動
的に変化して、それぞれの受光面積に応じたレベルの1
対の検出信号が得られるので、この検出信号を前述と同
様に処理すれば、的確な位置検出信号が得られる。
Thus, also in the present embodiment, similarly to the above-described proposed example, the light receiving areas of the two photodetectors (42) and (43) are changed differentially, and the level of the level corresponding to each light receiving area is changed. 1
Since a pair of detection signals is obtained, an accurate position detection signal can be obtained by processing the detection signals in the same manner as described above.

本実施例によれば、光検出器(42)及び(43)を格段
に小型化し、能率よく使用することができて、その価格
を大幅に低減することができる。
According to the present embodiment, the photodetectors (42) and (43) can be significantly reduced in size, used efficiently, and the cost can be significantly reduced.

なお、第1図の実施例では、両スリット(45)及び
(46)の間に境界部(47)が存在するため、光検出器
(42)及び(43)の位置調整が比較的容易となるが、両
スリットの長辺(45a)及び(46a)を一致させて、境界
部(47)を除去した場合でも、全く同様に動作する。
In the embodiment of FIG. 1, since the boundary (47) exists between the slits (45) and (46), the position adjustment of the photodetectors (42) and (43) is relatively easy. However, even when the long sides (45a) and (46a) of both slits are made to coincide with each other and the boundary (47) is removed, the same operation is performed.

次に、第2図を参照しながら、この発明による光学式
位置検出装置の他の実施例について説明する。
Next, another embodiment of the optical position detecting device according to the present invention will be described with reference to FIG.

この発明の他の実施例の構成を第2図に示す。この第
2図において、前出第4図及び第5図に対応する部分に
は同一符号を付して重複説明を省略する。
FIG. 2 shows the configuration of another embodiment of the present invention. In FIG. 2, portions corresponding to FIGS. 4 and 5 are denoted by the same reference numerals, and redundant description will be omitted.

第2図において、(50)は固定光学系であって、発光
素子(51)と1対の光検出器(52)及び(53)が、可動
光学系(10)のプリズム(12)に関して、共に回転駆動
部(2)側に近接配置される。(55)及び(56)は1対
のミラーであって、プリズム(12)に関して、ディスク
Dとは反対側に配設される。
In FIG. 2, reference numeral (50) denotes a fixed optical system, and a light-emitting element (51) and a pair of photodetectors (52) and (53) are provided with respect to a prism (12) of a movable optical system (10). Both are arranged close to the rotation drive unit (2). (55) and (56) are a pair of mirrors, which are disposed on the side opposite to the disk D with respect to the prism (12).

第1図の実施例のスリット(45)及び(46)と同様
に、ミラー(55)及び(56)は直角三角形状に形成さ
れ、直角を挟む各長辺を可動光学系(10)の移動方向に
平行な基準線として対向させると共に、各斜辺が互いに
平行になるように、僅かの間隙を残して配設される。
Like the slits (45) and (46) in the embodiment of FIG. 1, the mirrors (55) and (56) are formed in the shape of a right triangle, and the long sides sandwiching the right angle are moved by the movable optical system (10). They are arranged so as to face each other as a reference line parallel to the direction and leave a slight gap so that the oblique sides are parallel to each other.

また、この間隙と発光素子(41)とを含む平面を挟ん
で、光検出器(52),(53)が整列配置される。
Further, the photodetectors (52) and (53) are arranged and arranged with a plane including the gap and the light emitting element (41) interposed therebetween.

上述のような配置によって、第2図の実施例では、発
光素子(51)から出た光はプリズム(12)で反射されて
1対のミラー(55)及び(56)に達し、このミラー(5
5)及び(56)の反射光がプリズム(12)で更に反射さ
れて光検出器(52)及び(53)に達する。
With the above arrangement, in the embodiment shown in FIG. 2, the light emitted from the light emitting element (51) is reflected by the prism (12) and reaches a pair of mirrors (55) and (56). Five
The reflected lights of 5) and (56) are further reflected by the prism (12) and reach the photodetectors (52) and (53).

発光素子(51)と光検出器(52)及び(53)との間の
光路についてみれば、プリズム(12)による反射は、こ
の反射面に関して対称な位置に発光素子(51)と光検出
器(52)及び(53)が移設されたことと等価であり、ミ
ラーによる反射はその両側に発光素子(51)と1対の光
検出器(52)及び(53)とが対向配置されていることと
等価である。
Looking at the optical path between the light emitting element (51) and the photodetectors (52) and (53), the reflection by the prism (12) is such that the light emitting element (51) and the photodetector are located symmetrically with respect to the reflecting surface. This is equivalent to the transfer of (52) and (53), and the reflection by the mirror is such that the light-emitting element (51) and the pair of photodetectors (52) and (53) are arranged on both sides of the mirror. It is equivalent to

即ち、第2図の実施例の発光素子(51)と1対の光検
出器(52)及び(53)とは、光学的には、第1図の実施
例と同様に、1対のミラー(55)及び(56)を介してそ
れぞれ対向しており、各光検出器(55)及び(56)の受
光面積が、可動光学系(10)の移動に応じて差動的に変
化する。
That is, the light emitting element (51) and the pair of photodetectors (52) and (53) in the embodiment of FIG. 2 are optically similar to the embodiment of FIG. They face each other via (55) and (56), and the light receiving area of each photodetector (55) and (56) changes differentially according to the movement of the movable optical system (10).

これにより、第2図の実施例も、第1図の実施例と同
様に、小型低価格の光検出器を用いて、大きな変位量を
的確に検出することができる。
Thus, in the embodiment shown in FIG. 2, similarly to the embodiment shown in FIG. 1, a large displacement can be accurately detected by using a small and inexpensive photodetector.

以上、移動体が直線運動をする場合について、本発明
を説明したが、回動の場合には、例えば第3図に示すよ
うな扇形平板(44C)に弧状のスリット(45C),(46
C)を互を逆方向に穿設したような光量制御手段を用い
ることができる。
As described above, the present invention has been described with respect to the case where the moving body makes a linear motion. However, in the case of turning, the arc-shaped slits (45C), (46) are formed in a fan-shaped flat plate (44C) as shown in FIG.
Light amount control means in which C) are formed in opposite directions can be used.

なお、第1図及び第2図の実施例では移動体の変位量
と光検出器の受光量とが直線的な関係にあったが、例え
ば各スリットの斜辺を適宜の曲線とすることによって、
任意の位置検出特性を実現することができる。
In the embodiments of FIGS. 1 and 2, the displacement amount of the moving body and the light reception amount of the photodetector are in a linear relationship. However, for example, by setting the hypotenuse of each slit to an appropriate curve,
Arbitrary position detection characteristics can be realized.

〔発明の効果〕〔The invention's effect〕

以上詳述のように、この発明によれば、対物レンズを
保持し、ディスクの半径方向に移動する可動部に向けて
光を発する発光素子及び1対の光検出器の間の光路に光
量制御手段を介在させ、光路及び光量制御手段の相対的
移動に伴って、1対の光検出器の検出光量を差動的に変
化させるようにしたので、変位量の大きい移動体に対し
ても小型低価格の光検出器を使用して的確な位置検出信
号を発生する光学式ディスク装置が得られる。
As described in detail above, according to the present invention, the light amount control is performed on the optical path between the light emitting element that holds the objective lens and emits light toward the movable portion that moves in the radial direction of the disk and the pair of photodetectors. The light quantity detected by the pair of photodetectors is changed differentially with the interposition of the light path and the light quantity control means relative to the relative movement of the light path and light quantity control means. An optical disk device that generates an accurate position detection signal using a low-cost photodetector can be obtained.

【図面の簡単な説明】 第1図はこの発明による光学式ディスク装置の一実施例
の要部の構成を示す斜視図、第2図はこの発明の他の実
施例の構成を示す断面図、第3図はこの発明の更に他の
実施例の要部の構成を示す平面図、第4図は既提案によ
る光学式ディスク装置の構成例を示す断面図、第5図は
既提案例の要部の構成を示す斜視図、第6図は既提案例
の他の要部の構成を示すブロック図である。 (10)は可動光学系、(20),(50)は固定光学系、
(21),(41),(51)は発光素子、(25),(26),
(42),(43),(52),(53)は光検出器、(30)は
信号処理回路、(40)は位置検出光学系、(45),(45
C),(46),(46C)はスリット、(55),(56)はミ
ラーである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a configuration of a main part of one embodiment of an optical disk device according to the present invention, FIG. 2 is a sectional view showing a configuration of another embodiment of the present invention, FIG. 3 is a plan view showing a configuration of a main part of still another embodiment of the present invention, FIG. 4 is a cross-sectional view showing a configuration example of an optical disk device according to the proposed method, and FIG. FIG. 6 is a perspective view showing a configuration of a part, and FIG. 6 is a block diagram showing a configuration of another main part of the proposed example. (10) is a movable optical system, (20) and (50) are fixed optical systems,
(21), (41) and (51) are light-emitting elements, (25), (26),
(42), (43), (52), and (53) are photodetectors, (30) is a signal processing circuit, (40) is a position detection optical system, (45), (45)
C), (46) and (46C) are slits, and (55) and (56) are mirrors.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01D 5/34 - 5/36──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01D 5/34-5/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】対物レンズを保持し、ディスクの半径方向
に移動する可動部と、 上記可動部に向けて光を発する発光素子と、この発光素
子の放射光を検出する1対の光検出器と、 上記発光素子及び1対の光検出器の間の光路に介在して
当該1対の光検出器に検出される光量を制御する光量制
御手段とを備える光学式ディスク装置であって、 上記1対の光検出器が上記光路及び光量制御手段の相対
的移動方向に対して垂直な方向に隣接して配列され、 上記光量制御手段はその1対の端縁が上記相対的移動方
向に平行な基準線を介して対向すると共に、 上記1対の端縁の一方と上記基準線との距離が上記相対
的移動方向に関して上記可動部の移動範囲に亘り漸次増
大し、上記1対の端縁の他方と上記基準線との距離が上
記相対的移動方向に関して上記可動部の移動範囲に亘り
漸次減少するように形成され、 上記可動部の上記ディスク半径方向への移動による上記
光路及び光量制御手段の相対的移動に伴い、当該光量制
御手段を介した検出光量を差動的に変化する上記1対の
光検出器の検出出力の差を上記可動部の位置検出信号と
したことを特徴とする光学式ディスク装置。
1. A movable portion that holds an objective lens and moves in a radial direction of a disk, a light emitting element that emits light toward the movable portion, and a pair of photodetectors that detect emitted light of the light emitting device. An optical disc device comprising: a light amount control unit that controls the amount of light detected by the pair of photodetectors through an optical path between the light emitting element and the pair of photodetectors. A pair of photodetectors are arranged adjacent to each other in a direction perpendicular to the relative movement direction of the optical path and the light quantity control means, and the light quantity control means has a pair of edges parallel to the relative movement direction. The distance between one of the pair of edges and the reference line gradually increases in the relative movement direction over the range of movement of the movable portion, and the pair of edges The distance between the other of the above and the reference line is The light amount is formed so as to gradually decrease over the moving range of the movable portion, and the amount of light detected via the light amount control device is associated with the relative movement of the optical path and the light amount control device due to the movement of the movable portion in the disk radial direction. An optical disc device, wherein a difference between detection outputs of the pair of photodetectors that changes differentially is used as a position detection signal of the movable portion.
JP1099222A 1989-04-19 1989-04-19 Optical disk drive Expired - Fee Related JP2785202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1099222A JP2785202B2 (en) 1989-04-19 1989-04-19 Optical disk drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1099222A JP2785202B2 (en) 1989-04-19 1989-04-19 Optical disk drive

Publications (2)

Publication Number Publication Date
JPH02278122A JPH02278122A (en) 1990-11-14
JP2785202B2 true JP2785202B2 (en) 1998-08-13

Family

ID=14241636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1099222A Expired - Fee Related JP2785202B2 (en) 1989-04-19 1989-04-19 Optical disk drive

Country Status (1)

Country Link
JP (1) JP2785202B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10323922A1 (en) * 2003-05-22 2004-12-16 Carl Zeiss Jena Gmbh Adjustable pinhole
JP2006113039A (en) * 2004-09-15 2006-04-27 Tokai Rika Co Ltd Magnetism detection device
JP5998682B2 (en) * 2012-07-03 2016-09-28 株式会社ニコン Encoder, code plate, drive device, and robot device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113250A (en) * 1974-02-14 1975-09-05
JPS54102150U (en) * 1977-12-28 1979-07-18

Also Published As

Publication number Publication date
JPH02278122A (en) 1990-11-14

Similar Documents

Publication Publication Date Title
US5131744A (en) Mirror rotation angle detection mechanism
JP2004212205A (en) Angle detecting apparatus, light signal switching system, and information recording and reproducing system
US5235574A (en) Optical disk drive relative position sensor
JP2785202B2 (en) Optical disk drive
US5451775A (en) Apparatus for detecting galvonmeter mirror movement of optical disc tracking servo system
JPS62200541A (en) Light emitting quantity controller
JP2574230B2 (en) Displacement detector
NL193157C (en) Optical reading and writing device for a disc-shaped recording medium, provided with means for eliminating tracking errors.
JP3006987B2 (en) Optical pickup
JPS62162241A (en) Lens actuator
JP2545903Y2 (en) Optical information recording / reproducing device
JP2759560B2 (en) Optical disk drive
JP2629457B2 (en) Objective lens position detector
JP2563421Y2 (en) Magneto-optical disk drive
JPS62287430A (en) Optical head for optical recording and reproducing
JP2629456B2 (en) Objective lens position detector
JPH0624012Y2 (en) Tilt control mechanism
JP2785196B2 (en) Non-contact thickness distribution measurement method
JP2790920B2 (en) Tracking method for optical disk device and tracking device using this method
JPS6224859B2 (en)
JPH03178041A (en) Position detector for optical head
JPS62112235A (en) Position detecting device for objective lens
JPH0329123A (en) Optical head device
JPH02158923A (en) Optical pickup device
JPH011904A (en) Shape distortion measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees