JP2783379B2 - Insulation structure - Google Patents

Insulation structure

Info

Publication number
JP2783379B2
JP2783379B2 JP5213702A JP21370293A JP2783379B2 JP 2783379 B2 JP2783379 B2 JP 2783379B2 JP 5213702 A JP5213702 A JP 5213702A JP 21370293 A JP21370293 A JP 21370293A JP 2783379 B2 JP2783379 B2 JP 2783379B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating structure
halogen
fire
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5213702A
Other languages
Japanese (ja)
Other versions
JPH0762134A (en
Inventor
一登 上門
善之 津田
英夫 中元
智尚 天良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP5213702A priority Critical patent/JP2783379B2/en
Publication of JPH0762134A publication Critical patent/JPH0762134A/en
Application granted granted Critical
Publication of JP2783379B2 publication Critical patent/JP2783379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷蔵庫・冷凍プレハブ
等に利用する断熱構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating structure used for a refrigerator, a freezing prefab, and the like.

【0002】[0002]

【従来の技術】近年、クロロフルオロカーボン(以下C
FCと称する)の影響によるオゾン層破壊および地球の
温暖化等の環境問題が注目されている。このような観点
より、発泡剤であるCFCの使用量削減が極めて重要な
テーマとなってきている。
2. Description of the Related Art In recent years, chlorofluorocarbon (hereinafter referred to as C)
Attention has been paid to environmental problems such as ozone layer depletion and global warming caused by the influence of the FC. From such a viewpoint, reduction of the amount of CFC used as a foaming agent has become a very important theme.

【0003】このため、代表的な発泡断熱材である硬質
ウレタンフォームでは、分子中にハロゲンを含まないハ
イドロカーボンを発泡剤として用いることが提案されて
いる。 例えば、特開平3−152160号公報では、
シクロペンタンやシクロヘキサンを発泡剤とするポリウ
レタン硬質発泡プラスチックの製造方法について述べら
れている。そして、発明の詳細な説明の中で添加剤とし
て難燃剤について触れられているが、ハロゲン置換ホス
フェートと無機難燃剤が候補として説明されている。
For this reason, it has been proposed to use a hydrocarbon containing no halogen in the molecule as a foaming agent for a rigid urethane foam which is a typical foamed heat insulating material. For example, in JP-A-3-152160,
A method for producing a rigid polyurethane foamed plastic using cyclopentane or cyclohexane as a foaming agent is described. And, in the detailed description of the invention, flame retardants are mentioned as additives, but halogen-substituted phosphates and inorganic flame retardants are described as candidates.

【0004】[0004]

【発明が解決しようとする課題】上述のようなハイドロ
カーボンを発泡剤として適用するにあたっては可燃性の
問題があり、断熱壁中に可燃性気体を含む発泡断熱材を
充填して使用することは、火災時の延焼拡大などの危険
性があり、大きな課題である。
There is a problem of flammability in applying the above-mentioned hydrocarbon as a foaming agent, and it is difficult to use a foam insulation material containing a flammable gas in a heat insulating wall. However, there is the danger of fire spreading during a fire, which is a major issue.

【0005】しかしながら、上述のような難燃剤を含む
発泡断熱材の使用にあたっては、冷蔵庫のように発泡断
熱材を充填した断熱構造体の中に冷媒を循環させるため
の金属パイプがある場合においては、金属腐蝕の問題が
あり適用は困難である。また、食品を長期に保存する上
で、面材を通して移行するなどの毒性の問題点もある。
本発明は上記問題点に鑑み、ハイドロカーボンを発泡剤
として適用しても、少なくとも従来のCFC11発泡と
同等の燃焼速度で、火災時の延焼拡大等が危険性が無
く、かつ金属パイプを腐蝕させて冷媒洩れを発生させた
り、食品を長期に保存しても安全性において問題の無い
断熱構造体を提供することを目的とするものである。
[0005] However, when using the foamed heat insulating material containing a flame retardant as described above, when a metal pipe for circulating the refrigerant is used in a heat insulating structure filled with the foamed heat insulating material such as a refrigerator. However, there is a problem of metal corrosion and application is difficult. In addition, there is also a problem of toxicity such as migration through a face material when preserving food for a long time.
The present invention has been made in view of the above-described problems, and even if hydrocarbon is used as a foaming agent, the spread of fire in a fire is not dangerous at least at the same burning rate as that of the conventional CFC11 foaming, and the metal pipe is corroded. It is an object of the present invention to provide a heat insulating structure which does not cause a problem in safety even if the refrigerant leaks or the food is stored for a long time.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明は、発泡剤としてペンタン、シクロペンタン等
のハイドロカーボンを含み、有機ポリイソシアネート,
ポリオール,触媒,整泡剤,および分子量が150以上
で官能基としてOH基を有する非ハロゲン含有の有機リ
ン化合物を添加剤とする原料を混合発泡して得られる発
泡断熱材を、金属パイプを配設した空間に注入成形して
断熱構造体を形成するものである。
In order to solve the above-mentioned problems, the present invention comprises a blowing agent containing a hydrocarbon such as pentane or cyclopentane, and comprising an organic polyisocyanate,
Polyol, catalyst, foam stabilizer, and molecular weight of the raw material mixture foamed to foam insulation obtained to the additive and the organic phosphorus compound of non-halogen containing having an OH group as a functional group at 150 or higher, the metallic pipe The heat insulating structure is formed by injection molding into the space provided.

【0007】[0007]

【作用】上記構成によって、断熱構造体に充填された発
泡断熱材は、可燃性の気体を含むものの、有機リン化合
物の効果により樹脂部の燃焼性が抑制され少なくとも従
来のCFC11発泡と同等の燃焼速度となり、火災時の
延焼拡大等が危険性が無くなり、オゾン破壊等の地球環
境問題の解決に寄与すると同時に安全に使用することが
できるのである。
According to the above construction, although the foamed heat insulating material filled in the heat insulating structure contains a combustible gas, the combustibility of the resin portion is suppressed by the effect of the organic phosphorus compound, and the combustion is at least equivalent to the conventional CFC11 foaming. The speed is increased, and there is no danger of the spread of fire in the event of a fire. This contributes to solving global environmental problems such as ozone depletion and can be used safely.

【0008】また、有機リン化合物はハロゲンを含まな
いため、断熱構造体を廃棄時に焼却処理しても酸性雨の
原因となるハロゲンを大気中に放出させることなく環境
に対して問題のないことが期待できる。かつ、有機リン
化合物として分子量が150以上で官能基としてOH基
を有したものを適用するため、原料の有機ポリイソシア
ネートと反応して高分子化する結果、リンがイオン化遊
離して金属パイプを腐蝕させる可能性はなくなる。特に
冷蔵庫のように冷媒を循環させる金属パイプの場合、表
面温度が低いため外部から侵入した湿分が金属パイプ上
に凝縮して腐蝕しやすい状況となる場合が有り、高分子
化することでリンのイオン化を抑制でき、製品の長期使
用において信頼性を高めることができる。同時に高分子
化することで、プラスチックスの面材への移行もなくな
り長期に食品を保存しても汚染されることもなく製品安
全に問題のない断熱構造体を提供できるのである。
In addition, since the organic phosphorus compound does not contain halogen, even if the insulated structure is incinerated at the time of disposal, there is no problem with respect to the environment without releasing halogen which causes acid rain into the atmosphere. Can be expected. In addition, since an organic phosphorus compound having a molecular weight of 150 or more and having an OH group as a functional group is applied as an organic phosphorus compound, it reacts with the organic polyisocyanate as a raw material to polymerize, and as a result, phosphorus is ionized and liberated, thereby corroding the metal pipe. There is no possibility to make it happen. In particular, in the case of a metal pipe that circulates a refrigerant, such as a refrigerator, moisture that has entered from the outside may be condensed on the metal pipe and corroded easily due to the low surface temperature. Can be suppressed, and the reliability can be improved in long-term use of the product. Simultaneously, by polymerizing, it is possible to provide a heat-insulating structure which does not transfer plastics to face materials, does not become contaminated even if food is stored for a long time, and has no problem in product safety.

【0009】[0009]

【実施例】以下、本発明の一実施例について、図1、図
2の図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0010】1は断熱構造体で、ABS等のプラスチッ
クス製の面材2と鉄板3で被覆され、内部に硬質ウレタ
ンフォームからなる発泡断熱材4が充填配設されてい
る。5は冷媒を循環させる銅パイプで、発泡断熱材4に
よって埋設されている。
Reference numeral 1 denotes a heat insulating structure, which is covered with a face material 2 made of plastics such as ABS and an iron plate 3, and is filled with a foamed heat insulating material 4 made of hard urethane foam. Reference numeral 5 denotes a copper pipe for circulating a refrigerant, which is buried by a foamed heat insulating material 4.

【0011】発泡断熱材4の原料処方の一実施例を(表
1)に示した。
An example of the raw material formulation of the foam insulation 4 is shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】ポリエーテルAは、芳香族アミン系ポリエ
ーテルポリオールで水酸基価460mgKOH/g、整
泡剤Aは信越化学(株)製F335、触媒Aは花王
(株)製カオライザーNo1、発泡剤Aはシクロペンタ
ン、発泡剤Bは純水である。また、添加剤Aとしてジブ
チルヒドロオキシメチルホスホネートからなる有機リン
化合物を使用した。一方、イソシアネート成分は、アミ
ン当量135のクルードMDIからなる有機ポリイソシ
アネートである。このようにして調合したプレミックス
成分とイソシアネート成分を所定の配合部数で高圧発泡
機にて混合し、あらかじめ銅パイプ5を配設した面材2
と鉄板3の中に注入し、断熱構造体1を得た。得られた
発泡断熱材4の燃焼度合をJIS−A9514での燃焼
性試験項の燃焼時間を特性値として(表1)に併せて記
した。
Polyether A is an aromatic amine polyether polyol having a hydroxyl value of 460 mg KOH / g, foam stabilizer A is F335 manufactured by Shin-Etsu Chemical Co., Ltd., catalyst A is Kaolyzer No. 1 manufactured by Kao Corporation, and foaming agent A is Cyclopentane and blowing agent B are pure water. Further, using di-butyl oxymethyl e Suhoneto or Ranaru organophosphorus compound as a additive A. On the other hand, the isocyanate component is an organic polyisocyanate composed of crude MDI having an amine equivalent of 135. The premix component and the isocyanate component prepared in this manner are mixed in a predetermined blending number by a high-pressure foaming machine, and a face material 2 in which a copper pipe 5 is previously disposed.
Into the iron plate 3 to obtain the heat insulating structure 1. The burning degree of the obtained foamed heat insulating material 4 is also shown in Table 1 as the characteristic value of the burning time in the flammability test item in JIS-A9514.

【0014】さらに断熱構造体1を40℃95%RH条
件で3ヶ月運転した時の銅パイプの腐蝕度、および面材
2へのリン分の移行についても分析した結果を(表1)
に示した。
Further, the results of analysis of the corrosion degree of the copper pipe when the heat insulating structure 1 was operated at 40 ° C. and 95% RH for 3 months and the transfer of phosphorus to the face material 2 were also analyzed (Table 1).
It was shown to.

【0015】同時に比較例として添加剤Bを使用しない
場合、および添加剤Bとしてハロゲン含有のトリス−
(2−クロルエチル)ホスフェートを添加した場合、さ
らには発泡剤CとしてCFC11を使用した場合につい
ても(表1)に示した。
[0015] When not using the additive B as a comparative example at the same time, and as a additive B halogen-containing Tris -
(2-chloroethyl) when added phosphate, furthermore illustrated in the case of using the CFC11 as a foaming agent C is also (Table 1).

【0016】このように添加剤として分子量が224で
官能基としてOH基を有する非ハロゲン含有の有機リン
化合物てあるジブチルヒドロオキシメチルホスホネート
使用した場合においては、発泡剤に可燃性のハイドロ
カーボンであるシクロペンタンを使用しても発泡断熱材
4の樹脂部の燃焼性が抑制されるため、CFC11を使
用した場合の燃焼度合と同等並みとなった。この結果、
火災時の延焼拡大等が危険性が無くなり、オゾン破壊等
の地球環境問題の解決に寄与すると同時に製品を安全に
使用することができるのである。かつジブチルヒドロオ
キシメチルホスホネートは分子量が224と大きく、官
能基としてOH基を有するため、原料の有機ポリイソシ
アネートと反応して高分子化する結果、リンがイオン化
遊離して金属パイプを腐蝕させることはなかった。特に
多湿条件で外部から侵入した湿分が銅パイプ5上に凝縮
して腐蝕しやすい状況となる場合でも問題は無かった。
つまり、高分子化することでリンのイオン化を抑制で
き、製品の長期使用において信頼性を高めることができ
ることが判明した。
[0016] Thus dibutyl hydroperoxide oxymethyl phosphorylase molecular weight are organic phosphorus compounds in non-halogen containing having an OH group as a functional group 224 as an additive Honeto
In the case of using CFC11, even if cyclopentane, which is a flammable hydrocarbon, is used as the blowing agent, the combustibility of the resin part of the foamed heat insulating material 4 is suppressed. It was average. As a result,
There is no danger of the spread of fire in the event of a fire, which contributes to solving global environmental problems such as ozone depletion, and the product can be used safely. And di-butyl oxymethyl e Suhoneto is larger molecular weight and 224, to have an OH group as a functional group, the result of polymerization by reacting with an organic polyisocyanate in the raw material, phosphorus is possible to corrode the metal pipe by free ionization There was no. In particular, there was no problem even in the case where the moisture invading from the outside under the humid condition was condensed on the copper pipe 5 and easily corroded.
In other words, it has been found that ionization of phosphorus can be suppressed by polymerizing, and reliability can be improved in long-term use of the product.

【0017】さらには、プラスチックスの面材2へのリ
ン移行も検出されず、長期に食品を保存しても汚染もな
く製品安全に問題の無い断熱構造体を提供できることが
判った。
Furthermore, it was found that the transfer of phosphorus from the plastics to the face material 2 was not detected, and that it was possible to provide a heat insulating structure having no contamination and no problem in product safety even when food was stored for a long period of time.

【0018】一方、比較例として添加剤を使用しない場
合は、CFC11を使用した場合の燃焼度合に比べ、燃
焼速度が速くなるという現象があり、適用困難である。
また添加剤としてハロゲン含有のトリス−(2−クロル
エチル)ホスフェートを添加した場合、銅パイプ5の腐
蝕が大きく、面材2へのリン移行が検出される等の問題
から同様に適用困難である。
On the other hand, when no additive is used as a comparative example, there is a phenomenon that the burning rate becomes higher than that when CFC11 is used, which is difficult to apply.
Further, when halogen-containing tris- (2-chloroethyl) phosphate is added as an additive, it is similarly difficult to apply the copper pipe 5 due to a large corrosion and a problem that phosphorus transfer to the face material 2 is detected.

【0019】[0019]

【発明の効果】以上のように、本発明は、発泡剤として
ペンタン、シクロペンタン等のハイドロカーボンを含
み、有機ポリイソシアネート,ポリオール,触媒,整泡
剤,および分子量が150以上で官能基としてOH基を
有する非ハロゲン含有の有機リン化合物を添加剤とする
原料を混合発泡して得られる発泡断熱材を、金属パイプ
を配設した空間に注入成形して断熱構造体を形成するも
のであるから、発泡断熱材は、可燃性の気体を含むもの
の、有機リン化合物の効果により少なくとも従来のCF
C11発泡と同等の燃焼速度となり、火災時の延焼拡大
等が危険性が無くなり、オゾン破壊等の地球環境問題の
解決に寄与すると同時に安全に使用することができるの
である。
As described above, the present invention comprises a hydrocarbon such as pentane or cyclopentane as a foaming agent, an organic polyisocyanate, a polyol, a catalyst, a foam stabilizer, and a OH as a functional group having a molecular weight of 150 or more. the foam insulation obtained by raw materials and additives of organic phosphorus compounds in non-halogen containing having a base mixture foamed to, and forms a heat-insulating structure by casting in a space which is disposed a metallic pipe Therefore, although the foamed heat insulating material contains a flammable gas, at least the conventional CF
The burning rate is the same as that of C11 foaming, and there is no danger of the spread of fire in the event of a fire. This contributes to solving global environmental problems such as ozone destruction and can be used safely.

【0020】また、有機リン化合物はハロゲンを含まな
いため、断熱構造体を廃棄時に焼却処理しても酸性雨の
原因となるハロゲンを大気中に放出させることなく環境
に対して問題のないことが期待できる。かつ、有機リン
化合物として分子量が150以上で官能基としてOH基
を有したものを適用するため、原料の有機ポリイソシア
ネートと反応してより高分子化する結果、金属パイプを
発泡断熱材の中に配設する場合でもリンがイオン化遊離
して金属パイプを腐蝕させる可能性はなく製品の長期使
用において信頼性を高めることができる。また、プラス
チックスの面材への移行もなくなり長期に食品を保存し
ても汚染されることもなく製品安全に問題のない断熱構
造体を提供できるのである。
Further, since the organic phosphorus compound does not contain halogen, even if the heat-insulating structure is incinerated at the time of disposal, there is no problem with respect to the environment without releasing halogen which causes acid rain into the atmosphere. Can be expected. In addition, since an organic phosphorus compound having a molecular weight of 150 or more and having an OH group as a functional group is applied as an organic phosphorus compound, it reacts with an organic polyisocyanate as a raw material to be polymerized, so that a metal pipe is placed in a foamed heat insulating material. Even in the case of disposing, there is no possibility that phosphorus is ionized and released to corrode the metal pipe, and reliability can be improved in long-term use of the product. In addition, there is no transfer of plastics to the face material, and even if the food is stored for a long period of time, there is no contamination and a heat insulating structure having no problem in product safety can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における断熱構造体を一部切
り欠いた斜視図
FIG. 1 is a perspective view of a heat insulating structure according to an embodiment of the present invention, with a part cut away.

【図2】本発明の一実施例における断熱構造体の断面図FIG. 2 is a sectional view of a heat insulating structure according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 断熱構造体 4 発泡断熱材 5 金属パイプ DESCRIPTION OF SYMBOLS 1 Insulation structure 4 Foam insulation material 5 Metal pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F25D 23/08 F25D 23/08 A //(C08G 18/48 101:00) C08L 75:04 (72)発明者 天良 智尚 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (56)参考文献 特開 昭63−312828(JP,A) 特開 平3−505599(JP,A) 特開 昭60−123539(JP,A) (58)調査した分野(Int.Cl.6,DB名) C08J 9/00 - 9/42──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code FI F25D 23/08 F25D 23/08 A // (C08G 18/48 101: 00) C08L 75:04 (72) Inventor Tomohisa Amara Matsushita Refrigerating Machine Co., Ltd., 3-22 Takaidahondori, Higashiosaka City, Osaka Prefecture (56) References JP-A-63-312828 (JP, A) JP-A-3-505599 (JP, A) JP-A-60-123539 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C08J 9/00-9/42

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 発泡剤としてペンタン、シクロペンタン
等のハイドロカーボンを含み、有機ポリイソシアネー
ト,ポリオール,触媒,整泡剤,および分子量が150
以上で官能基としてOH基を有する非ハロゲン含有の有
機リン化合物を添加剤とする原料を混合発泡して得られ
る発泡断熱材を、金属パイプを配設した空間に注入成形
してなる断熱構造体。
1. A foaming agent containing a hydrocarbon such as pentane and cyclopentane as an organic polyisocyanate, a polyol, a catalyst, a foam stabilizer and a molecular weight of 150.
Heat insulating structure formed by casting a raw material mixed foaming to foam insulation obtained to the additive and the organic phosphorus compound of non-halogen containing having an OH group as a functional group, in a space which is disposed a metallic pipe above body.
JP5213702A 1993-08-30 1993-08-30 Insulation structure Expired - Fee Related JP2783379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5213702A JP2783379B2 (en) 1993-08-30 1993-08-30 Insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5213702A JP2783379B2 (en) 1993-08-30 1993-08-30 Insulation structure

Publications (2)

Publication Number Publication Date
JPH0762134A JPH0762134A (en) 1995-03-07
JP2783379B2 true JP2783379B2 (en) 1998-08-06

Family

ID=16643583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5213702A Expired - Fee Related JP2783379B2 (en) 1993-08-30 1993-08-30 Insulation structure

Country Status (1)

Country Link
JP (1) JP2783379B2 (en)

Also Published As

Publication number Publication date
JPH0762134A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
US9074039B2 (en) Polyurethane foam compositions and process for making same
US4292353A (en) Urethane modified polyisocyanurate foam surfaced with aluminum foil or sheet
CA2475205C (en) Formulated resin component for use in a spray-in-place foam system to produce a low density polyurethane foam
JP5731008B2 (en) Method for filling wall cavities with expanded foam insulation
CN109694685B (en) Flame-retardant single-component foam joint mixture and preparation method thereof
CN104448185A (en) Intumescent rigid foam polyurethane and preparation method thereof
KR19980078246A (en) Open Cell Rigid Polyurethane Foam And Method Of Manufacturing The Same And Method Of Manufacturing Vacuum Insulated Panel Using The Same
JP2010184974A (en) Fire-resistant heat-insulating covering material
JP2783379B2 (en) Insulation structure
US4640978A (en) Foam-sealed electrical devices and method and composition therefor
JPH09176498A (en) Fireproof expandable resin composition
KR100257798B1 (en) Foamed thermal insulating material and insulated structure
US6492432B1 (en) Novolac-epoxy resin foam, foamable composition for making novolac-epoxy resin foam and method of making novolac-epoxy resin foam
JPH08143696A (en) Heat-insulating box
US8920714B2 (en) Corrosion inhibiting self-expanding foam
JPH0791818A (en) Heat insulating structure
JP7039438B2 (en) How to insulate buildings and how to recycle building insulation
JP2005023259A (en) Methods for manufacturing incombustible composition and synthetic resin foam
JPH0791819A (en) Heat insulating structure
US6355700B1 (en) Foamed thermal insulating material and insulated structure
JPH07301389A (en) Heat insulating structure
JPH0797471A (en) Thermally insulated structure
CN1437631A (en) Flame retardant blend for intumescent flexibel polyurethane foam
JP3192287B2 (en) Method of forming heat insulating layer made of rigid polyurethane foam
WO2017210022A1 (en) Flame retardant semi-rigid polyurethane foam

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees