JPH0791818A - Heat insulating structure - Google Patents

Heat insulating structure

Info

Publication number
JPH0791818A
JPH0791818A JP5234504A JP23450493A JPH0791818A JP H0791818 A JPH0791818 A JP H0791818A JP 5234504 A JP5234504 A JP 5234504A JP 23450493 A JP23450493 A JP 23450493A JP H0791818 A JPH0791818 A JP H0791818A
Authority
JP
Japan
Prior art keywords
heat insulating
foaming agent
insulating material
hydrocarbon
insulating structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5234504A
Other languages
Japanese (ja)
Inventor
Hideo Nakamoto
英夫 中元
Kazuto Uekado
一登 上門
Yoshiyuki Tsuda
善之 津田
Tomonao Amayoshi
智尚 天良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP5234504A priority Critical patent/JPH0791818A/en
Publication of JPH0791818A publication Critical patent/JPH0791818A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide equal combustion speed to a foamed heat insulating material using conventional harogenized hydrocarbon as a foaming agent and permit the securing of non-corrosive property against a metallic pipe arranged in a structural body even when a hydrocarbon, having flamability, is employed as the foaming agent of the foamed heat insulating material. CONSTITUTION:A space in a heat insulating structure, in which a metallic pipe 5 is arranged, is filled with a foamed heat insulating material 4 produced by a method wherein organic polyisocyanate, prepolymerized by non-harogenized organic phosphor compound, having the molecular weight of 400 or less and containing active hydrogen, peviously is mixed with polyol, foam stabilizer, catalyst and a foaming agent having at least a constituent of hydrocarbon, then, the mixture is foamed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷蔵庫・冷凍プレハブ
等に利用する断熱構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat insulating structure used in refrigerators, frozen prefabs and the like.

【0002】[0002]

【従来の技術】近年、クロロフルオロカーボン(以下C
FCと称する)の影響によるオゾン層破壊および地球の
温暖化等の環境問題が注目されている。このような観点
より、発泡剤であるCFCの使用量削減が極めて重要な
テーマとなってきている。
2. Description of the Related Art In recent years, chlorofluorocarbons (hereinafter C
Environmental problems such as ozone depletion and global warming due to the influence of FC) are drawing attention. From such a viewpoint, reduction of the amount of CFC used as a foaming agent has become an extremely important theme.

【0003】このため、代表的な発泡断熱材である硬質
ウレタンフォームでは、分子中にハロゲンを含まないハ
イドロカーボンを発泡剤として用いることが提案されて
いる。
For this reason, it has been proposed to use a hydrocarbon containing no halogen in the molecule as a foaming agent in a rigid urethane foam which is a typical foamed heat insulating material.

【0004】例えば、特開平3−152160号公報で
は、シクロペンタンやシクロヘキサンなどの可燃性物質
を発泡剤とするポリウレタン硬質発泡プラスチックの製
造方法について述べられている。そして、発明の詳細な
説明の中で前記可燃性物質を発泡剤とする硬質ウレタン
フォ−ムの燃焼性を改善するために、添加剤として難燃
剤を用いることが提案されており、ハロゲン置換ホスフ
ェ−トと無機難燃剤が候補として説明されている。
For example, Japanese Unexamined Patent Publication (Kokai) No. 3-152160 describes a method for producing a polyurethane rigid foamed plastic using a combustible substance such as cyclopentane or cyclohexane as a foaming agent. Then, in the detailed description of the invention, it has been proposed to use a flame retardant as an additive in order to improve the flammability of a hard urethane foam containing the combustible substance as a foaming agent. -G and inorganic flame retardants are described as candidates.

【0005】[0005]

【発明が解決しようとする課題】上述のようなハイドロ
カーボンを発泡剤として適用するにあたっては可燃性の
問題があり、断熱壁中に可燃性気体を含む発泡断熱材を
充填して使用することは、火災時の延焼拡大などの危険
性があり、大きな課題である。
There is a problem of flammability in applying the above-mentioned hydrocarbon as a foaming agent, and it is not possible to fill a heat insulating wall with a foam heat insulating material containing a flammable gas before use. However, there is a danger of spread of fire during a fire, which is a major issue.

【0006】しかしながら、上述のようなハロゲン置換
ホスフェ−トなどの難燃剤を含む発泡断熱材の使用にあ
たっては、冷蔵庫のように発泡断熱材を充填した断熱構
造体の中に冷媒を循環させるための金属パイプがある場
合においては、金属腐蝕の問題があり適用は困難であ
る。また、食品を長期に保存する上で、面材を通して移
行するなどの毒性の問題点が危惧される。本発明は上記
問題点に鑑み、可燃性を有するハイドロカーボンを発泡
剤として適用した場合においても、少なくとも従来のC
FC11発泡と同等の燃焼速度で、火災時の延焼拡大等
が危険性がなく、かつ金属パイプを腐蝕させて冷媒洩れ
を発生させたり、食品を長期に保存しても安全性におい
て問題のない断熱構造体を提供することを目的とするも
のである。
However, when using a foamed heat insulating material containing a flame retardant such as the halogen-substituted phosphate as described above, a refrigerant is circulated in a heat insulating structure filled with the foamed heat insulating material such as a refrigerator. When there is a metal pipe, it is difficult to apply due to the problem of metal corrosion. In addition, when the food is stored for a long period of time, there is a risk of toxicity such as migration through the face material. In view of the above problems, the present invention has at least the conventional C even when a flammable hydrocarbon is used as a foaming agent.
With the same burning rate as FC11 foaming, there is no danger of spreading fire during a fire, etc., and there is no problem in terms of safety when corroding metal pipes to cause refrigerant leakage or when food is stored for a long time. It is intended to provide a structure.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために、発泡剤としてペンタン、シクロペンタン
等のハイドロカーボンを含み、あらかじめ、分子量40
0以下で活性水素を有する非ハロゲン化有機リン化合物
にてプレポリマ−化した有機ポリイソシアネ−トと、ポ
リオ−ル、整泡剤、触媒を混合発泡して得られる発泡断
熱材を、少なくとも金属パイプを配設した空間に注入成
形して断熱構造体を形成するものである。
In order to solve the above-mentioned problems, the present invention contains a hydrocarbon such as pentane or cyclopentane as a foaming agent and has a molecular weight of 40 in advance.
A foamed heat insulating material obtained by mixing and foaming an organic polyisocyanate prepolymerized with a non-halogenated organic phosphorus compound having an active hydrogen of 0 or less, a polyol, a foam stabilizer, and a catalyst, at least a metal pipe. The heat insulating structure is formed by injection molding in the arranged space.

【0008】[0008]

【作用】上記構成によって、断熱構造体に充填された発
泡断熱材は、可燃性の気体を含むものの、あらかじめ、
有機ポリイソシアネ−トとプレポリマ−化された有機リ
ン化合物の効果により樹脂部の燃焼性が抑制され、少な
くとも従来のCFC11発泡と同等の燃焼速度となり、
火災時の延焼拡大等が危険性がなくなり、オゾン破壊等
の地球環境問題の解決に寄与すると同時に安全に使用す
ることができるのである。
With the above structure, although the foamed heat insulating material filled in the heat insulating structure contains a combustible gas,
Combustibility of the resin part is suppressed by the effect of the organic polyisocyanate and the prepolymerized organic phosphorus compound, and the combustion rate is at least equivalent to that of conventional CFC11 foaming.
The danger of spread of fire during a fire is eliminated, and it contributes to the solution of global environmental problems such as ozone destruction and can be used safely.

【0009】また、あらかじめ、有機ポリイソシアネ−
トとプレポリマ−化された有機リン化合物はハロゲンを
含まないため、断熱構造体を廃棄時に焼却処理しても酸
性雨の原因となるハロゲン化物質を大気中に放出させる
ことなく環境に対して問題のないことが期待できる。か
つ、本発明に用いる有機リン化合物は、活性水素を有
し、あらかじめ有機ポリイソシアネートと反応させてプ
レポリマ−化する結果、リンがイオン化遊離して金属パ
イプを腐蝕させる可能性はなくなる。特に冷蔵庫のよう
に冷媒を循環させる金属パイプが配設された場合、金属
パイプの一部で表面温度が低い箇所があるため、外部か
ら侵入した湿分が金属パイプ上に凝縮して腐蝕し易い状
況となり、有機リン化合物をあらかじめ有機ポリイソシ
アネ−トとプレポリマ−化することでリンのイオン化を
抑制でき、製品の長期使用において信頼性を高めること
ができる。同時に、有機リン化合物をあらかじめ有機ポ
リイソシアネ−トとプレポリマ−化することで、リン成
分がウレタン樹脂中に固定化され、プラスチックスの面
材への移行もなく、長期保存される食品に対しても汚染
されるといった問題もなく、製品安全に問題のない断熱
構造体を提供できるのである。
Further, in advance, organic polyisocyanate
Since the organophosphorus compound and the pre-polymerized organophosphorus compound do not contain halogen, even if the heat insulating structure is incinerated at the time of disposal, it does not release halogenated substances that cause acid rain into the atmosphere and poses a problem to the environment. Can be expected to be In addition, the organic phosphorus compound used in the present invention has active hydrogen and is preliminarily reacted with the organic polyisocyanate to be prepolymerized. As a result, phosphorus is not ionized and liberated, and there is no possibility of corroding the metal pipe. Especially when a metal pipe for circulating a refrigerant is installed like a refrigerator, since the surface temperature is low at a part of the metal pipe, moisture that has entered from the outside easily condenses on the metal pipe and is easily corroded. In this situation, pre-polymerization of the organic phosphorus compound with the organic polyisocyanate can suppress the ionization of phosphorus, and the reliability can be improved in the long-term use of the product. At the same time, by pre-polymerizing the organic phosphorus compound with the organic polyisocyanate, the phosphorus component is fixed in the urethane resin, there is no migration to plastics face material, even for foods that are stored for a long time. It is possible to provide an insulating structure that does not have a problem of being contaminated and has no problem in product safety.

【0010】[0010]

【実施例】以下、本発明の一実施例について、図1、図
2の図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings of FIGS.

【0011】1は断熱構造体で、ABS等のプラスチッ
クス製の面材2と鉄板3で被覆され、内部に硬質ウレタ
ンフォームからなる発泡断熱材4が充填配設されてい
る。5は冷媒を循環させる銅パイプで、発泡断熱材4に
よって埋設されている。
Reference numeral 1 denotes a heat insulating structure, which is covered with a face material 2 made of plastic such as ABS and an iron plate 3, and a foam heat insulating material 4 made of hard urethane foam is filled and arranged inside. Reference numeral 5 denotes a copper pipe for circulating a coolant, which is embedded in the foamed heat insulating material 4.

【0012】発泡断熱材4の原料処方の一実施例を(表
1)に示した。
An example of the raw material formulation of the foamed heat insulating material 4 is shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】ポリエーテルAは、芳香族アミン系ポリエ
ーテルポリオールで水酸基価460mgKOH/g、整
泡剤Aは、信越化学(株)製シリコン界面活性剤F−3
35、触媒Aは、花王(株)製カオライザーNo.1、
発泡剤Aは、シクロペンタン、発泡剤Bは、純水であ
り、各原料を所定の配合部数で混合し、ポリオ−ル成分
を構成する。また、イソシアネ−ト成分Aは、アミン当
量135のクルードMDIから成る有機ポリイソシアネ
ートに対して、分子量224、水酸基価250mgKO
H/gのジブチルヒドロオキシメチルホスホネートから
なる有機リン化合物をあらかじめ、クル−ドMDIに対
して5%混合しプレポリマ−化したものである。このよ
うにして調合したプレミックス成分とイソシアネート成
分を所定の配合部数で高圧発泡機にて混合し、あらかじ
め銅パイプ5を配設した面材2と鉄板3の中に注入し、
断熱構造体1を得た。
Polyether A is an aromatic amine-based polyether polyol having a hydroxyl value of 460 mgKOH / g, and foam stabilizer A is a silicone surfactant F-3 manufactured by Shin-Etsu Chemical Co., Ltd.
35 and catalyst A are Kaolyzer No. 35 manufactured by Kao Corporation. 1,
The foaming agent A is cyclopentane, the foaming agent B is pure water, and each raw material is mixed in a predetermined mixing number to form a polyol component. Further, the isocyanate component A is based on an organic polyisocyanate composed of crude MDI having an amine equivalent of 135 and has a molecular weight of 224 and a hydroxyl value of 250 mgKO.
An organophosphorus compound consisting of H / g of dibutylhydroxymethylphosphonate was prepolymerized by mixing 5% with Clude MDI in advance. The premix component and the isocyanate component thus prepared are mixed with a high-pressure foaming machine in a predetermined mixing number and injected into the face material 2 and the iron plate 3 in which the copper pipes 5 are arranged in advance,
The heat insulating structure 1 was obtained.

【0015】得られた発泡断熱材4の燃焼度合をJIS
−A9514での燃焼性試験項の燃焼時間を特性値とし
て(表1)に併せて記した。
The degree of combustion of the obtained foamed heat insulating material 4 is determined by JIS.
-The burning time of the flammability test item in A9514 is also shown in Table 1 as a characteristic value.

【0016】さらに断熱構造体1を40℃95%RH条
件で3ヶ月運転した時の銅パイプの腐蝕度、および面材
2へのリン分の移行についても分析した結果を(表1)
に示した。
Further, the results of analysis of the corrosion degree of the copper pipe and the phosphorus content transferred to the face material 2 when the heat insulating structure 1 was operated at 40 ° C. and 95% RH for 3 months (Table 1).
It was shown to.

【0017】同時に比較例として、イソシアネ−トBに
クル−ドMDI単体を使用した場合(比較例A)、およ
び、イソシアネ−トCにクル−ドMDIに対してハロゲ
ン含有のトリス−(2−クロルエチル)ホスフェートを
5%添加した場合(比較例B)、さらには、発泡剤Cに
CFC11を使用した場合(比較例C)についても(表
1)に示した。
At the same time, as a comparative example, a case where a crude MDI alone is used for the isocyanate B (Comparative Example A) and a case where the isocyanate C is a halogen-containing tris- (2-) for the crude MDI are used. The results obtained when 5% of chloroethyl) phosphate was added (Comparative Example B) and also when CFC11 was used as the foaming agent C (Comparative Example C) are shown in Table 1.

【0018】このように、分子量が224で活性水素を
有する非ハロゲン含有の有機リン化合物であるジブチル
ヒドロオキシメチルホスホネートを、あらかじめクル−
ドMDIとプレポリマ−化した有機ポリイソシアネ−ト
を使用した場合においては、発泡剤に可燃性のハイドロ
カーボンであるシクロペンタンを使用しても発泡断熱材
4の樹脂部の燃焼性が抑制されるため、CFC11を使
用した場合の燃焼度合と同等並みとなった。この結果、
火災時の延焼拡大等が危険性がなくなり、オゾン破壊等
の地球環境問題の解決に寄与すると同時に製品を安全に
使用することができるのである。かつ、ジブチルヒドロ
オキシメチルホスホネートは、あらかじめ、有機ポリイ
ソシアネートと反応し、プレポリマ−化している結果、
リンがイオン化遊離して金属パイプを腐蝕させることは
なかった。特に多湿条件で外部から侵入した湿分が銅パ
イプ5上に凝縮して腐蝕しやすい状況となる場合でも問
題はなかった。つまり、あらかじめ有機ポリイソシアネ
−トとプレポリマ−化することでリンのイオン化を抑制
でき、製品の長期使用において信頼性を高めることがで
きることが判明した。
As described above, dibutylhydroxymethylphosphonate, which is a non-halogen-containing organic phosphorus compound having a molecular weight of 224 and active hydrogen, is preliminarily charged with
When de-MDI and prepolymerized organic polyisocyanate are used, the combustibility of the resin portion of the foamed heat insulating material 4 is suppressed even if cyclopentane, which is a combustible hydrocarbon, is used as the foaming agent. , CFC11 was used and the degree of combustion was almost the same. As a result,
The danger of spread of fire during a fire is eliminated, and it contributes to the solution of global environmental problems such as ozone destruction, and at the same time the product can be used safely. And, dibutyl hydroxymethyl phosphonate is previously reacted with the organic polyisocyanate, as a result of prepolymerization,
Phosphorus was not ionized and released to corrode the metal pipe. In particular, there was no problem even when moisture entering from the outside was condensed on the copper pipe 5 under a high humidity condition to easily corrode. That is, it was found that pre-polymerization with the organic polyisocyanate can suppress the ionization of phosphorus and can enhance the reliability in the long-term use of the product.

【0019】さらには、プラスチックスの面材2へのリ
ン移行も検出されず、長期に食品を保存した場合におい
ても汚染されることもなく製品安全に問題のない断熱構
造体を提供できることが判った。
Furthermore, it was found that phosphorus transfer to the face material 2 of the plastics was not detected, and even when the food was stored for a long period of time, it was not contaminated and a heat insulating structure having no problem in product safety can be provided. It was

【0020】一方、比較例としてクル−ドMDI単体を
使用した場合(比較例A)では、CFC11を使用した
場合の燃焼度合に比べ、燃焼速度が速くなるという現象
があり、適用困難である。またクル−ドMDIに対して
ハロゲン含有のトリス−(2−クロルエチル)ホスフェ
ートを添加した有機ポリイソシアネ−トを使用した場合
(比較例B)では、銅パイプ5の腐蝕が大きく、面材2
へのリン移行が検出される等の問題から同様に適用困難
である。
On the other hand, in the case of using the single MUD as a comparative example (Comparative Example A), there is a phenomenon that the combustion speed becomes higher than that in the case of using CFC11, which is difficult to apply. When an organic polyisocyanate obtained by adding tris- (2-chloroethyl) phosphate containing halogen to the crude MDI was used (Comparative Example B), the corrosion of the copper pipe 5 was large and the surface material 2
It is also difficult to apply due to problems such as detection of phosphorus transfer to

【0021】[0021]

【発明の効果】以上のように、本発明は、発泡剤として
ペンタン、シクロペンタン等のハイドロカーボンを含
み、あらかじめ、分子量400以下で活性水素を有する
非ハロゲン化有機リン化合物にてプレポリマ−化した有
機ポリイソシアネ−トと、ポリオ−ル、整泡剤、触媒を
混合発泡して得られる発泡断熱材を、少なくとも金属パ
イプを配設した空間に注入成形して断熱構造体を形成す
るため、発泡断熱材は、可燃性の気体を含むものの、あ
らかじめ有機ポリイソシアネ−トとプレポリマ−化され
た有機リン化合物の効果により少なくとも従来のCFC
11発泡と同等の燃焼速度となり、火災時の延焼拡大等
が危険性がなくなり、オゾン破壊等の地球環境問題の解
決に寄与すると同時に安全に使用することができるので
ある。
As described above, the present invention contains a hydrocarbon such as pentane or cyclopentane as a foaming agent and is prepolymerized with a non-halogenated organophosphorus compound having a molecular weight of 400 or less and active hydrogen. In order to form a heat insulating structure by injection molding a foam heat insulating material obtained by mixing and foaming an organic polyisocyanate, a polyol, a foam stabilizer and a catalyst into a space in which at least a metal pipe is arranged, a foam heat insulating material is formed. Although the material contains a combustible gas, at least the conventional CFC is obtained by the effect of the organic polyisocyanate and the prepolymerized organic phosphorus compound.
The burning rate is the same as that of No. 11 foaming, and there is no danger of spreading fire during a fire, contributing to the solution of global environmental problems such as ozone destruction, and at the same time, it can be used safely.

【0022】また、あらかじめ有機ポリイソシアネ−ト
とプレポリマ−化された有機リン化合物は、ハロゲンを
含まないため、断熱構造体を廃棄時に焼却処理しても酸
性雨の原因となるハロゲン化物質を大気中に放出させる
ことなく環境に対して問題のないことが期待できる。か
つ、活性水素を有する有機リン化合物を、あらかじめ、
有機ポリイソシアネ−トとプレポリマ−化したものを適
用するため、原料の有機ポリイソシアネートと反応して
より高分子化する結果、金属パイプを発泡断熱材の中に
配設する場合でもリンがイオン化遊離して金属パイプを
腐蝕させる可能性はなく製品の長期使用において信頼性
を高めることができる。また、プラスチックスの面材へ
の移行もなくなり長期に食品を保存した場合においても
汚染されることもなく製品安全に問題のない断熱構造体
を提供できるのである。
Further, since the organic polyisocyanate and the prepolymerized organophosphorus compound do not contain halogen, halogenated substances which cause acid rain even if the heat insulating structure is incinerated at the time of disposal are exposed to the atmosphere. It can be expected that there will be no problem for the environment without being released into the environment. And, in advance, the organic phosphorus compound having active hydrogen,
Since an organic polyisocyanate and a prepolymerized one are applied, they react with the organic polyisocyanate as a raw material and become more polymerized.As a result, phosphorus is ionized and released even when the metal pipe is placed in the foamed heat insulating material. Therefore, there is no possibility of corroding the metal pipe and the reliability can be improved in the long-term use of the product. Further, it is possible to provide a heat insulating structure which does not cause plastics to be transferred to a face material and is not contaminated even when food is stored for a long period of time and has no problem in product safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における断熱構造体を一部切
り欠いた斜視図
FIG. 1 is a perspective view in which a heat insulating structure according to an embodiment of the present invention is partially cut away.

【図2】本発明の一実施例における断熱構造体の断面図FIG. 2 is a sectional view of a heat insulating structure according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 断熱構造体 4 発泡断熱材 5 金属パイプ 1 Heat insulation structure 4 Foam insulation 5 Metal pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 //(C08G 18/10 101:00) C08L 75:04 (72)発明者 天良 智尚 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // (C08G 18/10 101: 00) C08L 75:04 (72) Inventor Tomonoh Ama Osaka Prefecture 3-22, Takaidahondori, Higashiosaka-shi Matsushita Cold Machinery Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 あらかじめ、分子量400以下で活性水
素を有する非ハロゲン化有機リン化合物にてプレポリマ
−化した有機ポリイソシアネ−トと、ポリオ−ル、整泡
剤、触媒、及び、少なくともペンタン、シクロペンタン
等のハイドロカ−ボンを一成分とする発泡剤とを混合
し、発泡して得られる発泡断熱材を、少なくとも金属パ
イプを配設した空間部に充填して成る断熱構造体。
1. An organic polyisocyanate prepolymerized with a non-halogenated organophosphorus compound having a molecular weight of 400 or less and having active hydrogen, and a polyol, a foam stabilizer, a catalyst, and at least pentane and cyclopentane. A heat insulating structure in which a foam insulating material obtained by mixing a foaming agent containing hydrocarbon as one component and foaming is filled in at least a space in which a metal pipe is arranged.
JP5234504A 1993-09-21 1993-09-21 Heat insulating structure Pending JPH0791818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5234504A JPH0791818A (en) 1993-09-21 1993-09-21 Heat insulating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5234504A JPH0791818A (en) 1993-09-21 1993-09-21 Heat insulating structure

Publications (1)

Publication Number Publication Date
JPH0791818A true JPH0791818A (en) 1995-04-07

Family

ID=16972069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5234504A Pending JPH0791818A (en) 1993-09-21 1993-09-21 Heat insulating structure

Country Status (1)

Country Link
JP (1) JPH0791818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116284652A (en) * 2023-03-10 2023-06-23 河北乾海管道制造有限公司 Steel sleeve steel polyurethane heat-insulating pipe and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116284652A (en) * 2023-03-10 2023-06-23 河北乾海管道制造有限公司 Steel sleeve steel polyurethane heat-insulating pipe and preparation method thereof
CN116284652B (en) * 2023-03-10 2023-08-08 河北乾海管道制造有限公司 Steel sleeve steel polyurethane heat-insulating pipe and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1090056B1 (en) Hydrocarbon blown rigid polyurethane foams having improved flammability performance
CN1177886C (en) Open-celled semi-rigid foams with exfoliation graphite
US4292353A (en) Urethane modified polyisocyanurate foam surfaced with aluminum foil or sheet
EP1973965B1 (en) Non-halogen flame retardant additives for use in rigid polyurethane foam
EP2947105A1 (en) Flame-retardant urethane resin composition
ES2714250T3 (en) Use of trialkyl phosphate as a smoke suppressor in polyurethane foam
HRP920980A2 (en) Process for producing polyurethane foam free of halogenated hydrocarbons
CN106977684A (en) High-flame-retardanthalogen-free halogen-free low-smoke low-toxicity sealing agent of single component polyurethane foam of oxygen index (OI) >=32 and preparation method thereof
US4640978A (en) Foam-sealed electrical devices and method and composition therefor
US4026829A (en) Flexible polyurethane foam
KR100257798B1 (en) Foamed thermal insulating material and insulated structure
JPH0791818A (en) Heat insulating structure
JP2783379B2 (en) Insulation structure
US8920714B2 (en) Corrosion inhibiting self-expanding foam
US6355700B1 (en) Foamed thermal insulating material and insulated structure
JPH11343681A (en) Thermal insulating material made of open-cell type polyurethane foam, and its manufacture
KR20190014522A (en) Flame retardant semi-rigid polyurethane foam
JPH0791819A (en) Heat insulating structure
CN1437631A (en) Flame retardant blend for intumescent flexibel polyurethane foam
JPH07301389A (en) Heat insulating structure
JPH0797471A (en) Thermally insulated structure
JP3192287B2 (en) Method of forming heat insulating layer made of rigid polyurethane foam
EP3464434B1 (en) Flame retardant semi-rigid polyurethane foam
CN107880251B (en) Preparation method of epoxy phenolic-based polyurethane foam
JPH1081727A (en) Production of flame-retardant imide-modified foam expanded with water