JP2783151B2 - CO gas laser device, electrode cooling structure thereof, and electrode cooling method - Google Patents

CO gas laser device, electrode cooling structure thereof, and electrode cooling method

Info

Publication number
JP2783151B2
JP2783151B2 JP2955994A JP2955994A JP2783151B2 JP 2783151 B2 JP2783151 B2 JP 2783151B2 JP 2955994 A JP2955994 A JP 2955994A JP 2955994 A JP2955994 A JP 2955994A JP 2783151 B2 JP2783151 B2 JP 2783151B2
Authority
JP
Japan
Prior art keywords
flow path
gas
electrode
pin electrode
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2955994A
Other languages
Japanese (ja)
Other versions
JPH07240550A (en
Inventor
康人 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2955994A priority Critical patent/JP2783151B2/en
Publication of JPH07240550A publication Critical patent/JPH07240550A/en
Application granted granted Critical
Publication of JP2783151B2 publication Critical patent/JP2783151B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、COガスレーザー装置
における電極の冷却に関し、特に3軸直交型の亜音速流
放電励起型COガスレーザー装置においてレーザーガス
を利用して行う電極の冷却構造および方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cooling of an electrode in a CO gas laser device, and more particularly to a cooling structure of an electrode using a laser gas in a triaxial orthogonal type subsonic flow discharge excitation type CO gas laser device. About the method.

【0002】[0002]

【従来の技術】3軸直交型の亜音速流放電励起型COガ
スレーザー装置は、レーザーガスの流線に対し直交する
方向から該流線を間に挾んで対向する棒状のピン電極及
び板状電極の間で放電を起こさせ、レーザーガスの流線
の方向及び前記放電の方向に共に直交する方向から該流
線を間に挾んで対面する反響鏡および出力鏡の間で反射
されるレーザー光を出力鏡から出射させる。
2. Description of the Related Art A three-axis orthogonal type subsonic flow discharge pumped CO gas laser apparatus comprises a rod-shaped pin electrode and a plate-shaped electrode which are opposed to each other with the stream line interposed therebetween in a direction orthogonal to the stream line of the laser gas. A laser beam reflected between the reverberating mirror and the output mirror facing each other with the streamline interposed between the direction of the streamline of the laser gas and the direction perpendicular to both the direction of the discharge and the direction of the streamline of the laser gas. From the output mirror.

【0003】図3はこの種の従来のCOガスレーザー装
置における電極冷却構造を示す図である。本図は、実開
昭59−45950に示されたれたものを分り易く簡略
化した図である。N2,O2及びCOの混合ガスであるレ
ーザーガスがレーザーガス管9でなるレーザーガス流路
10を高速で循環する。プラス端子13とマイナス端子
14の間に直流電圧を加えると、ピン電極2と板状電極
7との間に放電が起き、紙面に垂直な方向に対面してい
る反射鏡と出力鏡とを共振器としてレーザー発振が起
き、その出力鏡からレーザー光が出射される。このCO
ガスレーザー装置は2kWの連続発振も可能であり、金
属を精密に加工するレーザー加工機などに使われる。
FIG. 3 is a diagram showing an electrode cooling structure in a conventional CO gas laser apparatus of this kind. This figure is a simplified view of the one shown in Japanese Utility Model Laid-Open No. 45950/1984. A laser gas, which is a mixed gas of N 2 , O 2, and CO, circulates at high speed through a laser gas flow path 10 composed of a laser gas pipe 9. When a DC voltage is applied between the plus terminal 13 and the minus terminal 14, a discharge occurs between the pin electrode 2 and the plate-like electrode 7, causing the reflection mirror and the output mirror facing in the direction perpendicular to the paper to resonate. As a result, laser oscillation occurs, and laser light is emitted from the output mirror. This CO
The gas laser device is capable of continuous oscillation of 2 kW, and is used for a laser processing machine for precisely processing metal.

【0004】一般に、COガスレーザー装置のレーザー
光の出力はピン電極2の温度に依存し、放電により温度
が上昇するに従って出力は低下する。冷却用水路8は、
ピン電極2を筺体から絶縁する絶縁体3内にピン電極2
の長手軸に垂直な方向に開けられた円筒形の穴で、互い
に平行な2本でなっている。ピン電極2は、水路8を流
される冷却水により冷却される。なお、図2ではピン電
極2は1箇しか現れていないが、ピン電極2は紙面に垂
直な方向に一定の間隔を置いて複数個配列されており、
それら複数のピン電極2は水路8を流れる冷却水により
冷却される。
In general, the output of the laser beam of the CO gas laser device depends on the temperature of the pin electrode 2, and the output decreases as the temperature increases due to the discharge. The cooling water channel 8 is
The pin electrode 2 is placed in an insulator 3 that insulates the pin electrode 2 from the housing.
Is a cylindrical hole formed in a direction perpendicular to the longitudinal axis of the cylinder, and is composed of two parallel holes. The pin electrode 2 is cooled by cooling water flowing through the water channel 8. In FIG. 2, only one pin electrode 2 appears, but a plurality of pin electrodes 2 are arranged at regular intervals in a direction perpendicular to the paper surface.
The plurality of pin electrodes 2 are cooled by cooling water flowing through the water channel 8.

【0005】[0005]

【発明が解決しようとする課題】図3に示した従来の電
極冷却構造では、冷却水をピン電極2の近傍に流すこと
により、ピン電極2を冷却している。この冷却構造では
最も効率よく冷却したとしても冷却水の温度までしか冷
却できない。冷却水の温度は大気圧では最も低くても0
℃であるから、従来の電極冷却構造ではピン電極を0℃
以下には冷却できない。
In the conventional electrode cooling structure shown in FIG. 3, the pin electrode 2 is cooled by flowing cooling water near the pin electrode 2. With this cooling structure, even if it is cooled most efficiently, it can only be cooled to the temperature of the cooling water. The temperature of the cooling water is at least 0 at atmospheric pressure.
℃, the conventional electrode cooling structure, 0 ℃ pin electrode
It cannot be cooled below.

【0006】レーザーガスの温度は液体チッソの温度で
ある100K(絶対温度)程度である。そこで、ピン電
極2の先端をレーザーガス流路10内に突出させて、高
速に流れる約100Kの極低温ガスに晒せば、ピン電極
2の温度を100K近くの極低温にまで冷却できる。し
かし、100K程度に冷却してしまうと、ピン電極2の
温度が低く過ぎて放電が不安定になり、安定したレーザ
ー光を得られなくなる。
The temperature of the laser gas is about 100 K (absolute temperature) which is the temperature of liquid nitrogen. Therefore, by projecting the tip of the pin electrode 2 into the laser gas flow path 10 and exposing the pin electrode 2 to a very low-temperature gas of about 100 K flowing at high speed, the temperature of the pin electrode 2 can be cooled to a very low temperature of about 100 K. However, if the temperature is cooled down to about 100 K, the temperature of the pin electrode 2 becomes too low and the discharge becomes unstable, so that a stable laser beam cannot be obtained.

【0007】上述の如く、従来のCOレーザー装置にお
ける電極構造および方法では、ピン電極2の温度を0℃
以下で100K以上の範囲に設定できなかった。レーザ
ー出力が高く、しかも放電が安定に起こるピン電極の温
度は0℃以下で100K以上であることが実験上明らか
である。しかし、その温度範囲にピン電極の温度を設定
できる簡便な電極冷却構造および方法の提供に関し解決
すべき課題があった。
As described above, in the conventional electrode structure and method of the CO laser device, the temperature of the pin electrode 2 is set to 0 ° C.
Below, it was not possible to set it in the range of 100K or more. It is experimentally clear that the temperature of the pin electrode at which the laser output is high and the discharge occurs stably is 0 ° C. or less and 100 K or more. However, there is a problem to be solved in providing a simple electrode cooling structure and a method capable of setting the temperature of the pin electrode within the temperature range.

【0008】[0008]

【課題を解決するための手段】本願発明は、上記課題を
解決するために以下の手段を提供する。
The present invention provides the following means for solving the above-mentioned problems.

【0009】レーザーガスの流線に対し直交する方向
から該流線を間に挟んで対向する棒状のピン電極及び板
状電極の間で放電を起こさせ、前記線流の方向および前
記放電の方向に共に直交する方向から該流線を間に挟ん
で対面する反射鏡および出力鏡の間で反射されるレーザ
ー光を前記出力鏡から出射するCOガスレーザー装置に
おいて、前記レーザーガスの循環の流路のうちて゛前記
放電が起こる領域より該レーザーガス流の川上に分岐路
を設け、前記放電領域に至る主流路と該主流路より狭い
副流路とに前記レーザーガスの循環流路を分け、前記放
電領域より川下で前記主流路及び副流路を合流させ、前
記ピン電極の側面を覆う絶縁体の一部分の厚さを薄く
し、薄くした該絶縁体の表面を前記副流路の壁面の一部
としたことを特徴とするCOガスレーザー装置。
A discharge is generated between a rod-shaped pin electrode and a plate-like electrode opposed to each other with the stream line interposed therebetween in a direction perpendicular to the stream line of the laser gas, and the direction of the line flow and the direction of the discharge are generated. In a CO gas laser device for emitting laser light reflected from the output mirror between a reflecting mirror and an output mirror facing each other with the streamline interposed therebetween in a direction orthogonal to both sides of the streamline, the laser gas circulation path A branch is provided on the upstream side of the laser gas flow from the region where the discharge occurs, and the laser gas circulation flow path is divided into a main flow path reaching the discharge area and a sub flow path narrower than the main flow path, The main flow path and the sub flow path are merged downstream from the discharge region, the thickness of a part of the insulator covering the side surface of the pin electrode is reduced, and the thinned surface of the insulator is connected to the wall surface of the sub flow path. Feature CO gas laser device.

【0010】前記副流路内であって前記ピン電極より
川上側の位置にヒータを配置したことを特徴とする上記
に記載のCOガスレーザー装置。
[0010] The CO gas laser device according to the above, wherein a heater is disposed in the sub-flow passage at a position upstream of the pin electrode.

【0011】前記ピン電極の温度を検出する手段と、
前記温度に応じて前記ヒータの発熱量を制御し、前記ピ
ン電極の温度の変動を一定の範囲に抑制する発熱量制御
手段とを備える上記に記載のCOガスレーザー装置。
Means for detecting the temperature of the pin electrode;
The CO gas laser device according to the above, further comprising: a calorific value control unit that controls a calorific value of the heater in accordance with the temperature and suppresses a variation in the temperature of the pin electrode within a certain range.

【0012】レーザーガスの流線に対し直交する方向
から該流線を間に挟んで対向する棒状のピン電極及び板
状電極の間で放電を起こさせ、前記線流の方向および前
記放電の方向に共に直交する方向から該流線を間に挟ん
で対面する反射鏡および出力鏡の間で反射されるレーザ
ー光を前記出力鏡から出射するCOガスレーザー装置に
おける前記ピン電極を冷却する構造において、循環する
レーザーガスを主流路および副流路に分け、主流路にお
いて前記放電を起こさせ、副流路を前記ピン電極の近傍
に設け、該副流路と該ピン電極との間を薄い絶縁体で隔
て、この絶縁体の厚さは、前記ピン電極が前記副流路の
レーザーガスにより冷却される程度であることを特徴と
するCOガスレーザー装置における電極冷却構造。
A discharge is generated between a rod-shaped pin electrode and a plate-like electrode opposed to each other with the streamline interposed therebetween in a direction perpendicular to the streamline of the laser gas, and the direction of the linear flow and the direction of the discharge In a structure for cooling the pin electrode in a CO gas laser device that emits laser light reflected between the reflecting mirror and the output mirror facing each other with the streamline interposed therebetween from a direction orthogonal to both, from the output mirror, Dividing the circulating laser gas into a main flow path and a sub flow path, causing the discharge in the main flow path, providing a sub flow path near the pin electrode, and providing a thin insulator between the sub flow path and the pin electrode. The electrode cooling structure of the CO gas laser device, wherein the thickness of the insulator is such that the pin electrode is cooled by the laser gas in the sub-flow path.

【0013】レーザーガスの流線に対し直交する方向
から該流線を間に挟んで対向する棒状のピン電極及び板
状電極の間で放電を起こさせ、前記線流の方向および前
記放電の方向に共に直交する方向から該流線を間に挟ん
で対面する反射鏡および出力鏡の間で反射されるレーザ
ー光を前記出力鏡から出射するCOガスレーザー装置に
おける前記ピン電極を冷却する方法において、前記放電
が起こる領域を含む主流路の他に、該主流路をバイパス
する副流路を設け、該主流路及び副流路にレーザーガス
を流し、該副流路は前記放電領域より川上で前記主流路
から分岐し該放電領域より川下で、該主流路に合流する
ようにし、前記副流路を流れる前記レーザーガスで、前
記ピン電極の絶縁被覆を介して、該ピン電極を冷却する
COガスレーザー装置における電極冷却方法。
A discharge is generated between a rod-shaped pin electrode and a plate-like electrode opposed to each other with the stream line interposed therebetween in a direction perpendicular to the stream line of the laser gas, and the direction of the line flow and the direction of the discharge are generated. A method of cooling the pin electrode in a CO gas laser device that emits laser light reflected between a reflecting mirror and an output mirror facing each other with the streamline interposed therebetween in a direction orthogonal to both, from the output mirror, In addition to the main flow path including the area where the discharge occurs, a sub-flow path that bypasses the main flow path is provided, and a laser gas flows through the main flow path and the sub-flow path. CO gas that branches off from the main flow path and joins the main flow path downstream of the discharge region, and cools the pin electrode with the laser gas flowing through the sub flow path through the insulating coating of the pin electrode. Laser equipment Electrode cooling method in.

【0014】[0014]

【作用】本願発明では、循環するレーザーガスの流路を
主流路と副流路とに分岐し、レーザー励起のための放電
は主流路で起こさせ、副流路をピン電極の近傍に通し、
ピン電極と副流路とを薄い絶縁体で隔て、副流路を流れ
る極低温のレーザーガスでピン電極が冷却される程度
に、絶縁体の厚さを設定する。このような構成の作用に
より、ピン電極の温度を0℃以下100K以上の範囲に
設定できる。
In the present invention, the circulating laser gas flow path is branched into a main flow path and a sub flow path, discharge for laser excitation is caused in the main flow path, and the sub flow path is passed near the pin electrode.
The thickness of the insulator is set so that the pin electrode and the sub flow path are separated by a thin insulator, and the pin electrode is cooled by a cryogenic laser gas flowing through the sub flow path. By the operation of such a configuration, the temperature of the pin electrode can be set in a range of 0 ° C. or less and 100 K or more.

【0015】副流路において、ピン電極より川上にヒー
タを設けることにより、ピン電極の近傍を流れるレーザ
ーガスの温度を主流路のレーザーガス温度より高い温度
に上昇させ、ピン電極の温度を好ましい値に設定して、
安定した大出力のレーザー光を得ることができる。
By providing a heater upstream of the pin electrode in the sub flow path, the temperature of the laser gas flowing near the pin electrode is raised to a temperature higher than the laser gas temperature in the main flow path, and the temperature of the pin electrode is set to a preferable value. Set to
A stable large output laser beam can be obtained.

【0016】ピン電極の温度を検出して、該温度に応じ
てヒータの発熱量を制御し、ピン電極の温度を一定の範
囲に抑制することにより、レーザー光出力の大きさ及び
放電の安定化の観点からピン電極の温度を常に最適に制
御できる。
By detecting the temperature of the pin electrode, controlling the amount of heat generated by the heater in accordance with the detected temperature, and suppressing the temperature of the pin electrode within a certain range, the magnitude of the laser beam output and the stabilization of discharge can be improved. Thus, the temperature of the pin electrode can always be controlled optimally.

【0017】[0017]

【実施例】次に実施例を挙げ本発明を一層詳しく説明す
る。
The present invention will be described in more detail with reference to the following examples.

【0018】図1は本発明の一実施例であるCOガスレ
ーザー装置の断面図、図2は図1のa−a’矢視断面図
である。
FIG. 1 is a sectional view of a CO gas laser apparatus according to one embodiment of the present invention, and FIG. 2 is a sectional view taken along the line aa 'in FIG.

【0019】図1のCOガスレーザー装置は、N2,O2
びCOの混合ガスでなるレーザーガスの流路10を形成
しているレーザーガス管9と、レーザーガス流路10を
主流路20と副流路21とに分岐するとともにピン電極
2を被覆し保持するために設けてある絶縁体3と、主流
路20におけるレーザーガス流Bの流線を整一にする整
流板5と、反射鏡11と、出力鏡12と、ピン電極2
と、板状電極7と、プラス端子13と、マイナス端子1
4と、ヒーター4とを備えてなる。
The CO gas laser apparatus shown in FIG. 1 has a laser gas pipe 9 forming a laser gas flow path 10 made of a mixed gas of N 2 , O 2 and CO, and a laser gas flow path 10 connected to a main flow path 20. A rectifying plate 5 for branching the laser gas flow B in the main flow path 20 and a rectifying plate 5 for diverging the laser gas flow B into the main flow path 20; Mirror 11, output mirror 12, pin electrode 2
, Plate-like electrode 7, plus terminal 13, minus terminal 1
4 and a heater 4.

【0020】図1は、ピン電極2の軸を通り、レーザー
ガス管9の軸を通る平面を断面とする図である。但し、
ピン電極2は、円柱形であるので、断面ではなく正面図
で描いてある。また、図1及び図2において、レーザー
ガス管9については厚みは描いてなく、単にレーザーガ
ス管9の内壁面だけが描いてある。図1及び図2に印さ
れている符号E1〜E4は、レーザーガス管9の内壁に
おいて角として現れる部分を下している。図1では、レ
ーザーガス管9の上側の管壁が、E1〜E4で示される
4箇所において緩い角度で折れ曲がっていることが分
る。ピン電極2は5箇あり、各ピン電極2は絶縁体3へ
埋められている。ピン電極2の上部においては絶縁体3
は4角柱をなし、この絶縁体3でなる各4角柱は互いに
間隔をおいて配置されており、各4角柱の間隔は副流路
21の一部をなし、その間隙にはレーザーガス流Bが流
れる。
FIG. 1 is a sectional view taken along a plane passing through the axis of the pin electrode 2 and passing through the axis of the laser gas tube 9. However,
Since the pin electrode 2 has a columnar shape, it is drawn not in a cross section but in a front view. 1 and 2, the thickness of the laser gas pipe 9 is not drawn, but only the inner wall surface of the laser gas pipe 9 is drawn. 1 and 2 denote portions which appear as corners on the inner wall of the laser gas tube 9. In FIG. 1, it can be seen that the upper tube wall of the laser gas tube 9 is bent at a gentle angle at four points indicated by E1 to E4. There are five pin electrodes 2, and each pin electrode 2 is embedded in an insulator 3. An insulator 3 is provided above the pin electrode 2.
Form a quadrangular prism, and the quadrangular prisms made of the insulator 3 are arranged at an interval from each other, the interval between the quadrangular prisms forms a part of the sub-flow path 21, and the laser gas flow B Flows.

【0021】この実施例では、上述の如く、レーザーガ
ス流路10は主流路20と副流路21と有している。循
環するレーザーガス流は、放電エリア1(前述の放電領
域に相当)の川上でA及びBに分流し、川下で再び合流
する。
In this embodiment, as described above, the laser gas flow path 10 has the main flow path 20 and the sub flow path 21. The circulating laser gas flow splits into A and B upstream of the discharge area 1 (corresponding to the above-described discharge area) and merges again downstream.

【0022】端子13及び14を介してピン電極2と板
状電極7との間に直流電圧を印可する。このように直流
電圧を印可すると、図1の実施例の3軸直交型の亜音速
流放電励起型COガスレーザー装置は、主流路20にお
けるレーザーガスの流線に対し直交する方向から該流線
を間に挾んで対向する棒状のピン電極2及び板状電極7
の間で放電を起こし、レーザーガスの流線の方向及び前
記放電の方向に共に直交する方向から該流線を間に挾ん
で対面する反射鏡11および出力鏡12の間で反射され
励振されたレーザー光6を出力鏡12から出謝させる。
A DC voltage is applied between the pin electrode 2 and the plate electrode 7 via the terminals 13 and 14. When a DC voltage is applied in this manner, the three-axis orthogonal subsonic flow discharge excitation type CO gas laser apparatus of the embodiment of FIG. Rod-shaped pin electrode 2 and plate-shaped electrode 7
Between the reflecting mirror 11 and the output mirror 12 which face each other with the stream line interposed therebetween in a direction perpendicular to both the direction of the stream line of the laser gas and the direction of the discharge. The laser light 6 is emitted from the output mirror 12.

【0023】この実施例では、ピン電極2を覆う絶縁体
3がピン電極2の上部において4角柱をなし、この4角
柱の部分ではピン電極2を覆う絶縁体3は薄くなってお
り、ピン電極2の熱は伝導により絶縁体3を経て副流路
のレーザーガス流Bに奪われ、ピン電極2は冷却され
る。レーザーガスの温度は、液体窒素N2の温度に近い
100K程度と極く低温であり、ピン電極2が100K
程度にまで冷却されたのでは放電が不安定となり、実用
に供し得いので、本実施例では電熱ヒーター4で副流路
21のレーザーガス流Bを加熱している。
In this embodiment, the insulator 3 covering the pin electrode 2 forms a quadrangular prism above the pin electrode 2, and the insulator 3 covering the pin electrode 2 is thin at the portion of the quadrangular prism. The heat of 2 is taken by the laser gas flow B in the sub-flow path via the insulator 3 by conduction, and the pin electrode 2 is cooled. The temperature of the laser gas is extremely low, about 100K, which is close to the temperature of liquid nitrogen N2.
Since the discharge becomes unstable if it is cooled down to the extent that the laser gas flow B in the sub flow path 21 is heated by the electric heater 4 in the present embodiment, the electric heater 4 is not practical.

【0024】レーザーガス流Bの温度を調節することに
より、ピン電極2の温度を任意に設定でき、レーザー光
6の出力および放電の起り易さの観点から最適な温度に
ピン電極2の温度を制御できる。
By adjusting the temperature of the laser gas flow B, the temperature of the pin electrode 2 can be arbitrarily set, and the temperature of the pin electrode 2 is adjusted to an optimum temperature from the viewpoint of the output of the laser beam 6 and the ease of occurrence of discharge. Can control.

【0025】ピン電極2の近傍の絶縁体3の中に温度検
知素子を埋め込んでピン電極2の温度を検出し、この検
出温度に応じてヒーター4に流す電流を制御し、ひいて
はヒーター4の発熱量を制御し、ピン電極2の温度変動
を一定の範囲に折制するようにすれば、安定した出力レ
ーザー光6を常に得ることができる。
A temperature detecting element is buried in the insulator 3 near the pin electrode 2 to detect the temperature of the pin electrode 2, and the current flowing through the heater 4 is controlled in accordance with the detected temperature, so that the heater 4 generates heat. By controlling the amount and controlling the temperature fluctuation of the pin electrode 2 within a certain range, a stable output laser beam 6 can always be obtained.

【0026】[0026]

【発明の効果】以上に実施例を挙げて詳しく説明したよ
うに、本願発明によれば、0℃以下で100K以上の範
囲の任意の値にピン電極の温度を制御でき、ひいては放
電を安定させ、長時間にわたって安定したパワーのレー
ザー光を出力できるCOガスレーザー装置およびその電
極冷却構造並びに電極冷却方法が提供できる。
As described above in detail with reference to the embodiments, according to the present invention, the temperature of the pin electrode can be controlled to an arbitrary value within a range of 100 K or more at a temperature of 0 ° C. or lower, thereby stabilizing discharge. The present invention can provide a CO gas laser device capable of outputting laser light having a stable power for a long time, an electrode cooling structure thereof, and an electrode cooling method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す縦断面図。FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.

【図2】図1の実施例におけるa−a’線矢視断面図。FIG. 2 is a sectional view taken along line a-a 'in the embodiment of FIG.

【図3】従来のCOガスレーザー装置における電極冷却
構造を示す断面図。
FIG. 3 is a cross-sectional view showing an electrode cooling structure in a conventional CO gas laser device.

【符号の説明】[Explanation of symbols]

1 放電エリア 2 ピン電極 3 電極を支持する絶縁体 4 ヒーター 5 整流板 6 レーザー光 7 板状電極 8 冷却用水路 9 レーザーガス管 10 レーザーガス流路 11 反射鏡 12 出力鏡 13 プラス電極 14 マイナス電極 20 主流路 21 副流路 DESCRIPTION OF SYMBOLS 1 Discharge area 2 Pin electrode 3 Insulator which supports electrode 4 Heater 5 Rectifier plate 6 Laser beam 7 Plate electrode 8 Cooling channel 9 Laser gas pipe 10 Laser gas channel 11 Reflecting mirror 12 Output mirror 13 Positive electrode 14 Minus electrode 20 Main flow path 21 Sub flow path

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レーザーガスの流線に対し直交する方向
から該流線を間に挟んで対向する棒状のピン電極及び板
状電極の間で放電を起こさせ、前記線流の方向および前
記放電の方向に共に直交する方向から該流線を間に挟ん
で対面する反射鏡および出力鏡の間で反射されるレーザ
ー光を前記出力鏡から出射するCOガスレーザー装置に
おいて、 前記レーザーガスの循環の流路のうちて゛前記放電が起
こる領域より該レーザーガス流の川上に分岐路を設け、
前記放電領域に至る主流路と該主流路より狭い副流路と
に前記レーザーガスの循環流路を分け、前記放電領域よ
り川下で前記主流路及び副流路を合流させ、前記ピン電
極の側面を覆う絶縁体の一部分の厚さを薄くし、薄くし
た該絶縁体の表面を前記副流路の壁面の一部としたこと
を特徴とするCOガスレーザー装置。
1. A discharge is caused between a rod-shaped pin electrode and a plate-like electrode facing each other with a streamline interposed therebetween in a direction orthogonal to a streamline of a laser gas, and the direction of the line current and the discharge In a CO gas laser device that emits laser light reflected from the output mirror and between the reflecting mirror and the output mirror facing each other with the streamline interposed therebetween in a direction orthogonal to the direction of the laser gas, Providing a branch on the upstream side of the laser gas flow from an area where the discharge occurs,
Dividing the circulation path of the laser gas into a main flow path leading to the discharge area and a sub flow path narrower than the main flow path, merging the main flow path and the sub flow path downstream from the discharge area, and forming a side surface of the pin electrode. A CO gas laser device, wherein the thickness of a part of the insulator covering the thin film is reduced, and the surface of the thinned insulator is part of the wall surface of the sub-flow path.
【請求項2】 前記副流路内であって前記ピン電極より
川上側の位置にヒータを配置したことを特徴とする請求
項1に記載のCOガスレーザー装置。
2. The CO gas laser device according to claim 1, wherein a heater is arranged in the sub-flow passage at a position upstream of the pin electrode.
【請求項3】 前記ピン電極の温度を検出する手段と、
前記温度に応じて前記ヒータの発熱量を制御し、前記ピ
ン電極の温度の変動を一定の範囲に抑制する発熱量制御
手段とを備える請求項2に記載のCOガスレーザー装
置。
3. A means for detecting a temperature of the pin electrode;
The CO gas laser device according to claim 2, further comprising: a heat generation amount control unit that controls a heat generation amount of the heater according to the temperature and suppresses a fluctuation in the temperature of the pin electrode within a certain range.
【請求項4】 レーザーガスの流線に対し直交する方向
から該流線を間に挟んで対向する棒状のピン電極及び板
状電極の間で放電を起こさせ、前記線流の方向および前
記放電の方向に共に直交する方向から該流線を間に挟ん
で対面する反射鏡および出力鏡の間で反射されるレーザ
ー光を前記出力鏡から出射するCOガスレーザー装置に
おける前記ピン電極を冷却する構造において、 循環するレーザーガスを主流路および副流路に分け、主
流路において前記放電を起こさせ、副流路を前記ピン電
極の近傍に設け、該副流路と該ピン電極との間を薄い絶
縁体で隔て、この絶縁体の厚さは、前記ピン電極が前記
副流路のレーザーガスにより冷却される程度であること
を特徴とするCOガスレーザー装置における電極冷却構
造。
4. A discharge is generated between a rod-shaped pin electrode and a plate-like electrode facing each other with the streamline interposed therebetween in a direction perpendicular to the streamline of the laser gas, and the direction of the line current and the discharge A structure for cooling the pin electrode in a CO gas laser device that emits, from the output mirror, laser light reflected between a reflecting mirror and an output mirror facing each other with the streamline interposed therebetween in a direction orthogonal to the direction of In the method, the circulating laser gas is divided into a main flow path and a sub flow path, the discharge is caused in the main flow path, a sub flow path is provided near the pin electrode, and the space between the sub flow path and the pin electrode is thin. The electrode cooling structure in a CO gas laser device, wherein the thickness of the insulator is such that the pin electrode is cooled by the laser gas in the sub-flow path.
【請求項5】 レーザーガスの流線に対し直交する方向
から該流線を間に挟んで対向する棒状のピン電極及び板
状電極の間で放電を起こさせ、前記線流の方向および前
記放電の方向に共に直交する方向から該流線を間に挟ん
で対面する反射鏡および出力鏡の間で反射されるレーザ
ー光を前記出力鏡から出射するCOガスレーザー装置に
おける前記ピン電極を冷却する方法において、 前記放電が起こる領域を含む主流路の他に、該主流路を
バイパスする副流路を設け、該主流路及び副流路にレー
ザーガスを流し、該副流路は前記放電領域より川上で前
記主流路から分岐し該放電領域より川下で、該主流路に
合流するようにし、前記副流路を流れる前記レーザーガ
スで、前記ピン電極の絶縁被覆を介して、該ピン電極を
冷却するCOガスレーザー装置における電極冷却方法。
5. A discharge is generated between a rod-shaped pin electrode and a plate-like electrode facing each other with the streamline interposed therebetween in a direction perpendicular to the streamline of the laser gas, and the direction of the line current and the discharge A method of cooling the pin electrode in a CO gas laser device that emits, from the output mirror, laser light reflected between a reflecting mirror and an output mirror facing each other with the streamline interposed therebetween in a direction orthogonal to both directions In addition to the main flow path including the region where the discharge occurs, a sub flow path that bypasses the main flow path is provided, a laser gas flows through the main flow path and the sub flow path, and the sub flow path is upstream from the discharge area. At the downstream of the discharge region, the main electrode is branched from the main flow path, so as to join the main flow path, and the laser gas flowing through the sub flow path is cooled through the insulating coating of the pin electrode, thereby cooling the pin electrode. CO gas laser Electrode cooling method in location.
JP2955994A 1994-02-28 1994-02-28 CO gas laser device, electrode cooling structure thereof, and electrode cooling method Expired - Lifetime JP2783151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2955994A JP2783151B2 (en) 1994-02-28 1994-02-28 CO gas laser device, electrode cooling structure thereof, and electrode cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2955994A JP2783151B2 (en) 1994-02-28 1994-02-28 CO gas laser device, electrode cooling structure thereof, and electrode cooling method

Publications (2)

Publication Number Publication Date
JPH07240550A JPH07240550A (en) 1995-09-12
JP2783151B2 true JP2783151B2 (en) 1998-08-06

Family

ID=12279503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2955994A Expired - Lifetime JP2783151B2 (en) 1994-02-28 1994-02-28 CO gas laser device, electrode cooling structure thereof, and electrode cooling method

Country Status (1)

Country Link
JP (1) JP2783151B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2266919A1 (en) * 1999-03-23 2000-09-23 Vladimir Atejev Procedure and device for causing a high-frequency electrical discharge in a gas laser

Also Published As

Publication number Publication date
JPH07240550A (en) 1995-09-12

Similar Documents

Publication Publication Date Title
US3772610A (en) Arcless electrode construction for gas transport laser
JP2783151B2 (en) CO gas laser device, electrode cooling structure thereof, and electrode cooling method
JP2862032B2 (en) Laser oscillation device
WO1997012430A1 (en) Supersonic and subsonic laser with rf discharge excitation
US4077018A (en) High power gas transport laser
US4058778A (en) High power gas transport laser
US3521193A (en) Magnetic field beam scanner for gas lasers
US3747015A (en) Magnetic stabilized cross field flowing gas laser
JP2000307181A (en) Solid-state laser system and laser beam machining device
JPS6239555B2 (en)
JP2735339B2 (en) Gas laser oscillation device
JP3259161B2 (en) Gas laser oscillation device
JPH02277278A (en) Gas flow straightening device for orthogonal carbon dioxide gas laser
JPS5850788A (en) Lateral mode excitation type gas laser device
JP2001281581A (en) Laser oscillation device
JPH0225267B2 (en)
JPS6295884A (en) Gas laser oscillator
JPS62249494A (en) Gas laser device
JPH0744034Y2 (en) High frequency excitation gas laser device
Montes et al. Electron Bernstein wave current drive in the start-up phase of a tokamak discharge
JPH0639469Y2 (en) Gas laser device
JPS6245188A (en) Laser oscillator
JPH038381A (en) Gas laser device
JPS5846688A (en) Gas laser oscillator
JPS622578A (en) Auxiliary discharge type gas laser device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980421