JP2781787B2 - Bonding pad arrangement of semiconductor chip and optimization method thereof - Google Patents
Bonding pad arrangement of semiconductor chip and optimization method thereofInfo
- Publication number
- JP2781787B2 JP2781787B2 JP8228929A JP22892996A JP2781787B2 JP 2781787 B2 JP2781787 B2 JP 2781787B2 JP 8228929 A JP8228929 A JP 8228929A JP 22892996 A JP22892996 A JP 22892996A JP 2781787 B2 JP2781787 B2 JP 2781787B2
- Authority
- JP
- Japan
- Prior art keywords
- pad
- row
- pads
- center
- center point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/023—Redistribution layers [RDL] for bonding areas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/0605—Shape
- H01L2224/06051—Bonding areas having different shapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/061—Disposition
- H01L2224/0612—Layout
- H01L2224/0613—Square or rectangular array
- H01L2224/06133—Square or rectangular array with a staggered arrangement, e.g. depopulated array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/061—Disposition
- H01L2224/0612—Layout
- H01L2224/0615—Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
- H01L2224/06153—Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry with a staggered arrangement, e.g. depopulated array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/494—Connecting portions
- H01L2224/4943—Connecting portions the connecting portions being staggered
- H01L2224/49431—Connecting portions the connecting portions being staggered on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Wire Bonding (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体チップのボン
ディングパッド配置構造及びその最適化方法に関する。The present invention relates to a bonding pad arrangement structure of a semiconductor chip and a method of optimizing the same.
【0002】[0002]
【従来の技術】図8を参照して、特開平4−36405
1号公報の記載例について説明する。パッド配置領域6
2に2列にパッド63を千鳥状に配置し、第1列と第2
列のパッド63が互いに隣接する部分を任意の角度で傾
斜状に切除する。その結果、第1列と第2列パッド辺間
隔が拡大する為、設計基準で定義される最小パッド辺間
隔52まで、第1列、第2列の間隔を縮小することが出
来る。第2列と第1列の隣接するパッドの角の切除角度
83bの決定方法については、記述されていないが、特
開平4−364051号公報の記載例では、パッドの角
の切除角度83bα=135(度)、パッドの一辺が9
6(μm)、適用するx方向のパッド中心間隔57Px
=150(μm)、最小パッド辺間隔dpp=20(μ
m)とした場合、従来の第2列−第1列の間の適用する
y方向のパッドの中心間隔58b距離を116(μm)
から約90(μm)と、20(μm)も小さくすること
が出来ると、記述されている。2. Description of the Related Art Referring to FIG.
A description example of Japanese Patent Publication No. 1 will be described. Pad arrangement area 6
The pads 63 are arranged in two rows in a staggered manner, and the first row and the second row are arranged in two rows.
The row of pads 63 cuts the portions adjacent to each other in an inclined manner at an arbitrary angle. As a result, since the first-row and second-row pad side intervals are enlarged, the first-row and second-row intervals can be reduced to the minimum pad side interval 52 defined by the design standard. Although the method of determining the cut angle 83b of the corner of the pad adjacent to the second row and the first row is not described, in the example described in JP-A-4-36401, the cut angle of the corner of the pad is 83bα = 135. (Degree), one side of pad is 9
6 (μm), applied pad center interval 57Px in the x direction
= 150 (μm), minimum pad side interval dpp = 20 (μm)
m), the distance 58b between the centers of the pads in the y direction to be applied between the conventional second row and the first row is 116 (μm).
It can be reduced to about 90 (μm) and as small as 20 (μm).
【0003】特公平3−42496号公報の記載例につ
いて説明する。特公平3−42496号公報の記載例に
よれば、パッド形状は、五角形以上の多角形を用いて
も、パッド列数については、3列以上のパッド配置にも
適用出来ることが記述されている。これら従来技術を用
いて、千鳥状パッド配置を求める。図8に示すように、
2列の千鳥状パッド配置を行い、パッド配置領域幅方向
(以下、x方向と記す)のパッド領域幅62に配置出来
ていたが、図9に示す様に、x方向のパッド領域幅62
が小さくなった場合、x方向のパッド領域幅62に収ま
らなくなる。そこで図10に示す様に、奇数例、偶数列
のx方向のパッド中心座標をそれぞれ合わせ、3列にす
れば入出力バッファ列幅内に納めることが出来る。この
パッド配置構成について、図5,図6,図7を参照して
説明する。図5の1の第1の工程は、半導体チップのパ
ッド設計基準よりパッド配置に関する制限値と、半導体
チップの製品条件よりデバイスに関する設定値を格納す
る。A description will be given of an example described in Japanese Patent Publication No. 3-42496. According to the description example of Japanese Patent Publication No. 3-42496, it is described that the pad shape can be applied to a pad arrangement of three or more rows even if a pentagonal or more polygonal pad is used. . Using these conventional techniques, a staggered pad arrangement is determined. As shown in FIG.
Two rows of staggered pads are arranged to be arranged in the pad area width 62 in the pad arrangement area width direction (hereinafter, referred to as the x direction). However, as shown in FIG.
Is smaller than the pad area width 62 in the x direction. Therefore, as shown in FIG. 10, if the center coordinates of the pad in the x direction of the odd-numbered example and the even-numbered row are respectively combined to form three rows, the pad can be accommodated within the width of the input / output buffer row. This pad arrangement will be described with reference to FIGS. 5, 6, and 7. FIG. In the first step of FIG. 5, a limit value related to pad arrangement based on a pad design standard of a semiconductor chip and a set value related to a device based on a product condition of the semiconductor chip are stored.
【0004】図5の2の第2の工程は、半導体チップの
パッド設計基準よりパッド配置に関する制限値と、半導
体チップの製品条件よりデバイスに関する設定値を格納
する。In the second step shown in FIG. 5, a limit value related to pad arrangement based on a pad design standard of a semiconductor chip and a set value related to a device based on a product condition of the semiconductor chip are stored.
【0005】図5の2の第2の工程は、第1の工程で得
た条件を考慮して、半導体チップ内のパッド配置領域6
2に設定値より指定されるパッド数を配置可能とするよ
うに、パッド列数nと、1列当たりに配置可能な最大パ
ッド数及び隣り合うパッドとのパッドの中心間隔を求め
る。適用するパッドの中心間隔は、第n列のパッドとパ
ッドの間に、配線n−1本を通さなければならない為、
パッド列数nの値により変化する場合がある。図5の3
bの第3の工程は、第2の工程で求めたパッド列数nの
第n列から第1列までの起点となるパッド配置位置と、
第m列と第m−1列の隣接するパッドの角の切除角度を
求める。図5の第4の工程は、第2の工程で求めたパッ
ドの中心間隔で、第n列から第1列までの起点となるパ
ッド配置位置より順次パッド配置する。[0005] In the second step shown in FIG. 5, the pad arrangement area 6 in the semiconductor chip is considered in consideration of the conditions obtained in the first step.
The number n of pad rows, the maximum number of pads that can be arranged per row, and the center distance between adjacent pads are determined so that the number of pads specified by the set value can be arranged at 2. Since the center interval of the pads to be applied must pass n-1 wirings between the pads in the n-th column,
It may change depending on the value of the pad row number n. 5 in FIG.
The third step b is a pad arrangement position serving as a starting point from the n-th row to the first row of the pad row number n obtained in the second step;
The cutting angles of the corners of the adjacent pads in the m-th row and the (m-1) -th row are obtained. In the fourth step of FIG. 5, the pads are sequentially arranged at the center intervals of the pads obtained in the second step, starting from the pad arrangement positions starting from the n-th column to the first column.
【0006】図6の21,22,23,231,23
2,233,234,235,236,237,23
8,239,24は、第2の工程(図5の2)の具体的
内容、図7は、図5の33bの具体的内容であり、33
2b,333bは、第m列の起点となるパッドの中心点
から、隣接する第m−1列の起点となるパッドの中心点
との距離を求める第21の手順、336bは、x方向
と、第2の手順で求めた距離が形成する角度を求める第
22の手順、338bは、第22の手順で求めた角度か
ら第m列と第m−1列の隣接するパッドの角の切除角度
で示される、パッドの角の切除線分は、第21の手順で
求めた、第m列と第m−1列のパッド中心点の距離の線
分と、パッド内接円との交点を接点とする、パッド内接
円の接線である。後述する式(1)から式(11)で用
いている変数名は、図5,図6,図7,図8,図9,図
10を参照して説明する。In FIG. 6, 21, 22, 23, 231, 23
2,233,234,235,236,237,23
8, 239 and 24 are specific contents of the second step (2 in FIG. 5), and FIG. 7 is a specific content of 33b in FIG.
2b and 333b are a twenty-first procedure for calculating the distance from the center point of the pad serving as the starting point of the m-th row to the center point of the pad serving as the starting point of the (m-1) -th row. A twenty-second procedure for obtaining an angle formed by the distance obtained in the second procedure is a cutting angle of a corner of an adjacent pad in the m-th row and the (m-1) -th row from the angle obtained in the twenty-second procedure. The cut line segment of the corner of the pad shown is a contact point at the intersection of the line segment of the distance between the pad center point of the m-th row and the (m-1) -th row obtained in the twenty-first procedure and the pad inscribed circle. Is the tangent to the inscribed circle of the pad. Variable names used in expressions (1) to (11) described later will be described with reference to FIGS. 5, 6, 7, 8, 9, and 10.
【0007】rpは最小パッド半径51、dppは最小パ
ッド辺間隔52、dphは最小パッド辺−配線間隔53、
dhhは最小配線間隔54、Wh は最小配線幅55、Px0
は同列の最小パッド中心間隔、Px は適用するx方向の
パッド中心間隔57、Py は適用するy方向のパッド中
心間隔58、nは適用するパッド列数、Uは配置する総
パッド数、Umax は1列当たり配置可能な最大パッド
数、mは着目するパッド列数、Wx はx方向のパッド配
置領域幅62、Pxyは第m列と第m−1列とのパッドの
中心間隔81a、81b、θはx方向とPxyが形成する
角度82a、82b、αは第m列と第m−1列の隣接す
るパッドの角の切除角度83a、83bを示している。Rp is the minimum pad radius 51, d pp is the minimum pad side interval 52, d ph is the minimum pad side-wiring interval 53,
d hh is the minimum wiring interval 54, W h is the minimum wiring width 55, P x0
The same column of the minimum pad center spacing, P x pad columns x-direction of the pad center distance 57 to be applied, P y pad center distance 58, n in the y direction to be applied to apply, the total number of pads U are arranged, U max is the maximum number of pads that can be arranged per row, m is the number of pad rows of interest, W x is the pad arrangement area width 62 in the x direction, and P xy is the center of the pad between the m-th row and the (m−1) -th row. intervals 81a, 81b, theta is the angle 82a, 82b formed by the x and P xy, alpha denotes an ablation angle 83a, 83 b of the corner of the pads adjacent the first m columns and the m-1 column.
【0008】式(1)から式(11)は、図5,図6,
図7の各機能を表現したものであり、式(1)は図6の
232、式(2)は図6の236、式(3)、式
(4)、式(5)は図6の23、式(6)は図6の2
4、式(7)は図7の332b、式(8)は図7の33
b、式(9)は図7の336b、式(10)は図7の3
38b、式(11)は図7の339bに対応している。Equations (1) to (11) are shown in FIGS.
7 are expressed, and equation (1) is 232 in FIG. 6, equation (2) is 236 in FIG. 6, and equations (3), (4), and (5) are 23, Equation (6) is 2 in FIG.
4. Equation (7) is 332b in FIG. 7, and equation (8) is 33 in FIG.
b, equation (9) is 336b in FIG. 7, and equation (10) is 3 in FIG.
38b and equation (11) correspond to 339b in FIG.
【0009】 Px1=rp×2+dPP …(1) Px2=rp×2+Wh ×(n−1) +dhh×(n−2)+dph×2 …(2) Px2>Px0 且つPx2>Px1の時、 Px =Px2 …(3) Px0>Px2 且つPx0>Px1の時、 Px =Px2 …(4) Px1>Px2 且つPx1>Px0の時、 Px =Px1 …(5) Wx /((U/n)×(Px +rp))≧1の時、 Umax =U/n …(6) Pxy(m≧3)=rp×2+Wh ×(m−2)+ dhh×(m−3)+dPh×2 …(7) Pxy(m=2)=rp×2+dpp …(8) θ=cos-1・Px /2・Pxy …(9) α=90(度)+θ …(10) Py =sinθ×Pxy …(11) 従来例のパッド列数n=2について図5,図6,図7を
参照し、具体的数値を設定して説明する。図5の1で、
設計基準より制限値、パッドの一辺が96(μm)より
パッドに内接する円の最小パッド半径51はrp=48
(μm)、最小パッド辺間隔52はdpp20(μm)、
最小パッド辺−配線間隔53はdph=15(μm)、最
小配線間隔54はdhh=10(μm)、製品最小配線幅
55はWh =24(μm)、同列の最小パッド中心間隔
はPx0=120(μm)、製品条件より設定値、配置す
る総パッド数はU=90、x方向のパッド配置領域62
はWx =9000(μm)として入手する。図6の21
で、パッド列数を0に初期化する。図6の22で適用す
るパッド列数に1加算し、パッド列数n=1に設定す
る。図6の231で、適用するx方向のパッドの中心間
隔57を、同列の最小パッドの中心間隔のPx0=120
(μm)に初期化する。図6の232で、設計基準の制
限値から求められる最小パッドの中心間隔を式(1)を
用いて求める。P x1 = rp × 2 + d PP (1) P x2 = rp × 2 + W h × (n−1) + d hh × (n−2) + d ph × 2 (2) P x2 > P x0 and P when x2> P x1, P x = P x2 ... (3) P x0> time of P x2 and P x0> P x1, P x = P x2 ... (4) P x1> P x2 and P x1> P x0 , P x = P x1 (5) When W x / ((U / n) × (P x + rp)) ≧ 1, U max = U / n (6) P xy (m ≧ 3) = rp × 2 + W h × (m-2) + d hh × (m-3) + d Ph × 2 ... (7) P xy (m = 2) = rp × 2 + d pp ... (8) θ = cos -1 · P x / 2 · P xy ... (9) α = 90 ( degrees) + θ ... (10) P y = sinθ × P xy ... (11) 5 for pad row number n = 2 of the conventional example, FIG. 6, FIG. 7, a specific numerical value will be described. In 1 of FIG.
The minimum pad radius 51 of a circle inscribed in the pad with one side of the pad being 96 (μm), which is a limit value from the design standard, is rp = 48
(Μm), the minimum pad side interval 52 is d pp 20 (μm),
The minimum pad side-wiring distance 53 is dph = 15 (μm), the minimum wiring distance 54 is dhh = 10 (μm), the product minimum wiring width 55 is Wh = 24 (μm), and the minimum pad center distance in the same row is P x0 = 120 (μm), set value based on product conditions, total number of pads to be arranged is U = 90, pad arrangement area 62 in x direction
Is obtained as W x = 9000 (μm). 6 in FIG.
Then, the number of pad rows is initialized to zero. One is added to the number of pad rows applied at 22 in FIG. 6 to set the number of pad rows n = 1. In 231 of FIG. 6, the center spacing 57 between the pads in the x direction to be applied is set to P x0 = 120 of the center spacing of the minimum pads in the same row.
(Μm). In 232 of FIG. 6, the center distance between the minimum pads obtained from the limit value of the design standard is obtained by using Expression (1).
【0010】 Px1=48×2+20=116(μm) …(12) 図6の233で、分岐条件は“No”の為、適用するx
方向のパッド中心間隔57はPx =120(μm)とな
り、図6の235へ移行し、図6の235でパッド列数
n=1の為、図6の24へ移行する。図6の24は、式
(6)を適用し結果、 9000/((90/1)×(120+48))=1.595<1 …(13) 全パッド配置不可能の為、図6の22で適用するパッド
列数に1加算し、パッド列数n=2に設定する。図6の
231,232,233はパッド列数n=1の時と同様
の結果となり、図6の235に移行し、パッド列数n=
2の為、図6の236に移行する。図6の236で、第
n列の隣接する、パッドとパッド関に配線1本を等す条
件を見たす最小パッド中心間隔を、式(2)を用いて求
める。P x1 = 48 × 2 + 20 = 116 (μm) (12) At 233 in FIG. 6, since the branch condition is “No”, x to be applied
The pad center interval 57 in the direction becomes P x = 120 (μm), and the process shifts to 235 in FIG. 6, and shifts to 24 in FIG. 6 because the number of pad rows n = 1 in 235 in FIG. 24 in FIG. 6 is obtained by applying the equation (6), and as a result, 9000 / ((90/1) × (120 + 48)) = 1.595 <1 (13) Since all pads cannot be arranged, 22 in FIG. Is added to the number of pad rows to be applied, and the number of pad rows is set to n = 2. 6 have the same result as when the number of pad rows n = 1, and the processing shifts to 235 in FIG. 6, where the number of pad rows n =
For 2, the process moves to 236 in FIG. In 236 of FIG. 6, the minimum pad center distance under the condition that one wiring is equal to the pad adjacent to the n-th column is determined using Expression (2).
【0011】 Px2=48×2+24×(2−1) +10×(2−2)+15×2 =150(μm) …(14) 図6の237で、分岐条件は“Yes”の為、図6の2
38で、適用するx方向のパッドの中心間隔57をPx2
=150(μm)に設定し、図6の24へ移行する。P x2 = 48 × 2 + 24 × (2-1) + 10 × (2-2) + 15 × 2 = 150 (μm) (14) At 237 in FIG. 6, since the branch condition is “Yes”, 6 of 2
At 38, the center distance 57 of the pad in the x direction to be applied is set to P x2
= 150 (μm) and the process proceeds to 24 in FIG.
【0012】図6の24は、式(6)を適用し結果、 9000/((90/2)×(150+48)) =1.010≧1 Umax =90/2=45 …(15) 全パッド配置可能の為、1列当たりの配置可能な最大パ
ッド数Umax =45となり、図5の31へ移行し、分岐
条件のパッド列数n=2の為、図5の32へ移行し、着
目するパッド列数m=2に設定する。図5の33bから
図7を参照する。図7の331で、分岐条件はm=2の
為、図7の333bで、第2列と第1列とのパッド中心
間隔81bを、式(8)を用いて求める。。In FIG. 6, reference numeral 24 denotes a result of applying the equation (6). As a result, 9000 / ((90/2) × (150 + 48)) = 1.010 ≧ 1 U max = 90/2 = 45 (15) Since the pads can be arranged, the maximum number of pads that can be arranged per row is U max = 45, and the process proceeds to 31 in FIG. 5, and since the number of pad rows in the branch condition n = 2, the process proceeds to 32 in FIG. The number of target pad rows m is set to m = 2. Reference is made to FIG. 7 from 33b in FIG. In 331 of FIG. 7, since the branch condition is m = 2, the pad center distance 81b between the second row and the first row is obtained using Expression (8) in 333b of FIG. .
【0013】 Pxy=48×2+20 =116(μm) …(16) 図7の336bで、x方向とPxyが形成する角度82b
を式(9)を用いて求める。P xy = 48 × 2 + 20 = 116 (μm) (16) At 336 b in FIG. 7, an angle 82 b formed between the x direction and P xy
Is calculated using equation (9).
【0014】 θ=cos-1・150/2・116=49.7(度) …(17) 図7の338bで、第2列と第1列の隣接するパッドの
角の切除角度83bを式(10)を用いて求める。Θ = cos −1 · 150/2 · 116 = 49.7 (degrees) (17) At 338b in FIG. 7, the cutoff angle 83b of the corner of the adjacent pad in the second row and the first row is expressed by the following equation. Determined using (10).
【0015】 α=90+49.7=139.7(度) …(18) 図7の339bで、適用するy方向のパッド中心間隔5
8dを式(11)を用いて求める。。Α = 90 + 49.7 = 139.7 (degrees) (18) At 339 b in FIG. 7, a pad center interval 5 in the y direction to be applied
8d is obtained by using equation (11). .
【0016】 Py =sin49.7(度)×116 =88.5(μm) …(19) 図5の34で、着目するパッド列数mを1減算し、パッ
ド列数m=1とし、図5の35で、分岐条件m=1の
為、図5の4へ移行し、図5の4で、第2列から第1列
までの起点となるパッド中心点より、x方向に、適用す
べきx方向のパッド中心間隔57で順次配置する。この
結果、y方向のパッドの中心間隔の最小値は式(19)
より、88.5(μm)である事が分かり、その時のパ
ッドの角の切除角度83bは式(18)より、139.
7(度)となる。よって、パッドの角の切除角度の最適
値を求めれば、特開平4−364051号公報の実施例
より、更に1.5(μm)小さく出来る。P y = sin49.7 (degrees) × 116 = 88.5 (μm) (19) At 34 in FIG. 5, the number m of pad rows of interest is subtracted by 1, and the number m of pad rows is set to 1. At 35 in FIG. 5, since the branch condition m = 1, the process proceeds to 4 in FIG. 5, and in 4 in FIG. 5, the application is performed in the x direction from the pad center point which is the starting point from the second row to the first row. The pads are sequentially arranged at the pad center intervals 57 in the x direction to be performed. As a result, the minimum value of the center interval of the pads in the y direction is given by the equation (19).
From the equation (18), it is found that the cutting angle 83b of the pad corner at that time is 88.5 (μm).
7 (degrees). Therefore, if the optimum value of the cutting angle of the corner of the pad is obtained, it can be further reduced by 1.5 (μm) as compared with the embodiment of JP-A-4-364051.
【0017】同様にパッド列数n=3について図5,図
6,図7を参照し、具体的数値を設定して説明する。図
5の1で、設計基準より制限値、最小パッド半径51は
rp=48(μm)、最小パッド辺間隔52はdpp=2
0(μm)、最小パッド辺−配線間隔53はdph=15
(μm)、最小配線間隔54はdhh=10(μm)、最
小配線幅55はWh =24(μm)、同列の最小パッド
の中心間隔はPx0=120(μm)、製品条件より設定
値、配置する総パッド数はU=90、x方向のパッド配
置領域幅62はWx =7000(μm)として入手す
る。図6の21で、パッド列数を0に初期化する。適用
するパッド列数に1加算し、パッド列数n=1に設定す
る。図6の231で、適用するx方向のパッドの中心間
隔57を同列の最小パッドの中心間隔のPx0=120
(μm)に初期化する。図6の232で、設計基準の制
限値から求められる最小パッド中心間隔を、式(1)を
用いて求める。Similarly, the number of pad rows n = 3 will be described with reference to FIGS. 5, 6, and 7 by setting specific numerical values. In 1 of FIG. 5, the limit value is set according to the design standard, the minimum pad radius 51 is rp = 48 (μm), and the minimum pad side interval 52 is d pp = 2.
0 (μm), minimum pad side-interval spacing 53 is d ph = 15
(Μm), the minimum wiring interval 54 is d hh = 10 (μm), the minimum wiring width 55 is W h = 24 (μm), the center distance between the minimum pads in the same row is P x0 = 120 (μm), set according to product conditions. The value and the total number of pads to be arranged are obtained as U = 90, and the pad arrangement area width 62 in the x direction is obtained as W x = 7000 (μm). At 21 in FIG. 6, the number of pad rows is initialized to zero. One is added to the number of pad rows to be applied, and the number of pad rows n = 1 is set. In 231 of FIG. 6, the center spacing 57 of the pad in the x direction to be applied is set to P x0 = 120 of the center spacing of the minimum pads in the same row.
(Μm). In 232 of FIG. 6, the minimum pad center distance obtained from the limit value of the design standard is obtained using Expression (1).
【0018】 Px1=48×2+20=116(μm) …(20) 図6の233で、分岐条件は“No”の為、適用するx
方向のパッドの中心間隔57はPx =120(μm)と
なり、図6の235へ移行し、図6の235でパッド列
数n=1の為、図6の24へ移行する。図6の24は、
(式6)を適用し結果、 7000/((90/1)×(120+48)) =0.462<1 …(21) 全パッド配置不可能の為、図6の22で適用するパッド
列数に1加算し、パッド列数n=2に設定する。図6の
231,232,233はパッド列数n=1の時と同様
の結果となり、図6の235に移行し、パッド列数n=
2の為、図6の236に移行する。図6の236で、第
2列の隣接する、パッドとパッド間に配線1本を通す条
件を満たす最小パッドの中心間隔を式(2)を用いて求
める。P x1 = 48 × 2 + 20 = 116 (μm) (20) At 233 in FIG. 6, since the branch condition is “No”, x to be applied
The center interval 57 of the pad in the direction becomes Px = 120 (μm), and the process shifts to 235 in FIG. 6, and shifts to 24 in FIG. 6 because the number of pad rows n = 1 in 235 in FIG. 24 in FIG.
As a result of applying (Equation 6), 7000 / ((90/1) × (120 + 48)) = 0.462 <1 (21) Since all pads cannot be arranged, the number of pad rows to be applied in 22 in FIG. , And 1 is set to the number of pad rows n = 2. 6 have the same result as when the number of pad rows n = 1, and the processing shifts to 235 in FIG. 6, where the number of pad rows n =
For 2, the process moves to 236 in FIG. In 236 of FIG. 6, the center spacing of the minimum pad that satisfies the condition for passing one wiring between pads in the second row adjacent to each other is calculated using Expression (2).
【0019】 Px2=48×2+24×(2−1) +10×(2−2)+15×2 =150(μm) …(22) 図6の237で、分岐条件は“Yes”の為、図6の2
38で、適用するx方向のパッドの中心間隔57をPx2
=150(μm)に設定し、図6の24へ移行する。図
6の24は、式(6)を適用し結果、 7000/((90/2)×(150+48)) =0.786<1 …(23) 全パッド配置不可能の為、図6の22で適用するパッド
列数に1加算し、パッド列数n=3に設定する。図6の
231,232,233はパッド列数n=1の時と同様
の結果となり、図6の235に移行し、パッド列数n=
3の為、図6の236に移行する。図6の236で、第
3列の隣接する、パッドとパッド間に配線2本を通す条
件を満たす最小の中心間隔を、式(2)を用いて求め
る。P x2 = 48 × 2 + 24 × (2-1) + 10 × (2-2) + 15 × 2 = 150 (μm) (22) At 237 in FIG. 6, the branch condition is “Yes”, 6 of 2
At 38, the center distance 57 of the pad in the x direction to be applied is set to P x2
= 150 (μm) and the process proceeds to 24 in FIG. 24 in FIG. 6 is obtained by applying the equation (6), and as a result, 7000 / ((90/2) × (150 + 48)) = 0.786 <1 (23) Since all pads cannot be arranged, 22 in FIG. Is added to the number of pad rows to be applied, and the number of pad rows is set to n = 3. 6 have the same result as when the number of pad rows n = 1, and the processing shifts to 235 in FIG. 6, where the number of pad rows n =
For 3, the process moves to 236 in FIG. In 236 of FIG. 6, the minimum center interval that satisfies the condition of passing two wires between the pads adjacent to each other in the third row is obtained using Expression (2).
【0020】 Px2=48×2+24×(3−1) +10×(3−2)+15×2 =184(μm) …(24) 図6の237で、分岐条件は“Yes”の為、図6の2
38で、適用するx方向のパッドの中心間隔57をPx2
=184(μm)に設定し、図6の24へ移行する。図
6の24は、式(6)を適用し結果、 7000/((90/3)×(184+48)) =1.006≧1 Umax =90/3=30 …(25) 全パッド配置可能の為、1列当たり配置可能な最大パッ
ド数Umax =30となり、図5の31へ移行し、分岐条
件のパッド列数n=3の為、図5の32へ移行し、着目
するパッド列数m=3に設定する。図5の33bから図
7を参照する。図7の331で、分岐条件はm=3の
為、図7の332bで、第3列と第2列とのパッド中心
間隔81aを、式(7)を用いて求める。P x2 = 48 × 2 + 24 × (3-1) + 10 × (3-2) + 15 × 2 = 184 (μm) (24) At 237 in FIG. 6, since the branch condition is “Yes”, 6 of 2
At 38, the center distance 57 of the pad in the x direction to be applied is set to P x2
= 184 (μm), and the routine proceeds to 24 in FIG. 24 in FIG. 6 is obtained by applying the equation (6). As a result, 7000 / ((90/3) × (184 + 48)) = 1.006 ≧ 1 U max = 90/3 = 30 (25) All pads can be arranged. Therefore, the maximum number of pads U max that can be arranged per row is U max = 30, and the processing shifts to 31 in FIG. 5. Since the number of pad rows n = 3 in the branch condition, the processing shifts to 32 in FIG. Set several m = 3. Reference is made to FIG. 7 from 33b in FIG. In 331 of FIG. 7, since the branch condition is m = 3, the pad center distance 81a between the third row and the second row is obtained using Expression (7) in 332b of FIG.
【0021】 Pxy=48×2+24×(3−2) +10×(3−3)+15×2 =150(μm) …(26) 図7の336bで、X方向とPxyが形成する角度82a
を式(9)を用いて求める。P xy = 48 × 2 + 24 × (3-2) + 10 × (3-3) + 15 × 2 = 150 (μm) (26) At 336b in FIG. 7, an angle 82a formed by the X direction and Pxy
Is calculated using equation (9).
【0022】 θ=cos-1・184/2・150 =52.2(度) …(27) 図7の338bで、パッドの角の切除角度83aを、式
(10)を用いて求める。Θ = cos −1 · 184/2 · 150 = 52.2 (degrees) (27) At 338b in FIG. 7, a pad corner cutting angle 83a is obtained using Expression (10).
【0023】 α=90+52.2=142.2(度) …(28) 図7の339bで、適用するy方向のパッドの中心間隔
58cを式(11)を用いて求める。Α = 90 + 52.2 = 142.2 (degrees) (28) At 339b in FIG. 7, a center interval 58c between pads to be applied in the y direction is obtained by using equation (11).
【0024】 Py =sin52.2(度)×150 =118.5(μm) …(29) 図5の34で、着目するパッド列数mを1減算し、パッ
ド列数m=2とし、図5の35で、分岐条件m=2の
為、図5の33bへ移行し、図7を参照する。図7の3
31で、分岐条件はm=2の為、図7の333bで、第
2列と第1列とのパッドの中心間隔81bを、式(8)
を用いて求める。P y = sin 52.2 (degrees) × 150 = 18.5 (μm) (29) At 34 in FIG. 5, the number of pad rows m of interest is subtracted by 1, and the number of pad rows m = 2, At 35 in FIG. 5, because of the branch condition m = 2, the process shifts to 33b in FIG. 5 and refers to FIG. 3 in FIG.
At 31, since the branch condition is m = 2, the center distance 81 b between the pads of the second row and the first row is calculated by 333 b in FIG.
Is determined using
【0025】 Pxy=48×2+20=116(μm) …(30) 図7の336bで、x方向とPxyが形成する角度82b
を、式(9)を用いて求める。P xy = 48 × 2 + 20 = 116 (μm) (30) At 336 b in FIG. 7, an angle 82 b formed by the x direction and P xy
Is calculated using equation (9).
【0026】 θ=cos-1・184/2・116=37.5(度) …(31) 図7の338bで、パッドの角の切除角度83bを、式
(10)を用いて求める。Θ = cos −1 · 184/2 · 116 = 37.5 (degrees) (31) At 338b in FIG. 7, the cutting angle 83b of the corner of the pad is obtained using Expression (10).
【0027】 α=90+37.5=127.5(度) …(32) 図7の339bで、適用するy方向のパッド中心間隔5
8dを、式(11)を用いて求める。Α = 90 + 37.5 = 127.5 (degrees) (32) At 339b in FIG.
8d is obtained by using equation (11).
【0028】 Py =sin37.5(度)×116=70.6(μm)…(33) 図5の34で、着目するパッド列数mを1減算し、パッ
ド列数m=1とし、図5の35で、分岐条件m=1の
為、図5の4へ移行し、図5の4で、第3列から第1列
までの起点となるパッドの中心点より、x方向に、適用
すべきx方向のパッドの中心間隔57で順次配置する。P y = sin 37.5 (degrees) × 116 = 70.6 (μm) (33) At 34 in FIG. 5, the number m of pad rows of interest is subtracted by 1, and the number m of pad rows is set to 1. At 35 in FIG. 5, because of the branch condition m = 1, the process proceeds to 4 in FIG. 5, and at 4 in FIG. 5, the center point of the pad from the third row to the first row is shifted in the x direction from the center point of the pad. The pads are sequentially arranged at the center intervals 57 of the pads in the x direction to be applied.
【0029】以上説明したように、パッド列数n=4以
上の場合にも、同等の処理を繰り返す。従来例の最適値
を求めることにより、パッド配置領域62を小さく出来
るが、式(29)より第3列−第2列間のy方向の距離
58cは118.5(μm)、式(33)より第2列−
第1列間のy方向の距離58dは70.6(μm)であ
り、第3列−第2列間と、第2列−第1列間とで、4
7.9(μm)も差が出てしまう。As described above, the same processing is repeated even when the number of pad rows is n = 4 or more. The pad arrangement area 62 can be reduced by obtaining the optimum value of the conventional example. However, according to the equation (29), the distance 58c between the third row and the second row in the y direction is 118.5 (μm), and the equation (33) 2nd column-
The distance 58d in the y direction between the first rows is 70.6 (μm), and 4d between the third row and the second row and between the second row and the first row.
A difference of 7.9 (μm) appears.
【0030】[0030]
【発明が解決しようとする課題】第1の問題点は、従来
技術の規則性で3列の千鳥状にパッドを配置する場合、
y方向のパッド占有領域が第2列−第1列間と比べ、第
3列−第2列間が大きく広がってしまう。その理由は、
図10に示すように、第1列のパッドと入出力バッファ
を接続する配線を、第3列−第2列のパッド間に通さな
ければならないが、第3列のパッドと隣接する一方の第
2列のパッド間に配線を通した場合、第3列のパッドと
隣接する他方の第2列のパッド間には配線を通す必要が
なく、更に、奇数列、偶数列で、それぞれx方向のパッ
ド配置位置が同じ為、第3列のパッドと隣接する他方の
第2列のパッドを、更に接近させることが可能であるか
らである。The first problem is that when the pads are arranged in three rows in a staggered pattern according to the regularity of the prior art,
The pad occupied area in the y-direction greatly increases between the third row and the second row as compared with that between the second row and the first row. The reason is,
As shown in FIG. 10, a wiring connecting the pads in the first row and the input / output buffer must be passed between the pads in the third row and the second row. When the wiring is passed between the two rows of pads, it is not necessary to pass the wiring between the third row of pads and the other adjacent second row of pads. This is because, since the pad arrangement positions are the same, the second row of pads adjacent to the third row of pads can be further approached.
【0031】第2の問題点は、第1列のパッドと隣接す
る第2列のパッドとにおいてあい対するパッドの角の部
分を任意の角度で傾斜状に切除するが、パッドの角の切
除角度により第1列と第2列の距離があまり縮小出来な
い、つまり効果が減少する。その理由は、パッド占有領
域を最小にするには、パッド形状だけでなく、切除する
角度、パッドの配置位置、つまり各パッド相互間の距離
及び角度を定めなければならないからである。The second problem is that the corners of the mating pads between the first row of pads and the adjacent second row of pads are cut obliquely at an arbitrary angle. As a result, the distance between the first row and the second row cannot be reduced so much, that is, the effect decreases. The reason is that in order to minimize the pad occupied area, not only the pad shape but also the cutting angle, the pad arrangement position, that is, the distance and angle between each pad must be determined.
【0032】本発明の目的は、パッド占有領域が小さ
く、パッド占有領域の最小値及びそのパッド配置位置を
求めることができる半導体チップのボンディングパッド
配置構成及びその最適化方法を提供することにある。It is an object of the present invention to provide a bonding pad arrangement configuration of a semiconductor chip and a method of optimizing the pad occupying area in which the pad occupying area is small and the minimum value of the pad occupying area and its pad arranging position can be obtained.
【0033】[0033]
【課題を解決するための手段】本発明の半導体チップの
ボンディングパッド配置構成及びその最適化方法は、半
導体チップのパッド設計基準よりパッド配置に関する制
限値と、半導体チップの製品条件よりデバイスに関する
設定値を格納する第1の工程(図1の1)と、半導体チ
ップ内のパッド配置領域に設定値より指定されるパッド
数を配置可能とするように、パッド列数と、1列当たり
に配置可能な最大パッド数及び隣り合うパッドとのパッ
ドの中心間隔を求める第2の工程(図1の2)と、パッ
ド列数の第1列から第n列(nは性の整数)の任意のパ
ッド列に起点となる起点パッド位置を決め、第m列(m
はn<m<1)のパッドと隣接する第m−1列のパッド
とにおいてあい対するパッドの角の切除角度を求める第
3の工程(図1の3a)と、パッド配置領域に第n列か
ら第1列までの各列に1列当たり配置可能な最大パッド
数をパッド中心間隔で順次パッドを配置する第4の工程
(図1の4)とを有することを特徴とする。SUMMARY OF THE INVENTION According to the present invention, there is provided a semiconductor chip bonding pad arrangement configuration and a method for optimizing the same, wherein a limit value relating to a pad arrangement according to a pad design standard of a semiconductor chip and a setting value relating to a device according to a product condition of the semiconductor chip. 1 (FIG. 1), and the number of pad rows and the number of pads per row can be arranged so that the number of pads specified by the set value can be arranged in the pad arrangement area in the semiconductor chip. A second step (2 in FIG. 1) for obtaining a maximum number of pads and a center distance between adjacent pads, and arbitrary pads in the first to n-th rows (where n is an integer) of the number of pad rows Determine the starting pad position to be the starting point in the row, and
Is a third step (3a in FIG. 1) for determining the cut-off angle of the opposing pad corner between the pad of n <m <1) and the adjacent pad of the (m-1) th row, and the nth row in the pad arrangement region. And a fourth step (4 in FIG. 1) of sequentially arranging the maximum number of pads that can be arranged per row in each of the rows from the first row to the first row at pad center intervals.
【0034】本発明によれば、第1の工程で、半導体チ
ップのパッド設計基準よりパッド配置に関する制限値
と、半導体チップの製品条件よりデバイスに関する設定
値を格納し、第2の工程で、半導体チップ内のパッド配
置領域に設定値より指定されるパッド数を配置可能とす
るように、パッドの列数と、1列当たりに配置可能な最
大パッド数及び隣り合うパッドとのパッドの中心間隔を
求め、第3の工程において、第1の手順で、第m列の起
点となるパッドの中心点から隣接する第m−1列の一方
のパッド中心点との距離を求め、第2の手順で、第m列
の起点となるパッドの中心点から隣接する第m−1列の
他方のパッド中心点との距離を求め、第3の手順で、第
m−1列の一方のパッドと他方のパッドの中心点を結ぶ
線分に、第m列の起点となるパッドの中心点から垂線を
引き交点を求め、一方のパッド中心点または他方のパッ
ド中心点から交点までの距離を求め、第4の手順で、第
m−1列の一方のパッドと他方のパッドの中心点を結ぶ
線分に、第1の手順で求めた距離の線分とが形成する角
度を求め、第5の手順で、第m−1列の一方のパッドと
他方のパッドの中心点を結ぶ線分に、第2の手順で求め
た距離の線分とが形成する角度を求め、第6の手順で、
第4の手順と第5の手順で求めた角度から、第m列のパ
ッドと第m−1列のパッドとのあい対するパッドの角の
切除角度を求め、第4の工程で、パッド配置領域に第n
から第1列までの各列に1列当たり配置可能な最大パッ
ド数を、第2の工程で求めたパッド中心間隔で順次パッ
ドを配置する。According to the present invention, in the first step, the limit value regarding the pad arrangement based on the pad design standard of the semiconductor chip and the set value regarding the device based on the product condition of the semiconductor chip are stored. The number of rows of pads, the maximum number of pads that can be arranged per row, and the center distance between adjacent pads are set so that the number of pads specified by the set value can be arranged in the pad arrangement area in the chip. In the third step, in the first procedure, the distance from the center point of the pad serving as the starting point of the m-th row to one pad center point of the adjacent (m-1) -th row is determined, and in the second procedure, , The distance between the center point of the pad serving as the starting point of the m-th row and the center point of the other pad of the (m-1) -th row is determined, and in the third procedure, one pad of the (m-1) -th row and the other The line connecting the center points of the pads A perpendicular line is drawn from the center point of the pad to obtain an intersection, a distance from the center point of one pad or the center point of the other pad to the intersection is obtained, and one pad and the other in the (m-1) th row are determined in the fourth procedure. The angle formed by the line segment connecting the center points of the pads with the line segment of the distance obtained in the first procedure is obtained, and in the fifth procedure, one pad and the other pad of the m-1 row are arranged. The angle formed by the line segment connecting the center points and the line segment of the distance obtained in the second procedure is obtained, and in the sixth procedure,
From the angles obtained in the fourth procedure and the fifth procedure, a cutting angle of the corner of the pad corresponding to the pad in the m-th row and the pad in the (m-1) -th row is obtained. The n-th
Pads are sequentially arranged at the pad center intervals determined in the second step, with the maximum number of pads that can be arranged per row in each of the rows from the first row to the first row.
【0035】[0035]
【発明の実施の形態】次に本発明の実施の形態について
図面を参照して説明する。Embodiments of the present invention will now be described with reference to the drawings.
【0036】図1は本発明の実施の形態の半導体チップ
のボンディングパッド配置構成の最適化方法を説明する
フローチャート、図2は図1の33aのフローチャー
ト、図3は図1のフローチャートを適用したパッド2列
の千鳥状に配置されたパッドの平面図、図4は図1のフ
ローチャートを適用したパッド3列の千鳥状に配置され
たパッドの平面図である。FIG. 1 is a flowchart for explaining a method of optimizing the arrangement of bonding pads of a semiconductor chip according to an embodiment of the present invention. FIG. 2 is a flowchart of 33a in FIG. 1, and FIG. 3 is a pad to which the flowchart of FIG. FIG. 4 is a plan view of three rows of pads arranged in a zigzag pattern to which the flowchart of FIG. 1 is applied.
【0037】図1のフローチャートに示す第1の工程
(図1の1)、第2の工程(図1の2)は、従来技術と
同様である。第3の工程(図1の3a)は、第2の工程
で求めたパッド列数nの第n列から第1列までの起点と
なるパッド配置位置と、第m列のパッドと第m−1列の
パッドとのあい対するパッドの角の切除角度を求める。
第4の工程(図1の4)は、第2の工程で求めたパッド
の中心間隔で、第n列から第1列までの起点となるパッ
ド配置位置より順次パッド配置する。図2は、図1の3
3aの第3の工程の具体的内容であり、第m列の起点と
なるパッドの中心点から隣接する第m−1列の一方のパ
ッドの中心点との距離を求める第1の手順と、第m列の
起点となるパッドの中心点から隣接する第m−1列の他
方のパッドの中心点との距離を求める第2の手順と、第
m−1列の一方のパッドと他方のパッドの中心点を結ぶ
線分に、第m列の起点となるパッドの中心点から垂線を
引き交点を求め、一方のパッドの中心点または他方のパ
ッドの中心点から交点までの距離を求める第3の手順
と、第m−1列の一方のパッドと他方のパッドの中心点
を結ぶ線分に、第1の手順で求めた距離の線分とが形成
する角度を求める第4の手順と、第m−1列の一方のパ
ッドと他方のパッドの中心点を結ぶ線分に、第2の手順
で求めた距離の線分とが形成する角度を求める第5の手
順と、第4の手順と第5の手順で求めた角度から、第m
列のパッドと第m−1列のパッドとのあい対するパッド
の角の切除角度を求める第6の手順が記載されている。
パッドの角の切除角度で示される、パッドの角の切除線
分は、第1の手順及び第2の手順で求めた、第m列と第
m−1列のパッドの中心点の距離の線分と、パッド内接
円との交点を節点とする、パッド内接円の接線である。The first step (1 in FIG. 1) and the second step (2 in FIG. 1) shown in the flowchart of FIG. 1 are the same as in the prior art. The third step (3a in FIG. 1) includes a pad arrangement position serving as a starting point from the n-th row to the first row of the pad row number n obtained in the second step, and a pad in the m-th row and the m-th pad. The cutting angle of the corner of the pad corresponding to the pad in one row is determined.
In the fourth step (4 in FIG. 1), pads are sequentially arranged from the pad arrangement positions that are the starting points from the nth row to the first row at the center intervals of the pads obtained in the second step. FIG. 2 is a sectional view of FIG.
A first procedure for determining a distance from a center point of a pad serving as a starting point of the m-th row to a center point of one pad in an adjacent (m-1) -th row; A second procedure for determining the distance from the center point of the pad serving as the starting point of the m-th row to the center point of the other pad in the adjacent (m-1) -th row; and one pad and the other pad in the (m-1) -th row A line is drawn from the center point of the pad serving as the starting point of the m-th row to a line segment connecting the center points of the first and second points, and an intersection is obtained, and a distance from the center of one pad or the center of the other pad to the intersection is obtained. And a fourth procedure for finding an angle formed by a line segment connecting the center point of one pad and the other pad in the m-1th row with the line segment of the distance obtained in the first procedure, A line segment connecting the center point of one pad and the other pad in the (m-1) th row with a line segment having the distance obtained in the second procedure A fifth step of obtaining an angle but which forms, from an angle determined by the fourth step and the fifth step, the m
A sixth procedure is described which determines the cut angle of the corner of the pad between the pad in the row and the pad in the (m-1) th row.
The cut line segment of the corner of the pad, which is indicated by the cut angle of the corner of the pad, is a line of the distance between the center points of the m-th row and the (m-1) -th row of pads determined in the first procedure and the second procedure. This is a tangent to the pad inscribed circle, with the intersection of the minute and the pad inscribed circle as the node.
【0038】式(1)から式(6)、及び、後述する式
(34)から式(42)で用いている変数名は、図1,
図2,図3,図4,図6を参照して説明する。rpは最
小パ半径51、dppは最小パッド辺間隔52、dphは最
小パッド辺−配線間隔53、dhhは最小配線間隔54、
Wh は最小配線幅55、Px0は同列の最小パッドの中心
間隔、Px は適用するx方向のパッドの中心間隔57、
Py は適用するy方向のパッドの中心間隔58a、58
b、nは適用するパッド列数、Uは配置する総パッド
数、mは着目するパッド列数、Wx はx方向のパッド配
置領域幅62、Pxy2 は配線を挟む第m列と第m−1列
とのパッドの中心間隔71a、71b、Pxy1 は配線を
挟まない第m列と第m−1列とのパッドの中心間隔72
a、72bΔPx は配線を挟まない第m列と第m−1列
のx方向のパッドの中心間隔73a、73b、θ1はx
方向とPxy1 が形成する角度74a、74b、θ2はx
方向とPxy2 が形成する角度75a、75b、α1はP
xy1 と交差するパッドの角の切除角度76a、76b、
α2はPxy2 と交差するパッドの角の切除角度77a、
77bを示している。The variable names used in equations (1) to (6) and in equations (34) to (42) described later are as shown in FIG.
This will be described with reference to FIGS. rp is a minimum pad radius 51, d pp is a minimum pad side interval 52, d ph is a minimum pad side-wiring interval 53, d hh is a minimum wiring interval 54,
W h is the minimum wiring width 55, P x0 is the center spacing of the same row minimum pad, P x is the x direction of the center distance 57 of the pad to be applied,
Py is the center distance 58a, 58 of the pad in the y direction to be applied.
b, n pad columns to be applied, the total number of pads U are arranged, m pad columns of interest, W x is the x-direction of the pad arrangement region width 62, P xy2 is the m-th column and the m sandwiching the wire The center spacing 71a, 71b, Pxy1 of the pad between the -1st row and the pad is the center spacing 72 between the mth row and the (m-1) th row without the wiring.
a, 72bΔP x is the center spacing 73a, 73b, θ1 between the pads in the x direction of the m-th row and the (m-1) -th row, which do not sandwich the wiring, is x
The angle 74a, 74b, θ2 formed by the direction and P xy1 is x
The angle 75a, 75b, α1 formed by the direction and P xy2 is P
cutting angles 76a, 76b of the corners of the pad intersecting with xy1,
α2 is the cutting angle 77a of the corner of the pad that intersects Pxy2 ,
77b.
【0039】式(34)から式(42)は、図2のフロ
ー各機能を表現した物であり、式(34)は図2の33
2a、式(35)は図2の333a、式(36)は図2
の334a、式(37)は図2の335a、式(38)
は図2の336a、式(39)は図2の337a、式
(40)及び式(41)は図2の338a、式(42)
は図2の339aに対応している。Equations (34) to (42) express the functions of the flow shown in FIG. 2, and equation (34) represents the function 33 shown in FIG.
2a, equation (35) is 333a in FIG. 2, and equation (36) is FIG.
334a and equation (37) are 335a and equation (38) in FIG.
2 is 336a in FIG. 2, equation (39) is 337a in FIG. 2, and equations (40) and (41) are 338a in equation 2 and equation (42).
Corresponds to 339a in FIG.
【0040】 Pxy2 (n≧3)=rp×2+Wh ×(n−2)+ dhh×(n−3)+dph×2 …(34) Pxy2 (n=2)=rp×2+dpp …(35) Pxy1 (n≧2)=rp×2+dpp …(36)P xy2 (n ≧ 3) = rp × 2 + W h × (n−2) + d hh × (n−3) + d ph × 2 (34) P xy2 (n = 2) = rp × 2 + d pp (35) P xy1 (n ≧ 2) = rp × 2 + d pp (36)
【0041】 [0041]
【0042】 α2 =90(度)+θ2 …(40) α1 =90(度)+θ1 …(41) Py =sinθ1 ×Pxy1 =sinθ2 ×Pxy2 …(42) 本発明の第1の実施の形態について、パッド列数n=2
について図1,図2を参照し、具体的数値を設定して説
明する。図1の1で、設計基準より制限値及び製品条件
より設定値を格納し、図1の2で、適用するx方向のパ
ッドの中心間隔57、適用するパッド列数の求めかた
は、従来技術のパッド列数n=2の説明と同じである。
図1の31で、分岐条件のパッド列数n=2の為、図1
の32へ移行し、着目するパッド列数m=2に設定す
る。図1の33aから図2を参照する。図2の331
で、分岐条件はm=2の為、図2の333aで、配線を
挟まない第2列と第1列とのパッド中心間隔71bを、
式(35)を用いて求める。[0042] alpha 2 = 90 (degrees) + θ 2 ... (40) α 1 = 90 ( degrees) + θ 1 ... (41) P y = sinθ 1 × P xy1 = sinθ 2 × P xy2 ... (42) of the present invention Regarding the first embodiment, the number of pad rows n = 2
1 will be described with reference to FIGS. 1 and 2 by setting specific numerical values. In FIG. 1, the limit value is stored from the design standard and the set value is stored from the product condition. In FIG. 1B, the method of obtaining the center distance 57 of the pad in the x-direction and the number of pad rows to be applied in FIG. This is the same as the description of the pad row number n = 2.
At 31 in FIG. 1, since the number of pad rows n = 2 in the branch condition, FIG.
To 32, and sets the number of focused pad rows m = 2. Reference is made to FIG. 2 from 33a in FIG. 331 of FIG.
Since the branching condition is m = 2, the pad center distance 71b between the second row and the first row without interposing the wiring is set to 333a in FIG.
It is determined using equation (35).
【0043】 Pxy2 =48×2+20=116(μm) …(43) 図2の334aで、配線を挟まない第2列と第1列との
パッド中心間隔72bを、式(36)を用いて求める。P xy2 = 48 × 2 + 20 = 116 (μm) (43) At 334 a in FIG. 2, the pad center distance 72 b between the second row and the first row, which do not sandwich the wiring, is calculated using the equation (36). Ask.
【0044】 Pxy1 =48×2+20=116(μm) …(44) 図2の335aで、図2の334aで求めた、Pxy1 の
配線を挟まない第2列と第1列のx方向のパッド中心間
隔73bを、式(37)を用いて求める。P xy1 = 48 × 2 + 20 = 116 (μm) (44) In the 335a of FIG. 2, the x and y directions of the second and first columns, which do not sandwich the wiring of P xy1, are obtained in 334a of FIG. The pad center interval 73b is obtained by using equation (37).
【0045】 [0045]
【0046】図2の336aで、x方向とPxy2 が形成
する角度74b、図2の337aで、x方向とPxy1 が
形成する角度75bを、それぞれ式(38)、式(3
9)を用いて求める。[0046] In 336a in FIG. 2, the angle 74b of x and P xy2 form, at 337a in FIG. 2, the angle 75b of x and P xy1 form, respectively formula (38), formula (3
Determined using 9).
【0047】 θ2=cos-1(150−75.0)/116 =49.7 …(46) θ1=cos-175.0/116=49.7 …(47) 図2の338aで、パッド中心間隔Pxy2 と交差するパ
ッドの角の切除角度76b、パッド中心間隔Pxy2 と交
差するパッドの角の切除角度77bを、それぞれ、式
(40)、式(41)を用いて求める。Θ2 = cos −1 (150−75.0) /116=49.7 (46) θ1 = cos −1 75.0 / 116 = 49.7 (47) In FIG. center distance P xy2 resection angle 76b of the corner of the pad that intersects the ablation angle 77b of the corner of the pad which intersects the pad center distance P xy2, respectively, formula (40), determined using equation (41).
【0048】 α2=90+49.7=139.7(度) …(48) α1=90+49.7=139.7(度) …(49) 図2の339aで、適用するy方向パッド中心間隔58
bを、式(42)を用いて求める。Α2 = 90 + 49.7 = 139.7 (degrees) (48) α1 = 90 + 49.7 = 139.7 (degrees) (49) y-direction pad center distance 58 to be applied at 339a in FIG.
b is obtained using equation (42).
【0049】 Py =sin49.7(度)×116=88.5(μm)…(50) 図1の34で、着目するパッド列数mを1減算し、パッ
ド列数m=1とし、図1の35で、分岐条件m=1の
為、図1の4へ移行し、図1の4で、第2列から第1列
までの起点となるパッドの中心点より、x方向に、適用
すべきx方向のパッド中心間隔57で順次配置する。P y = sin49.7 (degrees) × 116 = 88.5 (μm) (50) At 34 in FIG. 1, the number m of pad rows of interest is subtracted by 1, and the number m of pad rows is set to 1. At 35 in FIG. 1, because of the branch condition m = 1, the process proceeds to 4 in FIG. 1, and in 4 in FIG. 1, from the center point of the pad which is the starting point from the second row to the first row, in the x direction, The pads are sequentially arranged at the pad center intervals 57 in the x direction to be applied.
【0050】本発明の第2の実施の形態は、パッド列数
n=3について図1,図2を参照し、具体的数値を設定
して説明する。図1の1で、設計基準より制限値及び製
品条件より設定値を入手、図1の2で、適用するx方向
のパッドの中心間隔57、適用するパッド列数の求めか
たは、従来技術のパッド列数n=3の説明と同じであ
る。図1の31で、分岐条件のパッド列数n=3の為、
図1の32へ移行し、着目するパッド列数m=3に設定
する。図1の33aから図2を参照する。図2の331
で、分岐条件m=3の為、図2の332aで、図4に示
す配線を挟む第3列と第2列とのパッドの中心間隔71
aを、式(34)を用いて求める。The second embodiment of the present invention will be described with reference to FIGS. 1 and 2 by setting specific numerical values for the number of pad rows n = 3. In FIG. 1, a limit value is obtained from a design standard and a set value is obtained from a product condition. In FIG. 1B, a method of obtaining a center distance 57 between pads to be applied in the x direction and a number of pad rows to be applied is determined by a conventional pad. This is the same as the description for the number of columns n = 3. At 31 in FIG. 1, since the number of pad rows n = 3 in the branch condition,
The process proceeds to 32 in FIG. 1, and the number of pad rows of interest, m = 3, is set. Reference is made to FIG. 2 from 33a in FIG. 331 of FIG.
Since the branch condition m = 3, the center distance 71 between the pads of the third and second rows sandwiching the wiring shown in FIG.
a is obtained by using the equation (34).
【0051】 Pxy2 =48×2+24×(3−2) +10×(3−3)+15×2 =150(μm) …(51) 図2の334aで、配線を挟まない第3列と第2列との
パッド中心間隔72aを、式(36)を用いて求める。P xy2 = 48 × 2 + 24 × (3-2) + 10 × (3-3) + 15 × 2 = 150 (μm) (51) In 334a of FIG. The center distance 72a between the row and the pad is obtained by using equation (36).
【0052】 Pxy1 =48×2+20=116(μm) …(52) 図2の335aで、図2の334aで求めた、Pxy1 の
配線を挟まない第3列と第2列のx方向のパッドの中心
間隔73aを、式(37)を用いて求める。[0052] In 335a of P xy1 = 48 × 2 + 20 = 116 (μm) ... (52) 2 was determined by 334a in FIG. 2, the x direction of the third and second columns not to pinch the wires P xy1 The center distance 73a between the pads is obtained by using Expression (37).
【0053】 [0053]
【0054】図2の336aで、x方向とPxy2 が形成
する角度74a、図2の337aで、x方向とPxy1 が
形成する角度75aを、それぞれ、式(38)、式(3
9)を用いて求める。[0054] In 336a in FIG. 2, the angle 74a where x and P xy2 form, at 337a in FIG. 2, the angle 75a which x and Pxy1 form, respectively, formula (38), formula (3
Determined using 9).
【0055】 θ2=cos-1(184−67.4)/150 =39.0(度) …(54) θ1=cos-167.4/116=54.5(度) …(55) 図2の338aで、パッドの中心間隔Pxy2 と交差する
パッドの角の切除角度76a、パッド中心間隔Pxy1 と
交差するパッドの角の切除角度77aを、それぞれ、式
(40)、式(41)を用いて求める。Θ2 = cos −1 (184-67.4) /150=39.0 (degrees) (54) θ1 = cos −1 67.4 / 116 = 54.5 (degrees) (55) 2 of 338a, resection angle 76a of the corners of the pad which intersects the central interval P xy2 pad, the resection angle 77a of the corner of the pad which intersects the pad center distance P xy1, respectively, formula (40), formula (41) Is determined using
【0056】 α2=90+39.0=129.0(度) …(56) α1=90+54.5=144.5(度) …(57) 図2の339aで、適用するy方向のパッドの中心間隔
58aを、式(42)を用いて求める。Α2 = 90 + 39.0 = 129.0 (degrees) (56) α1 = 90 + 54.5 = 144.5 (degrees) (57) At 339a in FIG. 2, the center distance between the pads in the y direction is applied. 58a is calculated using equation (42).
【0057】 Py =sin54.5(度)×116 =sin39.0(度)×150 =94.4(μm) …(58) 図1の34で、着目するパッド列数mを1減算し、パッ
ド列数m=2とし、図1の35で、分岐条件m=2の
為、図1の33aへ移行し、図2を参照する。図2の3
31で、分岐条件はm=2の為、図2の333aで、配
線を挟まない第2列と第1列とのパッドの中心間隔71
bを、式(35)を用いて求める。P y = sin 54.5 (degrees) × 116 = sin 39.0 (degrees) × 150 = 94.4 (μm) (58) At 34 in FIG. 1, subtract 1 from the number m of pad rows of interest. , The number of pad rows is set to m = 2, and the branch condition m = 2 at 35 in FIG. 1 so that the processing shifts to 33a in FIG. 1 and refers to FIG. 2 of FIG.
At 31, the branch condition is m = 2, and therefore, at 333 a of FIG.
b is determined using equation (35).
【0058】 Pxy2 =48×2+20=116(μm) …(59) 図2の334aで、配線を挟まない第2列と第1列との
パッドの中心間隔72bを、式(36)を用いて求め
る。P xy2 = 48 × 2 + 20 = 116 (μm) (59) At 334 a in FIG. 2, the center distance 72 b between the pads of the second row and the first row that do not sandwich the wiring is calculated by using the equation (36). Ask.
【0059】 Pxy1 =48×2+20=116(μm) …(60) 図2の335aで、図2の334aで求めた、Pxy1 の
配線を挟まない第2列と第1列のx方向のパッドの中心
間隔73bを、式(37)を用いて求める。P xy1 = 48 × 2 + 20 = 116 (μm) (60) In the 335a of FIG. 2, the x-direction of the second and first columns, which do not sandwich the wiring of P xy1 , is obtained by 334a in FIG. The center spacing 73b between the pads is determined using equation (37).
【0060】 [0060]
【0061】図2の336aで、x方向とPxy2 が形成
する角度74b、図2の337aで、x方向とPxy1 が
形成する角度75bを、それぞれ、式(38)、式(3
9)を用いて求める。[0061] In 336a in FIG. 2, the angle 74b of x and P xy2 form, at 337a in FIG. 2, the angle 75b of x and P xy1 form, respectively, formula (38), formula (3
Determined using 9).
【0062】 θ2=cos-1(184−92.0)/116 =37.5(度) …(62) θ1=cos-192.0/116=37.5(度) …(63) 図2の338aで、パッドの中心間隔Pxy2 と交差する
パッドの角の切除角度76b、パッド中心間隔Pxy1 と
交差するパッドの角の切除角度77bを、それぞれ、式
(40)、式(41)を用いて求める。Θ2 = cos −1 (184-92.0) /116=37.5 (degrees) (62) θ1 = cos −1 92.0 / 116 = 37.5 (degrees) (63) 2 of 338a, resection angle 76b of the corner of the pad which intersects the central interval P xy2 pad, the resection angle 77b of the corner of the pad which intersects the pad center distance P xy1, respectively, formula (40), formula (41) Is determined using
【0063】 α2 =90+37.5=127.5(度) …(64) α1 =90+37.5=127.5(度) …(65) 図2の339aで、適用するy方向のパッドの中心間隔
58bを、式(42)を用いて求める。Α 2 = 90 + 37.5 = 127.5 (degrees) (64) α 1 = 90 + 37.5 = 127.5 (degrees) (65) In FIG. The center interval 58b is obtained using Expression (42).
【0064】 Py =sin37.5(度)×116=70.6(μm)…(66) 図1の34で、着目するパッド列数mを1源算し、パッ
ド列数m=1とし、図1の35で、分岐条件m=1の
為、図1の4へ移行し、図1の4で、第3列から第1列
までの起点となるパッド中心点より、x方向に、適用す
べきx方向のパッド中心間隔57で順次配置する。式
(58)より第3列−第2列間のy方向の距離58aは
94.4(μm)、式(66)より第2列−第1列間の
y方向の距離58bは70.6(μm)であり、従来例
で47.9(μm)の差が23.8(μm)まで小さく
なり、また、式(33)と式(66)の結果は同じであ
るが、第3列−第2列間以上の列間において効果があ
る。以上説明したように、パッド列数n=4以上の場合
にも、同等の処理を繰り返すことで、パッド位置領域を
最小とする、パッド配置位置を求めることが出来る。P y = sin 37.5 (degrees) × 116 = 70.6 (μm) (66) At 34 in FIG. 1, the number m of pad rows of interest is calculated as one source, and the number m of pad rows is set to 1. At 35 in FIG. 1, because of the branch condition m = 1, the process shifts to 4 in FIG. 1, and in 4 in FIG. 1, from the pad center point which is the starting point from the third row to the first row, in the x direction, The pads are sequentially arranged at the pad center intervals 57 in the x direction to be applied. According to equation (58), the distance 58a in the y direction between the third row and the second row is 94.4 (μm), and from equation (66), the distance 58b in the y direction between the second row and the first row is 70.6. (Μm), the difference of 47.9 (μm) in the conventional example is reduced to 23.8 (μm), and the results of Expressions (33) and (66) are the same, but the third column -There is an effect between rows of the second row or more. As described above, even when the number of pad rows is n = 4 or more, the same processing is repeated to obtain the pad arrangement position that minimizes the pad position area.
【0065】[0065]
【発明の効果】第1の効果は、パッド占有領域が従来例
より小さく出来、特に第3列−第2列間以上の列間にお
いて顕著である。その理由は、奇数列、偶数列、それぞ
れx方向のパッド配置位置を同一とせずに、パッドと入
出力バッファを接続する配線を通さない第n列のパッド
と隣接する第n−1列のパッド間を、設計基準で許容さ
れるパッドの中心間隔まで接近させる為である。The first effect is that the pad occupation area can be made smaller than that of the conventional example, and is particularly remarkable in the third row and the second row or more. The reason is that the odd-numbered row and the even-numbered row do not have the same pad arrangement positions in the x direction, and the n-th row pad adjacent to the n-th row pad that does not pass the wiring connecting the pad and the input / output buffer is connected. This is to make the distance close to the center distance of the pad allowed by the design standard.
【0066】第2の効果は、パッド占有領域の最小値及
びそのパッド配置位置を求めることが出来る。その理由
は、パッド列数、パッドの角の切除角度、隣接するパッ
ド相互の中心間隔、をパッド列毎に設定し、第n列と隣
接する第n−1列のパッド中心点を結ぶ線分のx方向に
対する角度を、パッド列間毎に設定する為である。The second effect is that the minimum value of the pad occupied area and its pad arrangement position can be obtained. The reason is that the number of pad rows, the cut angle of the corner of the pad, the center interval between adjacent pads, are set for each pad row, and the line segment connecting the n-th row and the adjacent pad center point of the (n-1) -th row is set. Is set for each pad row.
【図1】本発明の実施の形態の半導体チップのボンディ
ングパッド配置構成の最適化方法を説明するフローチャ
ートである。FIG. 1 is a flowchart illustrating a method for optimizing a bonding pad arrangement of a semiconductor chip according to an embodiment of the present invention.
【図2】図1の33aのフローチャートである。FIG. 2 is a flowchart of 33a in FIG.
【図3】図1のフローチャートを適用したパッド2列の
千鳥状に配置されたパッドの平面図である。FIG. 3 is a plan view of two rows of pads arranged in a zigzag pattern to which the flowchart of FIG. 1 is applied;
【図4】図1のフローチャートを適用したパッド3列の
千鳥状に配置されたパッドの平面図である。FIG. 4 is a plan view of three rows of pads arranged in a zigzag pattern to which the flowchart of FIG. 1 is applied;
【図5】従来の半導体チップのボンディングパッド配置
構成の最適化方法の一例を説明するフローチャートであ
る。FIG. 5 is a flowchart illustrating an example of a conventional method for optimizing the arrangement of bonding pads on a semiconductor chip.
【図6】図1及び図5の2のフローチャートである。FIG. 6 is a flowchart of FIG. 1 and FIG.
【図7】図5の33bのフローチャートである。FIG. 7 is a flowchart of 33b in FIG. 5;
【図8】従来のパッド2列の千鳥状に配置されたパッド
の平面図である。FIG. 8 is a plan view of a conventional pad arranged in a two-row staggered pattern.
【図9】従来の入出力バッファの列幅に納まらなくなっ
たパッド2列の千鳥状配置のパッドの平面図である。FIG. 9 is a plan view of a staggered arrangement of two rows of pads that cannot be accommodated in the column width of a conventional input / output buffer.
【図10】従来のパッド3列の千鳥状に配置されたパッ
ドの平面図である。FIG. 10 is a plan view of a conventional three-row staggered pad array of pads.
1 第1の工程 2 第2の工程 3a 第3の工程 3b 従来の第3の工程 4 第4の工程 332a,333a 第1の手順 334a 第2の手順 335a 第3の手順 336a 第4の手順 337a 第5の手順 338a 第6の手順 332b,333b 第21の手順 336b 第22の手順 338b 第23の手順 51 最小パッド半径rp 52 最小パッド辺間隔dph 53 最小パッド辺−配線間隔 54 最小配線間隔 55 最小配線幅 57 適用するx方向のパッドの中心間隔 58a,58b 第3列−第2列間,第2列−第1列
間の適用するy方向のパッドの中心間隔 58c,58d 従来の第3列−第2列間,第2列−
第1列間の適用するy方向のパッドの中心間隔 61 入出力バッファ 62 x方向のパッド配置領域幅 63 パッド 64 入出力バッファとパッドを接続する配線 71a,71b 配線を挟む第3列と第2列,第2列
の第1列とのパッドの中心間隔 72a,72b 配線を挟まない第3列と第2列,第
2列と第1列とのパッドの中心間隔 73a,73b 配線を挟まない第3列と第2列,第
2列と第1列のx方向のパッドの中心間隔 74a,74b x方向と配線を挟む第3列と第2
列,第2列と第1列とのパッド中心間隔71aの線分と
が形成する角度 75a,75b x方向と配線を挟まない第3列と第
2列とのパッドの中心間隔72a,72bの線分とが形
成する角度 76a 配線を挟む第3列と第2列とのパッドの中心
間隔71aの線分と交差するパッドの角の切除角度 76b 配線を挟まない第2列と第1列とのパッド中
心間隔bの線分と交差するパッドの角の切除角度 77a 配線を挟まない第3列と第2列とのパッドの
中心間隔72bの線分と交差するパッドの角の切除角度 81a 第3列と第2列,第2列と第1列とのパッド
の中心間隔の線分とが形成する角度 83a,83b 第3列と第2列,第2列と第1列の
隣接するパッドの角の切除角度DESCRIPTION OF SYMBOLS 1 1st process 2 2nd process 3a 3rd process 3b 3rd conventional process 4 4th process 332a, 333a 1st procedure 334a 2nd procedure 335a 3rd procedure 336a 4th procedure 337a Fifth procedure 338a Sixth procedure 332b, 333b Twenty first procedure 336b Twelfth procedure 338b Twelfth procedure 51 Minimum pad radius rp 52 Minimum pad side spacing dph 53 Minimum pad side-wiring spacing 54 Minimum wiring spacing 55 Minimum Wiring width 57 Applicable pad center distance in the x direction 58a, 58b Applicable pad center distance in the y direction between the third and second rows and between the second and first rows 58c, 58d Conventional third row -Between the second rows, the second row-
The center spacing of the pads in the y-direction to be applied between the first columns 61 The input / output buffer 62 The width of the pad arrangement area in the x-direction 63 The pads 64 Wirings 71a, 71b connecting the input / output buffers and the pads Third and second rows sandwiching the wiring Center spacing 72a, 72b between pads of first and second rows 72a, 72b Center spacing 73a, 73b of pads between third and second rows, and second row and first row not sandwiching wires 73a, 73b Do not sandwich wires Center spacing 74a, 74b between pads in x direction of third and second rows, and second and first rows 74a, 74b Third row and second row sandwiching wiring in x direction
The angle 75a, 75b formed by the line segment of the pad center distance 71a between the row, the second row, and the first row. 75% of the center distance 72a, 72b of the pad between the third row and the second row without interposing the wiring in the x direction. An angle 76a formed by the line segment A cut angle of a corner of a pad that intersects with a line segment of a center interval 71a between the pads of the third row and the second row that sandwich the wiring 76b The second row and the first row that do not sandwich the wiring Angle 77a of the corner of the pad intersecting with the line segment of the pad center interval b 77a The angle of the pad corner intersecting with the line segment of the center interval 72b between the third and second rows not interposing the wiring 81a Angles 83a, 83b formed by the line segments of the center intervals of the pads between the third row and the second row, and between the second row and the first row. Adjacent pads of the third row and the second row, and the second row and the first row. Corner resection angle
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−340017(JP,A) 特開 平8−172109(JP,A) 特開 昭63−252434(JP,A) 特開 平7−22460(JP,A) 特開 平5−308137(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/60 301──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-8-340017 (JP, A) JP-A-8-172109 (JP, A) JP-A-63-252434 (JP, A) JP-A-7-252 22460 (JP, A) JP-A-5-308137 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 21/60 301
Claims (6)
下、パッドと記す)設計基準よりパッド配置に関する制
限値と、前記半導体チップの製品条件よりデバイスに関
する設定値を格納する第1の工程と、前記半導体チップ
内のパッド配置領域に前記設定値より指定されるパッド
数を配置可能とするように、パッド列数と、1列当たり
に配置可能な最大パッド数及び隣り合うパッドとのパッ
ドの中心間隔を求める第2の工程と、前パッド列数の第
1列から第n列(nは正の整数)の任意のパッド列に起
点となる起点パッド位置を決め、第m列(mはn<m<
1)の起点となるパッドの中心点から隣接する第m−1
列のパッドとにおいてあい対する前記パッドの角の切除
角度を求める第3の工程と、前記パッド配置領域に前記
第n列から前記第1列までの各列に前記1列当り配置可
能な最大パッド数を前記パッドの中心間隔で順次パッド
を配置する第4の工程とを有することを特徴とする半導
体チップのボンディングパッド配置の最適化方法。A first step of storing a limit value relating to a pad arrangement according to a bonding pad (hereinafter referred to as a pad) design standard of a semiconductor chip and a setting value relating to a device according to a product condition of the semiconductor chip; The number of pad rows, the maximum number of pads that can be arranged per row, and the center distance between pads between adjacent pads are determined so that the number of pads specified by the set value can be arranged in the pad arrangement area within the area. In the second step, a starting pad position to be a starting point is determined from an arbitrary pad row from the first row to the n-th row (n is a positive integer) of the number of previous pad rows, and an m-th row (m is n <m <)
M-1 adjacent to the center point of the pad which is the starting point of 1)
A third step of determining a cut angle of a corner of the pad facing the pad in a row, and a maximum pad which can be arranged per row in each of the n-th row to the first row in the pad placement area And a fourth step of sequentially arranging the number of pads at the center interval of the pads.
パッドの中心点から隣接する前記第m−1列の一方のパ
ッドの中心点との距離を求める第1の手順と、前記第m
列の起点となるパッドの中心点から隣接する前記第m−
1列の他方のパッドの中心点との距離を求める第2の手
段と、前記m−1列の前記一方のパッドの中心点と前記
他方のパッドの中心点を結ぶ線分に、前記第m列の起点
となるパッドの中心点から垂線を引き交点を求め、前記
一方のパッドの中心点または前記他方のパッドの中心点
から前記交点までの距離を求める第3の手順と、前記第
m−1列の前記一方のパッドの中心点と前記他方のパッ
ドの中心点を結ぶ線分に、前記第1の手順で求めた距離
の線分が形成する角度を求める第4の手順と、前記第m
−1列の前記一方のパッドの中心点と前記他方のパッド
の中心点を結ぶ線分に、前記第2の手順で求めた距離の
線分とが形成する角度を求める第5の手順と、前記第4
の手順と前記第5の手順で求めた角度から前記第m列の
パッドと前記第m−1列のパッドとのあい対するパッド
の角の切除角度を求める第6の手順とを有することを特
徴とする請求項1記載の半導体チップのボンディングパ
ッド配置の最適化方法。2. The first step of determining a distance from a center point of a pad serving as a starting point of an m-th row to a center point of one of the adjacent pads of the (m-1) -th row; The m-th
The m-th row adjacent to the center point of the pad which is the starting point of the row
Second means for determining the distance from the center point of the other pad in one row; and a line segment connecting the center point of the one pad and the center point of the other pad in the m-1 row, A third procedure in which a perpendicular is drawn from the center point of the pad which is the starting point of the row to determine an intersection, and a distance from the center point of the one pad or the center point of the other pad to the intersection is obtained; A fourth step of determining an angle formed by a line segment having the distance determined in the first step in a line segment connecting the center point of the one pad and the center point of the other pad in one row; and m
A fifth procedure for determining an angle formed by a line segment connecting the center point of the one pad in one row and the center point of the other pad with the line segment having the distance determined in the second procedure; The fourth
And a sixth procedure of calculating a cut-off angle of a corner of the pad corresponding to the m-th row pad and the (m-1) -th row pad from the angle obtained in the fifth procedure. 2. The method for optimizing the arrangement of bonding pads of a semiconductor chip according to claim 1.
から隣接する第m−1列の一方のパッドの中心点との距
離と、前記第m列の起点となるパッドの中心点から隣接
する前記m−列の他方のパッドの距離が請求項2により
求められた懲以内であることを特徴とする半導体チップ
のボンディングパッドの配置構造。3. A distance between a center point of a pad serving as a starting point of the m-th row and a center point of one of adjacent pads in an (m-1) -th row and a center point of a pad serving as a starting point of the m-th row. 3. The arrangement structure of bonding pads of a semiconductor chip, wherein the distance between the other pads of the adjacent m-rows is within the range determined according to claim 2.
第m−1列のパッドとの間に通すパッド引き出し配線
(以下、配線と記す)は、請求項1により求められたパ
ッドの角の切除角度と平行に配線されていることを特徴
とする半導体チップのボンディングパッド配置構造。4. A pad lead-out wiring (hereinafter, referred to as a wiring) passing between a pad serving as a starting point of the m-th row and an adjacent (m-1) -th row of pads is formed at a corner of the pad determined by claim 1. A semiconductor chip bonding pad arrangement structure wired in parallel with a cutting angle of the semiconductor chip.
パッドは、前記請求項1により求められパッドの角の切
除角度で切除されたパッド形状であることを特徴とする
半導体チップのボンディングパッド配置構造。5. The semiconductor chip according to claim 1, wherein all of the pads in the first to n-th rows of the pad row number have a pad shape obtained by cutting at a corner of the pad determined according to claim 1. Bonding pad arrangement structure.
形状がこのパッドの角の切除角度により各パッドの内接
円の接線で切除されたパッド形状であることを特徴とす
る半導体チップのボンディングパッドの配置構造。6. The bonding of a semiconductor chip according to claim 1, wherein the shape of the pad determined according to claim 1 is a pad shape cut off at a tangent to an inscribed circle of each pad by a cutting angle of a corner of the pad. Pad arrangement structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8228929A JP2781787B2 (en) | 1996-08-29 | 1996-08-29 | Bonding pad arrangement of semiconductor chip and optimization method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8228929A JP2781787B2 (en) | 1996-08-29 | 1996-08-29 | Bonding pad arrangement of semiconductor chip and optimization method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1074790A JPH1074790A (en) | 1998-03-17 |
JP2781787B2 true JP2781787B2 (en) | 1998-07-30 |
Family
ID=16884077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8228929A Expired - Lifetime JP2781787B2 (en) | 1996-08-29 | 1996-08-29 | Bonding pad arrangement of semiconductor chip and optimization method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2781787B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002170844A (en) | 2000-12-04 | 2002-06-14 | Oki Electric Ind Co Ltd | Semiconductor device |
JP5027605B2 (en) | 2007-09-25 | 2012-09-19 | パナソニック株式会社 | Semiconductor device |
JP6118652B2 (en) | 2013-02-22 | 2017-04-19 | ルネサスエレクトロニクス株式会社 | Semiconductor chip and semiconductor device |
JP2015088576A (en) * | 2013-10-30 | 2015-05-07 | ルネサスエレクトロニクス株式会社 | Semiconductor device and method of manufacturing the same |
CN108140649B (en) * | 2015-10-01 | 2022-05-06 | 奥林巴斯株式会社 | Image pickup element, endoscope, and endoscope system |
CN111988906B (en) * | 2019-05-22 | 2022-04-29 | 浙江宇视科技有限公司 | Printed circuit board and light emitting diode module board |
US20230217591A1 (en) * | 2022-01-03 | 2023-07-06 | Mediatek Inc. | Board-level pad pattern for multi-row qfn packages |
-
1996
- 1996-08-29 JP JP8228929A patent/JP2781787B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1074790A (en) | 1998-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2781787B2 (en) | Bonding pad arrangement of semiconductor chip and optimization method thereof | |
US5253182A (en) | Method of and apparatus for converting design pattern data to exposure data | |
US4816692A (en) | Pattern splicing system and method for scanning of electron beam system | |
JPS5851451B2 (en) | Lonely Jitsukousouchi | |
JPH02198154A (en) | Method of forming wiring and semiconductor device utilizing same | |
JPS6348430B2 (en) | ||
JPS61292341A (en) | Semiconductor integrated circuit | |
JPS6247148A (en) | Semiconductor integrated circuit device | |
US6040583A (en) | Electron beam exposure method using a moving stage | |
JPH0812757B2 (en) | Arrangement method of word line driver of semiconductor memory device | |
JP6997324B2 (en) | Equipment and methods for sense line architecture for semiconductor memory | |
US6074430A (en) | Automatic cell placing method | |
KR910007900B1 (en) | Semiconductor integrated circuit device | |
JPS63108746A (en) | Programmable logic array | |
JP3289999B2 (en) | Semiconductor integrated circuit | |
US20080246510A1 (en) | Repeatable block producing a non-uniform routing architecture in a field programmable gate array having segmented tracks | |
JPS59182540A (en) | Design for wiring pattern at semiconductor device | |
US4888299A (en) | Routing among field effect transistors | |
JPH0210822A (en) | Electron-beam lithography | |
JPS59197151A (en) | Semiconductor integrated circuit device | |
JPS61240652A (en) | Semiconductor integrated circuit device | |
JP3455085B2 (en) | Cell automatic placement method | |
US6760896B2 (en) | Process layout of buffer modules in integrated circuits | |
JPH02278829A (en) | Wiring of semiconductor device | |
JPH03194950A (en) | Channel wiring equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980414 |