JP2779408B2 - Recovery and reuse of phosphoric acid - Google Patents

Recovery and reuse of phosphoric acid

Info

Publication number
JP2779408B2
JP2779408B2 JP5340342A JP34034293A JP2779408B2 JP 2779408 B2 JP2779408 B2 JP 2779408B2 JP 5340342 A JP5340342 A JP 5340342A JP 34034293 A JP34034293 A JP 34034293A JP 2779408 B2 JP2779408 B2 JP 2779408B2
Authority
JP
Japan
Prior art keywords
phosphoric acid
ion exchange
catalyst
weight
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5340342A
Other languages
Japanese (ja)
Other versions
JPH07155607A (en
Inventor
熹敬 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GOSEI ARUKOORU KK
Original Assignee
NIPPON GOSEI ARUKOORU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GOSEI ARUKOORU KK filed Critical NIPPON GOSEI ARUKOORU KK
Priority to JP5340342A priority Critical patent/JP2779408B2/en
Publication of JPH07155607A publication Critical patent/JPH07155607A/en
Application granted granted Critical
Publication of JP2779408B2 publication Critical patent/JP2779408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、オレフインの気相水
和反応で用いられた廃りん酸触媒からのりん酸の回収再
利用方法に係り、更に詳記すれば、長期間の使用で活性の
低下した廃りん酸触媒を水で抽出したりん酸水溶液か
ら、強酸性イオン交換樹脂を用いて金属イオン、特に一価
及び二価の金属イオンをイオン交換法により除去し、こ
れを前記気相水和反応用りん酸として再利用する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering and recycling phosphoric acid from a waste phosphoric acid catalyst used in a gas-phase hydration reaction of olefin. Metal ions, especially monovalent and divalent metal ions, are removed from the aqueous phosphoric acid solution obtained by extracting the reduced waste phosphoric acid catalyst with water using a strongly acidic ion exchange resin by an ion exchange method. The present invention relates to a method of recycling phosphoric acid for a hydration reaction.

【0002】[0002]

【従来の技術】オレフインの気相水和反応によりアルコ
−ルを製造する際の触媒として、例えばりん酸,硫酸等
の鉱酸類、ケイタングステン酸,リンモリブデン酸等の
ヘテロポリ酸類、酸化タングステン,シリカアルミナ,
ニオブ酸等の金属酸化物或はゼオライト類が公知であ
る。エチレン或はプロピレンの工業規模の気相水和反応
に於いては、反応活性や触媒寿命の観点から、主として
りん酸が触媒として用いられている。オレフインの気相
水和反応用りん酸触媒は、多孔性の珪酸質担体、例え
ば、シリカゲル,硅藻土,活性白土或はベントナイト等
に、約40〜80重量%のりん酸水溶液を含浸させて固
体触媒を調製し、これを固定床式反応塔に充填して使用
している。
2. Description of the Related Art Catalysts for producing alcohols by gas-phase hydration of olefins include mineral acids such as phosphoric acid and sulfuric acid, heteropolyacids such as silicotungstic acid and phosphomolybdic acid, tungsten oxide and silica. alumina,
Metal oxides such as niobate or zeolites are known. In the industrial-scale gas-phase hydration reaction of ethylene or propylene, phosphoric acid is mainly used as a catalyst from the viewpoint of reaction activity and catalyst life. The phosphoric acid catalyst for the gas phase hydration reaction of olefin is obtained by impregnating a porous siliceous carrier such as silica gel, diatomaceous earth, activated clay or bentonite with a phosphoric acid aqueous solution of about 40 to 80% by weight. A solid catalyst was prepared and packed in a fixed-bed reactor for use.

【0003】りん酸触媒を用いるエチレン或はプロピレ
ンの工業規模の気相水和反応は、通常温度約130〜3
00℃、圧力約10〜90Kg/cm2G、 水/オレフインのモ
ル比約0.2〜2.0、反応気体の空間速度約5〜50
min-1の反応条件で実施されている。この反応の運転中に
於いては、りん酸触媒床から反応流と共にりん酸が少量
常時滴り落ちる現象(ウイ−ピング)が認められる。この
ウイ−ピングにより、りん酸触媒中のりん酸担持量が減
少し、触媒活性が低下するので、通常連続的或は間欠的
に、反応塔上部から約3〜15重量%のりん酸水溶液を
スプレ−させることにより、触媒活性を長期間維持させ
る方法がとられている。
The industrial scale gas phase hydration of ethylene or propylene using a phosphoric acid catalyst is usually carried out at a temperature of about 130-3.
00 ° C., pressure about 10-90 kg / cm 2 G, water / olefin molar ratio about 0.2-2.0, space velocity of reaction gas about 5-50
The reaction is performed under the reaction condition of min -1 . During the operation of the reaction, a phenomenon (weeping) in which a small amount of phosphoric acid constantly drops along with the reaction stream from the phosphoric acid catalyst bed is observed. By this weeping, the amount of phosphoric acid carried in the phosphoric acid catalyst is reduced, and the catalytic activity is lowered. Therefore, usually, about 3 to 15% by weight of a phosphoric acid aqueous solution is continuously or intermittently supplied from the upper portion of the reaction tower. A method of maintaining the catalytic activity for a long time by spraying has been adopted.

【0004】このように、オレフインの気相水和反応プ
ロセスで使用されるりん酸は、触媒調製用として約40
〜80重量%のりん酸水溶液と、スプレ−用として約3
〜15重量%のりん酸水溶液の二種類のものが用いられ
ているが、この反応にりん酸触媒を約1年以上使用して
いると、触媒の塊状化、触媒の粉化、リン酸担持量の変
化、炭化物質の蓄積、金属イオンの蓄積、珪酸質担体物
性の物理的変化、例えば表面積、細孔径、細孔容積及び
結晶化等の変化及び/或は珪酸質担体表面のシラノ−ル
基(−SiOH)の化学的変化等により複合的に触媒活
性が低下するので、新たにりん酸触媒を調製し交換しな
ければならない。
[0004] Thus, the phosphoric acid used in the gas-phase hydration reaction process of olefins is about 40% for catalyst preparation.
~ 80 wt% phosphoric acid aqueous solution and about 3
Two types of aqueous phosphoric acid solutions of up to 15% by weight are used. However, if a phosphoric acid catalyst is used in this reaction for about one year or more, agglomeration of the catalyst, powdering of the catalyst, phosphoric acid loading Changes in the amount, accumulation of carbonized materials, accumulation of metal ions, physical changes in the physical properties of the siliceous support, such as changes in surface area, pore size, pore volume and crystallization, and / or silanol on the surface of the siliceous support. Since the catalytic activity decreases in a complex manner due to a chemical change of the group (-SiOH), a new phosphoric acid catalyst must be prepared and replaced.

【0005】これら触媒劣化要因のうち、りん酸触媒中
に金属イオンが蓄積する原因は、第1に原料である水
(イオン交換水)に数ppb〜数十ppbと僅かに含ま
れるアルカリ金属イオン例えばナトリウム、及びアルカ
リ土類金属イオン例えばカルシウム、マグネシウム等が
反応原料ガスと共に長期間に亙って触媒床に持ち込まれ
蓄積することであり、第2に装置材料、例えば加熱炉、
熱交換器及び配管等に使用されている鉄鋼、或は反応塔
内部のライニングに使用されている銅等の腐食によって
鉄及び銅等が触媒床に持ち込まれ蓄積することである。
そのほか、珪酸質担体に比較的多く含まれるアルミニウ
ム等が徐々に担持されているりん酸に溶解し蓄積するこ
とも一因となっている。りん酸触媒は、酸触媒であるの
で、金属イオン、特にアルカリ金属イオンやアルカリ土
類金属イオン等の一価及び二価の金属イオンの蓄積は、
活性点である酸点を著しく阻害するので好ましくない。
[0005] Among these catalyst deterioration factors, the cause of the accumulation of metal ions in the phosphoric acid catalyst is, first, the alkali metal ion slightly contained in water (ion-exchanged water), which is a few ppb to tens of ppb, in the raw material water (ion-exchanged water). For example, sodium and alkaline earth metal ions such as calcium and magnesium are brought into the catalyst bed together with the reactant gas over a long period of time and accumulate.
Corrosion of steel or the like used for heat exchangers and pipes or copper or the like used for lining inside the reaction tower brings iron and copper etc. to the catalyst bed and accumulates.
Another factor is that aluminum and the like relatively contained in the siliceous carrier are gradually dissolved and accumulated in the phosphoric acid carried thereon. Since the phosphoric acid catalyst is an acid catalyst, accumulation of metal ions, particularly monovalent and divalent metal ions such as alkali metal ions and alkaline earth metal ions,
It is not preferable because acid sites, which are active sites, are significantly inhibited.

【0006】従来、オレフインの気相水和反応用りん酸
触媒として使用され、活性の低下した廃りん酸触媒は、
反応塔から抜き出して、苛性ソ−ダ等で中和後、産業廃
棄物として廃棄処分するか、或は廃りん酸触媒中の古い
りん酸を水で抽出した珪酸質担体に、新しいりん酸を含
浸させ、珪酸質担体を再利用する方法(特公昭53−4
7800号)がなされているだけである。また、廃りん
酸触媒から水で抽出したりん酸は、りん酸濃度として約
3〜40重量%のものが得られるが、抽出操作の際、粉
化した珪酸質担体や炭化物質等の懸濁物質を濾過等によ
り除去しても、なお、純度や含有する金属イオンの種類
や含有量等の点から、そのままでは再利用できず、ま
た、従来技術による金属イオンの高度の除去も難しいと
考えられていたために、結局、産業廃棄物として廃棄処
分されているのが現状である。しかしながら、海域、河
川或は湖沼等の環境へのりんの流出抑制による環境汚染
の防止は、社会的要請であるだけでなく、資源の有効利
用の面からも、これらりん酸の排出抑制及び回収再利用
が望まれている。
Conventionally, waste phosphoric acid catalysts which have been used as a phosphoric acid catalyst for the gas-phase hydration reaction of olefin and have reduced activity are:
It is extracted from the reaction tower, neutralized with caustic soda, etc., and disposed of as industrial waste, or new phosphoric acid is added to a siliceous carrier obtained by extracting old phosphoric acid in a waste phosphoric acid catalyst with water. Impregnating and recycling the siliceous support (Japanese Patent Publication No. 53-4)
No. 7800). Phosphoric acid extracted with water from the waste phosphoric acid catalyst can have a phosphoric acid concentration of about 3 to 40% by weight. During the extraction operation, suspended powdery siliceous carrier or carbonized material is suspended. Even if the substance is removed by filtration or the like, it cannot be reused as it is, in terms of purity, the type and content of the contained metal ions, and it is considered difficult to remove metal ions by conventional techniques at a high level. Has been disposed of as industrial waste. However, prevention of environmental pollution by suppressing the outflow of phosphorus into the environment such as sea areas, rivers or lakes is not only a social request, but also from the viewpoint of effective use of resources, the reduction and recovery of these phosphates. Reuse is desired.

【0007】りん酸水溶液中の金属イオンを除去する方
法としては、例えばりん酸80%、硝酸3%、アルミニ
ウム2.5%及び添加剤14.5%の組成の原液を、水
でりん酸濃度15〜35重量%の範囲に調整したアルミ
ニウム材の化学研磨液中に化学研磨処理により溶解蓄積
した過剰のアルミニウムを、イオン交換樹脂を用いてイ
オン交換法により除去する方法が公知である(山口照夫
他、“りん酸系化学研磨液の回収再利用について”、ア
ルミプロダクツ、1991年4月号、P.2〜7)。こ
の化学研磨液中には、表面処理に際してアルミニウム材
が過度に溶解しないように、予め、数%から数千ppm
と比較的高濃度のアルミニウムを含有させているだけで
なく、抑制剤等の添加剤も加えられている。それ故、こ
の方法は、化学研磨液中に初めから比較的高濃度で含ま
れているアルミニウムを、イオン交換法で少量除去すれ
ば良いので、本来、濃度15〜35重量%のりん酸水溶
液中のアルミニウムイオンは、イオン交換法では交換速
度が遅く、また、高度に除去しにくい性質を巧みに応用
した方法といえる。
As a method for removing metal ions from a phosphoric acid aqueous solution, for example, an undiluted solution having a composition of 80% phosphoric acid, 3% nitric acid, 2.5% aluminum and 14.5% of an additive is dissolved in a phosphoric acid solution with water. A method of removing excess aluminum dissolved and accumulated by a chemical polishing treatment in a chemical polishing liquid of an aluminum material adjusted to a range of 15 to 35% by weight by an ion exchange method using an ion exchange resin is known (Terio Yamaguchi). Others, "Recovery and reuse of phosphoric acid-based chemical polishing liquid", Aluminum Products, April 1991, pp. 2-7). In this chemical polishing solution, several% to several thousand ppm are set in advance so that the aluminum material is not excessively dissolved during the surface treatment.
Not only contains a relatively high concentration of aluminum but also additives such as inhibitors. Therefore, according to this method, aluminum contained in the chemical polishing liquid at a relatively high concentration from the beginning can be removed in a small amount by an ion exchange method. It can be said that the aluminum ion has a low exchange rate in the ion exchange method and is a method that skillfully applies the property of being difficult to remove to a high degree.

【0008】同様の公知の方法として、りん酸を主成分
とする鋼材の化学研磨液中に溶解蓄積した鉄を、強酸性
イオン交換樹脂を用いてイオン交換法で除去する方法が
知られている(三菱化成(株)編、“ダイヤイオン イ
オン交換樹脂・合成吸着剤マニュアルII応用編”、p.
135〜136、平成3年)。この方法も基本的に前記
アルミニウム材の化学研磨処理の場合と同様で、本来数
十重量%濃度のりん酸水溶液中の鉄イオンは、イオン交
換樹脂では交換速度が遅いので、開示されている前記公
知文献によれば、7〜40重量%のりん酸水溶液中の
0.33重量%の鉄を、強酸性イオン交換樹脂に平衡吸
着させるのに、実に70時間も浸漬させねばならないこ
とが示されている。それ故、この方法も数十重量%濃度
のりん酸水溶液中の鉄イオンは、強酸性イオン交換樹脂
では高度に除去しにくい性質を巧みに応用した方法であ
る。濃度約15重量%以上のりん酸水溶液中の鉄イオン
或はアルミニウムイオンは、強酸性イオン交換樹脂を用
いても、極めて除去しにくいことは本発明者の実験によ
っても確認されている。
[0008] As a similar known method, there is known a method in which iron dissolved and accumulated in a chemical polishing solution of steel containing phosphoric acid as a main component is removed by an ion exchange method using a strongly acidic ion exchange resin. (Mitsubishi Kasei Co., Ltd., “Diaion Ion Exchange Resin / Synthetic Adsorbent Manual II Application”, p.
135-136, 1991). This method is also basically the same as in the case of the chemical polishing treatment of the aluminum material. Since the exchange rate of iron ions in a phosphoric acid aqueous solution having a concentration of several tens of weight% is low in an ion exchange resin, the disclosed method is disclosed. The known literature shows that 0.33% by weight of iron in a 7-40% by weight aqueous solution of phosphoric acid must be soaked for as long as 70 hours in order to equilibrate and adsorb it on a strongly acidic ion exchange resin. ing. Therefore, this method also skillfully applies the property that iron ions in a phosphoric acid aqueous solution having a concentration of several tens of weight% are hardly removed by a strongly acidic ion exchange resin. It has been confirmed by experiments of the present inventors that iron ions or aluminum ions in a phosphoric acid aqueous solution having a concentration of about 15% by weight or more are extremely difficult to remove even using a strongly acidic ion exchange resin.

【0009】一般的に、強酸性イオン交換樹脂のイオン
交換選択性は、低濃度で常温ではイオン価数の高いイオ
ンほど大きく、例えばNa+<Ca2+<Al3+<Th4+
の順となり、また、イオン価数が同じ場合には、原子番
号が大きいものほど選択性は大きく、例えばLi+<N
+<Rb+<Cs+或はMg2+<Ca2+<Sr2+<Ba
2+の順となることは当業者間では周知である(三菱化成
(株)編、“ダイヤイオン イオン交換樹脂・合成吸着
剤マニュアルI基礎編”、p.38、平成3年)。この
ような一般的見解から、濃度約15〜40重量%のりん
酸水溶液中の金属イオン、特に、アルカリ金属やアルカ
リ土類金属等の一価及び二価の金属イオンのイオン交換
樹脂による除去は、上述のように、三価の金属イオンの
除去が難しいことから、当然除去できないものと考えら
れ、今日まで詳細な検討はなされていなかった。それ
故、オレフインの気相水和反応で使用された廃りん酸触
媒を水で抽出したりん酸水溶液中から触媒活性に悪影響
を与える金属イオンをイオン交換樹脂で除去する精製法
は難しいものと考えられていたので、このようなりん酸
水溶液は使い道がないので、産業廃棄物として廃棄処分
されているのが現状である。
In general, the ion exchange selectivity of a strongly acidic ion exchange resin is higher for ions having a higher ionic valence at a lower concentration and room temperature. For example, Na + <Ca 2+ <Al 3+ <Th 4+
When the ionic valences are the same, the selectivity increases as the atomic number increases. For example, Li + <N
a + <Rb + <Cs + or Mg 2+ <Ca 2+ <Sr 2+ <Ba
The order of 2+ is well known to those skilled in the art (Mitsubishi Kasei Co., Ltd., "Diaion Ion Exchange Resin / Synthetic Adsorbent Manual I Basic Edition", p. 38, 1991). From such a general view, removal of metal ions, particularly monovalent and divalent metal ions such as alkali metals and alkaline earth metals, in an aqueous solution of phosphoric acid having a concentration of about 15 to 40% by weight using an ion exchange resin is difficult. However, as described above, since it is difficult to remove trivalent metal ions, it is considered that it cannot be removed, and no detailed study has been made to date. Therefore, it is considered difficult to purify the waste phosphate catalyst used in the gas-phase hydration reaction of olefin with an ion-exchange resin to remove metal ions that adversely affect the catalytic activity from the aqueous phosphate solution extracted with water. Since such a phosphoric acid aqueous solution has no use, it is currently disposed of as industrial waste.

【0010】[0010]

【発明が解決しようとする課題】この発明はこのような
事情に鑑みなされたものであり、オレフインの気相水和
反応でアルコ−ルを製造する際の反応用廃りん酸触媒か
ら、触媒活性に悪影響を与える金属イオンを効果的に除
去し、これを再利用することにより、触媒費用が削減で
き、しかも環境汚染の防止や資源の有効利用が計られる
ようにしたりん酸の回収再利用方法を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been developed from a waste phosphoric acid catalyst for use in the reaction of producing alcohol by gas-phase hydration of olefin. A method for recovering and recycling phosphoric acid that effectively reduces and reuses metal ions that adversely affect the environment, thereby reducing catalyst costs and preventing environmental pollution and effectively using resources. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記目的を
達成するために、エチレンの気相水和反応で使用された
廃りん酸触媒から水で抽出したりん酸水溶液中に含まれ
る各種金属イオンの強酸性イオン交換樹脂によるイオン
交換除去について鋭意探求した結果、鉄及びアルミニウ
ムはりん酸濃度約15重量%以上では極めて除去しにく
いが、りん酸濃度約15重量%未満では比較的容易に除
去できるだけでなく、更に、驚くべきことに、従来の先
入観を覆し、りん酸濃度約15〜40重量%の高濃度に
於いて、触媒活性に悪影響を与えるナトリウム等のアル
カリ金属類、カルシウム、マグネシウム等のアルカリ土
類金属類が簡単に強酸性イオン交換樹脂を用いて除去で
きることを発見し、この回収りん酸は、オレフインの水
和反応用触媒として支障なく再利用できることを見い出
し、本発明を完成させた。
Means for Solving the Problems In order to achieve the above object, the present inventor has developed various kinds of phosphoric acid aqueous solutions extracted with water from a waste phosphoric acid catalyst used in a gas phase hydration reaction of ethylene. As a result of intensive research on the ion exchange removal of metal ions by a strongly acidic ion exchange resin, iron and aluminum are extremely difficult to remove at a phosphoric acid concentration of about 15% by weight or more, but relatively easily at a phosphoric acid concentration of less than about 15% by weight. Not only can they be removed, but also, surprisingly, alkali metals such as sodium, calcium, magnesium, which, contrary to conventional prejudice, can adversely affect catalytic activity at high phosphoric acid concentrations of about 15-40% by weight. It was discovered that alkaline earth metals such as can be easily removed using a strongly acidic ion exchange resin, and this recovered phosphoric acid was used as a catalyst for the hydration reaction of olefin. It found that can be re-used without any trouble, has led to the completion of the present invention.

【0012】即ち、本発明は、りん酸触媒を用いてオレ
フインの気相水和反応によりアルコ-ルを製造する際に、
長期間の使用で活性の低下した廃りん酸触媒から含有す
るりん酸を水で抽出した後、該抽出液中の金属イオンを
強酸性イオン交換樹脂を用いてイオン交換法により除去
し、これを前記気相水和反応用りん酸として使用するこ
とを特徴とする。
That is, the present invention provides a method for producing alcohol by gas phase hydration of olefin using a phosphoric acid catalyst.
After extracting the phosphoric acid contained from the waste phosphoric acid catalyst whose activity has been reduced over a long period of use with water, the metal ions in the extract are removed by an ion exchange method using a strongly acidic ion exchange resin. It is used as the phosphoric acid for the gas phase hydration reaction.

【0013】まず、オレフインの気相水和反応によるア
ルコ-ルの製造プロセスを図1に基づいて説明する。原
料オレフインは、原料ガスコンプレッサ−C1によりラ
イン1を通って、りん酸触媒Cが充填されている反応塔
Rに所定圧力まで圧縮供給される。もう一方の原料であ
る純水は、純水ポンプP1によりライン2を通って、循
環ガスコンプレッサ−C2からの未反応オレフイン流と
混合され、ライン11から熱交換器Eで反応混合物流と
熱交換され、ライン12を通り、加熱炉Fで所定温度に
加熱蒸発させ、ライン13から原料ガスと共に反応塔R
に供給される。スプレ−用りん酸は、りん酸ポンプP2
によりライン3を通って、原料混合ガスと共に霧状にし
て、反応塔Rのりん酸触媒Cの上部に供給する。
First, a process for producing alcohol by a gas-phase hydration reaction of olefin will be described with reference to FIG. The raw olefin is compressed and supplied to the reaction column R filled with the phosphoric acid catalyst C to a predetermined pressure through the line 1 by the raw gas compressor C1. Pure water, which is the other raw material, is mixed with the unreacted olefin stream from the circulating gas compressor-C2 through the line 2 by the pure water pump P1. After passing through the line 12, it is heated and evaporated to a predetermined temperature in the heating furnace F,
Supplied to The phosphoric acid for spraying is a phosphoric acid pump P2
Through the line 3 to be atomized together with the raw material mixed gas and supplied to the upper part of the phosphoric acid catalyst C of the reaction tower R.

【0014】ライン4からの反応混合物流は、熱交換器
Eで冷却され、ライン5を通って、高圧分離槽Dで未反
応オレフインと粗アルコ−ル水溶液とに分離される。高
圧分離槽Dで分離された粗アルコ−ル水溶液は、ライン
7を通って、蒸留精製系(図示せず)に抜き出される。
高圧分離槽Dで分離された未反応オレフイン流は、ライ
ン6を通って、吸収塔T下段に供給される。吸収塔Tの
上段にライン8から純水を供給し、未反応オレフイン流
と接触させ、未反応オレフイン流中に同伴されてくるア
ルコ−ルを吸収させる。吸収塔Tで吸収されたアルコ−
ルは、粗アルコ−ル水溶液として、吸収塔底部からライ
ン9を通って、蒸留精製系に抜き出される。アルコ−ル
を吸収させた未反応オレフイン流は、吸収塔T塔頂から
ライン10を通って抜き出され、循環コンプレッサ−C
2により再圧縮されライン2からの純水と混合され、ラ
イン11、熱交換器E、ライン12、加熱炉F、ライン
13を通って加熱され、反応塔Rに循環供給される。
The reaction mixture stream from line 4 is cooled in heat exchanger E and passed through line 5 to be separated in a high pressure separation tank D into unreacted olefin and a crude aqueous alcohol solution. The crude alcohol aqueous solution separated in the high-pressure separation tank D is extracted through a line 7 to a distillation purification system (not shown).
The unreacted olefin stream separated in the high-pressure separation tank D is supplied to the lower stage of the absorption tower T through the line 6. Pure water is supplied from the line 8 to the upper stage of the absorption tower T and brought into contact with the unreacted olefin stream to absorb the alcohol entrained in the unreacted olefin stream. Alcohol absorbed in absorption tower T
The crude alcohol is withdrawn as a crude alcohol aqueous solution from the bottom of the absorption tower through a line 9 to a distillation purification system. The unreacted olefin stream having absorbed the alcohol is withdrawn from the top of the absorption tower T through the line 10 and is supplied to the circulation compressor C.
2, mixed with pure water from the line 2, heated through the line 11, the heat exchanger E, the line 12, the heating furnace F, and the line 13, and circulated and supplied to the reaction tower R.

【0015】次に、上記オレフインの気相水和反応で使
用した廃りん酸触媒からりん酸を抽出する方法を説明す
る。反応塔Rから搬出した廃りん酸触媒を耐酸性材料、
例えばステンレス等からなる抽出槽に投入し、廃りん酸
触媒が十分覆われる程度に水、好ましくは純水を投入
し、約1〜100時間、ポンプ等を用いて水を循環撹拌
させてりん酸を抽出する。1回目の抽出でりん酸濃度約
25〜40重量%の抽出りん酸水溶液が得られる。抽出
りん酸水溶液を抜き出した後、再び同様に水を加えて2
回目の抽出操作をする。2回目の抽出でりん酸濃度約1
0〜25重量%の抽出りん酸水溶液が得られる。2回目
の抽出りん酸水溶液を抜き出した後、更に同様に3回目
の抽出操作をする。3回目の抽出でりん酸濃度約3〜1
0重量%の抽出りん酸水溶液が得られる。合計三回の抽
出操作で廃りん酸触媒中のりん酸は通常90〜95%程
度回収され、それ以上抽出回数を増やしてもりん酸回収
率は余り向上しない。抽出操作の回数は、特に限定され
ないが、効率的且つ経済的にりん酸を回収するには、抽
出回数は1〜3回が好ましい。
Next, a method for extracting phosphoric acid from the waste phosphoric acid catalyst used in the gas-phase hydration reaction of olefin will be described. The waste phosphoric acid catalyst carried out of the reaction tower R is converted into an acid-resistant material,
For example, it is charged into an extraction tank made of stainless steel or the like, and water, preferably pure water, is charged to such an extent that the waste phosphoric acid catalyst is sufficiently covered, and the water is circulated and stirred using a pump or the like for about 1 to 100 hours. Is extracted. In the first extraction, an aqueous solution of extracted phosphoric acid having a phosphoric acid concentration of about 25 to 40% by weight is obtained. After extracting the extracted phosphoric acid aqueous solution, water was added again in the same manner as described above for 2 hours.
Perform the second extraction operation. Phosphoric acid concentration about 1 in the second extraction
An aqueous solution of 0 to 25% by weight of extracted phosphoric acid is obtained. After extracting the second extracted phosphoric acid aqueous solution, a third extraction operation is performed in the same manner. Phosphoric acid concentration of about 3-1 in the third extraction
A 0% by weight aqueous solution of extracted phosphoric acid is obtained. Phosphoric acid in the waste phosphoric acid catalyst is usually recovered in about 90 to 95% by a total of three extraction operations, and even if the number of extractions is increased further, the recovery rate of phosphoric acid does not improve much. Although the number of times of the extraction operation is not particularly limited, the number of extractions is preferably 1 to 3 times in order to efficiently and economically recover phosphoric acid.

【0016】抽出したりん酸中には、通常、少量の主と
して珪酸質担体の微粉末及び炭化物質からなる懸濁物質
が一部同伴され存在する。これらの懸濁物質は、引き続
いて操作されるイオン交換処理に於いて、イオン交換樹
脂細孔の目詰まりによる樹脂の劣化や反応系で再使用の
際、配管や装置内での閉塞等の種々の障害を引き起こす
ので、沈降分離及び/或はフイルタ−濾過や砂濾過等の
懸濁物質分離操作を行う。勿論、懸濁物質が極めて少な
い場合は、この分離操作は必要ではない。1回目に純水
で抽出濾過したりん酸中には、通常ナトリウム100〜500
ppm、カルシウム100〜500ppm、マグネシウム50〜50
0ppm、銅100〜1000ppm、鉄100〜500ppm、アルミ
ニウム100〜500ppm、その他カリウム、ニッケル、クロ
ム等が1〜10ppm程度金属イオンとして含まれている。
抽出処理に使用する水の水質にもよるが、2回目以降の
抽出りん酸中の金属イオン含有量は、りん酸濃度が低下
するのと比例して、当然1回目よりも減少する。
In the extracted phosphoric acid, a small amount of fine powder of a siliceous carrier and a suspended substance composed of a carbonized substance are usually present in a small amount. These suspended substances can be used for various reasons such as deterioration of the resin due to clogging of the pores of the ion-exchange resin and blockage in the piping and equipment during reuse in the reaction system during the subsequent ion exchange treatment. Therefore, sedimentation separation and / or suspended substance separation operations such as filter filtration and sand filtration are performed. Of course, if the amount of suspended matter is extremely small, this separation operation is not necessary. Phosphoric acid extracted and filtered with pure water for the first time usually contains 100 to 500 sodium.
ppm, calcium 100-500ppm, magnesium 50-50
0 ppm, copper 100-1000 ppm, iron 100-500 ppm, aluminum 100-500 ppm, and potassium, nickel, chromium, etc. are contained as metal ions at about 1-10 ppm.
Although it depends on the quality of the water used for the extraction treatment, the metal ion content in the extracted phosphoric acid in the second and subsequent extractions naturally decreases in proportion to the decrease in the phosphoric acid concentration than in the first extraction.

【0017】このように抽出濾過したりん酸から強酸性
イオン交換樹脂を用いて、含有する金属イオンをイオン
交換除去するものであるが、本発明では、りん酸濃度の
異なる各抽出りん酸を個別にイオン交換処理するか、一
部或は全部を混合して処理するかは限定されない。本発
明で用いられる強酸性イオン交換樹脂は、三次元の高分
子基体にスルホン酸基(−SO3H)を導入した化学構造を
持つ合成樹脂であり、例えばスチレンとジビニルベンゼ
ンの共重合体を高分子基体とし、これにスルホン酸基を
導入したものが一般的に好適に用いられる。強酸性イオ
ン交換樹脂は、固定床式の樹脂塔に充填し、常法により
希塩酸或は希硫酸の水溶液を用いてH型とし、水洗後、
上部より処理液を流下させる流通式が好適に用いられ
る。樹脂の再生処理とイオン交換処理の際の液流れ方向
は、並流式或は交流式のどちらでも良い。
The metal ions contained in the thus extracted and filtered phosphoric acid are removed by ion exchange using a strongly acidic ion exchange resin. In the present invention, the extracted phosphoric acids having different phosphoric acid concentrations are individually separated. It is not limited whether the treatment is performed by ion-exchange treatment or by mixing a part or all of the mixture. The strongly acidic ion exchange resin used in the present invention is a synthetic resin having a chemical structure in which a sulfonic acid group (—SO 3 H) is introduced into a three-dimensional polymer substrate. For example, a copolymer of styrene and divinylbenzene is used. A polymer substrate into which a sulfonic acid group is introduced is generally suitably used. The strongly acidic ion-exchange resin is packed in a fixed-bed resin tower, converted to an H-form using an aqueous solution of dilute hydrochloric acid or dilute sulfuric acid, and washed with water in a conventional manner.
A flow type in which the processing liquid flows down from the upper portion is suitably used. The liquid flow direction during the resin regeneration treatment and the ion exchange treatment may be either a co-current type or an AC type.

【0018】イオン交換処理温度は、樹脂の耐熱性の関
係から常温〜120℃であれば良いが、樹脂の寿命等の
観点から40℃以下が特に好ましい。処理液の通液速度
は次式(1)に示す液空間速度(LHSV)0.1〜1
00hr-1でイオン交換処理するが、りん酸濃度が15
〜40重量%の場合は、イオン交換速度の関係からLH
SV0.5〜15が好適である。りん酸濃度が15重量
%未満の場合は、イオン交換速度が比較的早いので、L
HSV0.1〜100、好ましくはLHSV1〜50が
好適である。 液空間速度(LHSV)=処理液供給量(L/hr)/イオン交換樹
脂充填量(L) (1)
The temperature of the ion exchange treatment may be from room temperature to 120 ° C. in view of the heat resistance of the resin, but is particularly preferably 40 ° C. or lower from the viewpoint of the life of the resin. The liquid passing velocity of the processing liquid is a liquid hourly space velocity (LHSV) 0.1 to 1 shown in the following equation (1).
Ion exchange treatment at 00 hr -1 , but with phosphoric acid concentration of 15
In the case of L40% by weight, LH
SV 0.5 to 15 is preferred. When the concentration of phosphoric acid is less than 15% by weight, the ion exchange rate is relatively high.
HSV 0.1 to 100, preferably LHSV 1 to 50 are suitable. Liquid space velocity (LHSV) = treatment liquid supply amount (L / hr) / ion exchange resin filling amount (L) (1)

【0019】本発明方法のイオン交換処理により、回収
りん酸中の金属イオンはイオン交換除去される。即ち、
りん酸濃度が15〜40重量%の回収りん酸の場合の金
属イオン除去率は、実施例からもわかるように、ナトリ
ウム85〜97%、カルシウム99%以上、マグネシウ
ム99%以上及び銅99%以上と、オレフインの水和活
性を妨害するアルカリ金属類、アルカリ土類金属類及び
銅等の一価及び二価の金属イオンは、極めて効率良くイ
オン交換除去される。一方、鉄の除去率は10〜15
%、アルミニウムの除去率は、70〜82%とイオン交
換除去率は低下する。りん酸濃度が15%未満の回収り
ん酸の場合のナトリウム、カルシウム、マグネシウム及
び銅イオンは、いずれも1ppm以下までに極めて効率
良くイオン交換除去される。一方、鉄の除去率は、りん
酸濃度が約9重量%の場合、約30%、アルミニウムの
除去率は約80%となり、りん酸濃度が約5重量%の場
合、鉄及びアルミニウムの除去率は約96%以上とな
り、鉄及びアルミニウムのイオン交換除去率は、リン酸
濃度が低下すると上昇する。りん酸濃度約5重量%で
は、殆どの金属イオンが1ppm以下まで除去され、こ
の金属イオン含有濃度を、りん酸濃度の補正をしたうえ
で、市販の工業用りん酸の金属イオン含有濃度と比較す
るとほぼ同等までに精製されている。
By the ion exchange treatment of the present invention, metal ions in the recovered phosphoric acid are removed by ion exchange. That is,
In the case of the recovered phosphoric acid having a phosphoric acid concentration of 15 to 40% by weight, the metal ion removal rate is, as can be seen from the examples, 85 to 97% of sodium, 99% or more of calcium, 99% or more of magnesium, and 99% or more of copper. In addition, monovalent and divalent metal ions such as alkali metals, alkaline earth metals, and copper, which interfere with the hydration activity of olefin, are ion-exchanged and removed very efficiently. On the other hand, the iron removal rate is 10 to 15
%, The removal rate of aluminum is 70 to 82%, and the ion exchange removal rate is reduced. In the case of recovered phosphoric acid having a phosphoric acid concentration of less than 15%, sodium, calcium, magnesium and copper ions are all efficiently removed by ion exchange to 1 ppm or less. On the other hand, the iron removal rate is about 30% when the phosphoric acid concentration is about 9% by weight, the aluminum removal rate is about 80%, and the iron and aluminum removal rate is about 5% by weight when the phosphoric acid concentration is about 5% by weight. Is about 96% or more, and the ion exchange removal rate of iron and aluminum increases as the phosphoric acid concentration decreases. At a phosphoric acid concentration of about 5% by weight, most of the metal ions are removed to 1 ppm or less. This metal ion content concentration is compared with the metal ion content concentration of commercial industrial phosphoric acid after correcting the phosphoric acid concentration. Then, it is purified to almost the same level.

【0020】このようにして回収精製されたりん酸中に
は、化学的酸素要求量(COD)値として、50〜10
00ppmの主としてアルコ−ルからなる有機不純物が
含まれているが、オレフインの気相水和反応用りん酸触
媒の調製用及び/或は反応塔上部のスプレ−用に使用す
る場合は、これらの有機不純物は何ら障害とはならな
い。リン酸濃度が約25〜40重量%と比較的高い1回
目の抽出精製りん酸は、濃度75〜85%の市販の工業
用りん酸と混じることによりりん酸濃度約40〜80重
量%に調製してりん酸触媒調製用りん酸として好適に用
いられる。勿論、水で薄めて、りん酸濃度約3〜15重
量%のスプレ−用りん酸として用いても良い。リン酸濃
度が約25重量%未満と比較的薄い2回目以降の抽出精
製りん酸は、水で薄めてりん酸濃度約3〜15重量%に
調製し、反応塔上部のスプレ−用りん酸として好適に用
いられる。勿論、市販の工業用りん酸と混じて触媒調製
用りん酸として用いても良いが、抽出精製りん酸のりん
酸濃度の低い分その使用量が少なくなるので、バランス
上からはスプレ−用に用いる方が好ましい。
The phosphoric acid thus recovered and purified has a chemical oxygen demand (COD) value of 50 to 10%.
Although organic impurities mainly consisting of alcohol of 00 ppm are contained, when these are used for preparing a phosphoric acid catalyst for the gas phase hydration reaction of olefin and / or for spraying on the upper part of the reaction tower, these impurities are contained. Organic impurities do not hinder at all. The first extraction purified phosphoric acid having a relatively high phosphoric acid concentration of about 25 to 40% by weight is adjusted to a phosphoric acid concentration of about 40 to 80% by mixing with commercially available phosphoric acid having a concentration of 75 to 85%. Thus, it is suitably used as a phosphoric acid for preparing a phosphoric acid catalyst. Of course, it may be diluted with water and used as a phosphoric acid for spraying with a phosphoric acid concentration of about 3 to 15% by weight. The second and subsequent extraction and purification of phosphoric acid having a relatively low phosphoric acid concentration of less than about 25% by weight is diluted with water to a phosphoric acid concentration of about 3 to 15% by weight, and used as phosphoric acid for spraying at the top of the reaction tower. It is preferably used. Of course, it may be used as a phosphoric acid for catalyst preparation by mixing with commercially available industrial phosphoric acid.However, since the amount of phosphoric acid extracted and purified is low, the amount of phosphoric acid used is small. It is preferable to use them.

【0021】本発明方法の抽出精製りん酸と市販の工業
用りん酸とを混じて、りん酸濃度約40〜80重量%に
調製したりん酸を、珪酸質担体に含浸させて調製したり
ん酸触媒のオレフインの気相水和活性は、工業用りん酸
のみで同濃度に調製して同様担体に含浸させて調製した
りん酸触媒の反応活性と同等である。また、反応塔上部
のスプレ−用りん酸に用いた場合においても、本発明方
法の回収精製りん酸と市販の工業用りん酸とでは、該反
応操作或は反応活性上の特段の差異は認められない。
The phosphoric acid prepared by impregnating a siliceous carrier with phosphoric acid prepared by mixing the purified and purified phosphoric acid of the method of the present invention with a commercially available industrial phosphoric acid to a phosphoric acid concentration of about 40 to 80% by weight. The gas-phase hydration activity of olefin as a catalyst is equivalent to the reaction activity of a phosphoric acid catalyst prepared by adjusting the concentration of industrial phosphoric acid alone to the same concentration and impregnating the carrier in the same manner. Even when phosphoric acid for spraying at the top of the reaction tower is used, there is no particular difference in the reaction operation or reaction activity between the purified and purified phosphoric acid of the method of the present invention and commercially available phosphoric acid. I can't.

【0022】[0022]

【実施例】次に、実施例及び比較例を挙げて本発明を更
に説明するが、本発明はこれら実施例に限定されない。
Next, the present invention will be further described with reference to examples and comparative examples, but the present invention is not limited to these examples.

【実施例1】シリカゲルにりん酸を担持し、エチレンの
気相水和反応に1年間使用した廃りん酸触媒41m3
ステンレス製のりん酸抽出槽に搬入し、廃触媒が十分覆
われるまで純水を加えて、ポンプで水を24時間循環撹
拌させ、廃りん酸触媒中のりん酸の抽出操作を行い、3
3m3の1回目の抽出りん酸を得た。引き続き、3回ま
で同様の抽出操作を繰り返し、ほぼ同量の2回目及び3
回目の抽出りん酸を得た。分析及び次のイオン交換処理
テスト用試料とするために、各抽出りん酸をNo.5B
濾紙で濾過して懸濁物質を除去した。各抽出りん酸及び
2回目抽出りん酸の2倍希釈水溶液のそれぞれについ
て、りん酸濃度、金属イオン濃度及びCOD値を測定
し、結果を次表−1に示す。3回の抽出操作で廃りん酸
触媒中のりん酸は、約94%回収された。
Example 1 41 m 3 of a waste phosphoric acid catalyst used for one year for the vapor phase hydration reaction of ethylene by carrying phosphoric acid on silica gel was carried into a stainless steel phosphoric acid extraction tank until the waste catalyst was sufficiently covered. Pure water was added, and the water was circulated and stirred with a pump for 24 hours to extract the phosphoric acid in the waste phosphoric acid catalyst.
3 m 3 of the first extracted phosphoric acid were obtained. Subsequently, the same extraction operation was repeated up to three times, and the same amount of the second and third extractions was performed.
A second extracted phosphoric acid was obtained. In order to prepare a sample for analysis and the next ion-exchange treatment test, each extracted phosphoric acid was designated as No. 1. 5B
The suspended matter was removed by filtration through filter paper. Phosphoric acid concentration, metal ion concentration and COD value were measured for each of the extracted phosphoric acid and the second-time diluted aqueous solution of the extracted phosphoric acid, and the results are shown in Table 1 below. Approximately 94% of the phosphoric acid in the waste phosphoric acid catalyst was recovered by three extraction operations.

【0023】[0023]

【表−1】 [Table-1]

【0024】[0024]

【実施例2】市販の強酸性イオン交換樹脂(ダイヤイオ
ンPK228:三菱化成(株)製)50ミリリットルを
充填したイオン交換ガラスカラムを用いて、実施例1で
抽出濾過した表−1記載のNo.1〜4のりん酸水溶液
各500ミリリットルをLHSV=3〜12hr-1で流
下させてイオン交換処理を行い、各イオン交換処理液中
の金属イオン濃度を分析した。次表−2に各イオン交換
処理の通液速度、イオン交換処理液中の金属イオン濃度
及び金属イオン除去率を示す。りん酸濃度38.4重量
%の場合、金属イオンの除去率は、ナトリウム87.2%、
カルシウム99.5%以上、マグネシウム99.7%及
び銅99.9%であり、含有する一価及び二価の金属イ
オンは、極めて効率良くイオン交換除去されている。一
方、鉄の除去率は12.1%、アルミニウムの除去率は
70.7%とイオン交換除去率は低い。りん酸濃度を低
下させ10重量%未満にすると、鉄及びアルミニウムの
除去率は上昇し、りん酸濃度が5.4重量%の場合、鉄
の除去率は96.3%以上及びアルミニウムの除去率は
96.1%以上とイオン交換除去率は上昇し、分析され
たどの金属イオンも1ppm以下まで除去され、市販の
工業用りん酸とほぼ同等の金属イオン含有量までに精製
される。参考までに工業用りん酸の日本工業規格(JIS
K1449-1978)を次表−3に示す。
Example 2 Using a commercially available ion-exchange glass column filled with 50 ml of a strongly acidic ion-exchange resin (Diaion PK228: manufactured by Mitsubishi Kasei Co., Ltd.), extraction and filtration of Example 1 . 500 ml of each of the phosphoric acid aqueous solutions 1 to 4 was allowed to flow down at an LHSV of 3 to 12 hr -1 to perform ion exchange treatment, and the metal ion concentration in each ion exchange treatment liquid was analyzed. The following Table 2 shows the flow rate of each ion exchange treatment, the metal ion concentration in the ion exchange treatment liquid, and the metal ion removal rate. When the phosphoric acid concentration is 38.4% by weight, the removal rate of metal ions is 87.2% for sodium,
The content is 99.5% or more of calcium, 99.7% of magnesium, and 99.9% of copper. The monovalent and divalent metal ions contained therein are ion-exchanged and removed very efficiently. On the other hand, the removal rate of iron is 12.1%, the removal rate of aluminum is 70.7%, and the ion exchange removal rate is low. When the concentration of phosphoric acid is reduced to less than 10% by weight, the removal rate of iron and aluminum increases. When the concentration of phosphoric acid is 5.4% by weight, the removal rate of iron is 96.3% or more and the removal rate of aluminum. The ion exchange removal rate increases to 96.1% or more, and any metal ions analyzed are removed to 1 ppm or less, and the metal ions are purified to a metal ion content almost equivalent to that of commercially available industrial phosphoric acid. For reference, Japanese Industrial Standards for Industrial Phosphoric Acid (JIS
K1449-1978) is shown in Table 3 below.

【0025】[0025]

【表−2】 [Table-2]

【0026】[0026]

【表−3】 [Table-3]

【0027】[0027]

【実施例3】実施例2で抽出イオン交換処理したりん酸
濃度38.4重量%の回収精製りん酸に、市販の75重
量%工業用りん酸を混合してりん酸濃度55重量%に調
整し、これを市販の球状シリカゲル(CARiACT−
10:富士シリシア(株)製)に含浸させ、110℃で
乾燥させて、りん酸触媒500ミリリットルを調製し
た。これを内径34mmφのタンタルライニングを施し
たステンレス製反応管に充填し、温度270℃、圧力6
0kg/cm2G、水/エチレンのモル比0.6、空間
速度28min-1で反応させたところ、エチレンのエタ
ノ−ルへの一回通過転化率は6.4%であった。これは
比較例1の市販の75重量%工業用りん酸から同様に調
製したりん酸触媒と比較して反応活性は同じであり、比
較例3のイオン交換処理前の抽出りん酸から調製した触
媒の反応活性と比較して20%も高活性である。
Example 3 Commercially available 75% by weight of industrial phosphoric acid was mixed with the recovered and purified phosphoric acid having a phosphoric acid concentration of 38.4% by weight subjected to the extraction ion exchange treatment in Example 2 to adjust the phosphoric acid concentration to 55% by weight. This is commercially available spherical silica gel (CARiACT-
10: Fuji Silysia Ltd.) and dried at 110 ° C. to prepare 500 ml of a phosphoric acid catalyst. This was filled into a stainless steel reaction tube having an inner diameter of 34 mmφ and provided with tantalum lining, and the temperature was 270 ° C. and the pressure was 6
When the reaction was carried out at 0 kg / cm 2 G, a water / ethylene molar ratio of 0.6, and a space velocity of 28 min −1 , the single pass conversion of ethylene to ethanol was 6.4%. The reaction activity was the same as that of the commercially available phosphoric acid catalyst prepared from 75% by weight of industrial phosphoric acid of Comparative Example 1, and the catalyst prepared from the extracted phosphoric acid before ion exchange treatment of Comparative Example 3 was used. Is as high as 20% as compared with the reaction activity.

【0028】[0028]

【比較例1】市販の75重量%工業用りん酸に純水を加
えてりん酸濃度55重量%に調製し、これを実施例3と
同様に、市販の球状シリカゲルに含浸させ、110℃で
乾燥させてりん酸触媒500ミリリットルを調製した。
これを実施例3と同一の反応管に充填し、実施例3と同
一条件で反応させたところ、エチレンのエタノ−ルへの
1回通過転化率は6.4%であった。
Comparative Example 1 Commercially available 75% by weight of industrial phosphoric acid was mixed with pure water to adjust the phosphoric acid concentration to 55% by weight. It was dried to prepare 500 ml of a phosphoric acid catalyst.
This was filled in the same reaction tube as in Example 3 and reacted under the same conditions as in Example 3. As a result, the single pass conversion of ethylene to ethanol was 6.4%.

【0029】[0029]

【比較例2】実施例1で用いたエチレンの気相水和反応
に1年間使用した廃りん酸触媒を、10メッシュ篩を用
いて粉状物質を篩分けたものを実施例3と同一の反応管
に充填し、実施例3と同一条件で反応させたところ、エ
チレンのエタノ−ルへの1回通過転化率は4.1%であ
った。
Comparative Example 2 The waste phosphoric acid catalyst used for one year in the gas phase hydration reaction of ethylene used in Example 1 was the same as Example 3 except that the powdery substance was sieved using a 10 mesh sieve. When filled in a reaction tube and reacted under the same conditions as in Example 3, the single pass conversion of ethylene to ethanol was 4.1%.

【0030】[0030]

【比較例3】実施例2で抽出したイオン交換処理前のり
ん酸濃度38.4重量%の抽出りん酸に、市販の75重
量%工業用りん酸を混合してりん酸濃度55重量%に調
整し、これを実施例3と同様に市販の球状シリカゲルに
含浸させ、110℃で乾燥させてりん酸触媒500ミリ
リットルを調製した。これを実施例3と同一の反応管に
充填し、実施例3と同一条件で反応させたところ、エチ
レンのエタノ−ルへの1回通過転化率は5.3%であっ
た。
Comparative Example 3 Commercially available 75% by weight of industrial phosphoric acid was mixed with the extracted phosphoric acid having a phosphoric acid concentration of 38.4% by weight before the ion exchange treatment extracted in Example 2 to obtain a phosphoric acid concentration of 55% by weight. This was adjusted and impregnated with commercially available spherical silica gel as in Example 3, and dried at 110 ° C. to prepare 500 ml of a phosphoric acid catalyst. This was filled in the same reaction tube as in Example 3 and reacted under the same conditions as in Example 3. As a result, the single-pass conversion of ethylene to ethanol was 5.3%.

【0031】[0031]

【作用】強酸性イオン交換樹脂を用いるりん酸水溶液中
の金属イオンのイオン交換時においては、高濃度りん酸
水溶液中の鉄やアルミニウムのイオン交換選択性が、従
来考えられていた「イオン価数の高いイオンほどイオン
選択性が大きく、また、イオン価数が同じ場合には、原
子番号が大きいものほどイオン選択性が大きくなる。」
ことと、反対の傾向を示したのは、高濃度りん酸中では
鉄或はアルミニウム等はりん酸と陰イオン錯体を形成し
易いために、強酸性イオン交換樹脂を用いてもイオン交
換除去ができないものと思われる。一方、りん酸触媒の
反応活性に大きく影響を与えるナトリウム、カルシウ
ム、マグネシウム或は銅等はりん酸と錯体を形成しない
ので、イオン価数が高いイオンほどイオン選択性が大き
くなったものと思われる。オレフインの気相水和反応に
おけるりん酸触媒の劣化要因のひとつである金属イオ
ン、特に一価及び二価の金属イオンの蓄積は少量でも反
応活性に大きく影響を与えていることがわかったが、こ
れはりん酸触媒が酸触媒として機能しており、一価及び
二価の金属イオンが活性点である酸点を強く被毒するも
のと思われる。
When a metal ion in a phosphoric acid aqueous solution is ion-exchanged using a strongly acidic ion-exchange resin, the ion-exchange selectivity of iron and aluminum in a high-concentration phosphoric acid aqueous solution is considered to be higher than that of the previously considered "ion valence." The higher the ion, the greater the ion selectivity, and for the same ionic valence, the higher the atomic number, the greater the ion selectivity. "
The opposite tendency was observed because iron or aluminum and the like easily formed an anion complex with phosphoric acid in high-concentration phosphoric acid. It seems impossible. On the other hand, sodium, calcium, magnesium, copper, etc., which greatly affect the reaction activity of the phosphate catalyst, do not form a complex with phosphoric acid, so it seems that ions with higher valence have higher ion selectivity. . It has been found that the accumulation of metal ions, particularly monovalent and divalent metal ions, which is one of the factors deteriorating the phosphate catalyst in the gas-phase hydration reaction of olefin, has a large effect on the reaction activity even in small amounts. This is thought to be because the phosphoric acid catalyst functions as an acid catalyst, and monovalent and divalent metal ions strongly poison the acid sites, which are active sites.

【0032】[0032]

【効果】本発明方法によれば、従来産業廃棄物として処
理されていた廃りん酸触媒中のリン酸を、イオン交換処
理という簡単で安価な設備を使用することによって、り
ん酸を回収再利用できるので、オレフインの気相水和反
応によりアルコ−ルを製造する際の触媒費用が1/2〜
1/3まで低減できるほか、経済的で省資源の要求にも
合致すると共に、環境へのりん酸排出が抑制されるの
で、環境汚染の防止にもなる等多くの利点を併有する。
According to the method of the present invention, phosphoric acid in a waste phosphoric acid catalyst, which has been conventionally treated as industrial waste, is recovered and reused by using a simple and inexpensive facility called ion exchange treatment. Therefore, the catalyst cost for producing alcohol by the gas-phase hydration reaction of olefin is reduced by 1/2 to 2%.
In addition to being able to reduce to 1/3, it is economical and meets the demand for resource saving, and also has many advantages such as prevention of environmental pollution since phosphoric acid emission to the environment is suppressed.

【0033】[0033]

【図面の簡単な説明】[Brief description of the drawings]

【図1】オレフインの気相水和反応によるアルコ−ルの
製造プロセスの概要図である。
FIG. 1 is a schematic diagram of a process for producing alcohol by a gas-phase hydration reaction of olefin.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 31/08 B09B 3/00 304L ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C07C 31/08 B09B 3/00 304L

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】りん酸触媒を用いてオレフインの気相水和
反応によりアルコ-ルを製造する際に、長期間の使用で活
性の低下した廃りん酸触媒から含有するりん酸を水で抽
出した後、該抽出液中の金属イオンを強酸性イオン交換
樹脂を用いてイオン交換法により除去し、これを前記気
相水和反応用りん酸として使用することを特徴とするり
ん酸の回収再利用方法。
When producing alcohol by vapor phase hydration of olefin using a phosphoric acid catalyst, the phosphoric acid contained in the waste phosphoric acid catalyst whose activity has been reduced over a long period of use is extracted with water. After that, metal ions in the extract are removed by an ion exchange method using a strongly acidic ion exchange resin, and this is used as the phosphoric acid for the gas phase hydration reaction. How to Use.
【請求項2】前記金属イオンが、前記りん酸触媒の反応
活性に悪影響を与える一価及び二価の金属イオンである
請求項1に記載のりん酸の回収再利用方法。
2. The method according to claim 1, wherein the metal ions are monovalent and divalent metal ions that adversely affect the reaction activity of the phosphoric acid catalyst.
【請求項3】前記りん酸抽出液中のりん酸濃度が15〜
40重量%である請求項1に記載のりん酸の回収再利用
方法。
3. The phosphoric acid concentration in the phosphoric acid extract is 15 to
The method according to claim 1, wherein the amount of the phosphoric acid is 40% by weight.
【請求項4】前記りん酸抽出液中のりん酸濃度が3〜1
5重量%である請求項1に記載のりん酸の回収再利用方
法。
4. The phosphoric acid extract has a phosphoric acid concentration of 3-1.
The method for recovering and recycling phosphoric acid according to claim 1, wherein the amount is 5% by weight.
JP5340342A 1993-12-09 1993-12-09 Recovery and reuse of phosphoric acid Expired - Lifetime JP2779408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5340342A JP2779408B2 (en) 1993-12-09 1993-12-09 Recovery and reuse of phosphoric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5340342A JP2779408B2 (en) 1993-12-09 1993-12-09 Recovery and reuse of phosphoric acid

Publications (2)

Publication Number Publication Date
JPH07155607A JPH07155607A (en) 1995-06-20
JP2779408B2 true JP2779408B2 (en) 1998-07-23

Family

ID=18336024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5340342A Expired - Lifetime JP2779408B2 (en) 1993-12-09 1993-12-09 Recovery and reuse of phosphoric acid

Country Status (1)

Country Link
JP (1) JP2779408B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079069B1 (en) * 2004-08-10 2011-11-02 가부시키가이샤 신꼬오 간쿄우 솔루션 Method of treating wastewater and apparatus for treating wastewater

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060002636A (en) * 2004-07-03 2006-01-09 주식회사 에이제이테크 A method of recycling used etchant containing phosphoric acid
KR101009025B1 (en) * 2005-12-26 2011-01-17 대일개발 주식회사 Method for recovering high purity phosphoric acid from mixed waste acid occupied in preparing process of liquid crystal display
DE102017207457B4 (en) 2017-05-04 2021-11-11 Technische Universität Bergakademie Freiberg Process for the preparation of catalysts from silicate-phosphate materials with the production of phosphoric acid
JP2018197214A (en) * 2017-05-24 2018-12-13 日本合成アルコール株式会社 Manufacturing method of alcohol
CN113772777B (en) * 2021-09-07 2023-08-29 无锡中天固废处置有限公司 Recovery process of waste phosphoric acid in semiconductor industry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079069B1 (en) * 2004-08-10 2011-11-02 가부시키가이샤 신꼬오 간쿄우 솔루션 Method of treating wastewater and apparatus for treating wastewater

Also Published As

Publication number Publication date
JPH07155607A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
US8148582B2 (en) Glycerol vaporization method
CN114105937B (en) Trioxymethylene reaction method and production method thereof
JP2007536082A (en) Method for removing corrosive metals from carbonylation catalyst solutions
JP2779408B2 (en) Recovery and reuse of phosphoric acid
TWI297702B (en) Process and adsorbent for purifying crude polyether
JP2544641B2 (en) How to remove phosphine impurities from higher olefins
JPS6236052B2 (en)
US8609905B2 (en) Method for producing glycerol
EP2291330B1 (en) Process for the treatment of the aqueous stream coming from the fischer-tropsch reaction by means of ion exchange resins
JPS6031522B2 (en) How to remove acidic substances from reaction products
US2132349A (en) Treatment of phosphoric acid to remove fluorine
KR100384940B1 (en) A catalyst for removing olefins from a mixture of an aromatic compound or an aromatic compound
CN114100544B (en) Organic hydrocarbon peroxide treatment device and treatment method
JP2013129613A (en) Method of producing trialkylene glycol
US4453020A (en) Process for purifying the methanol employed in the preparation of formaldehyde
CN112759498B (en) Method for preparing isobutene by decomposing methyl tertiary butyl ether
CN112759499B (en) Process for preparing isobutene by decomposing high-efficiency methyl tertiary butyl ether
US3898290A (en) Method for the catalytic hydration of olefins
CN217472733U (en) Trioxymethylene&#39;s response device and production system thereof
JP3817801B2 (en) Method for producing high purity benzyl alcohol
GB1574035A (en) Process for continuously producing diisopropyl ether
AU2009254215B2 (en) Process for the treatment of the aqueous stream coming from the Fischer-Tropsch reaction by means of ion exchange resins
WO2004094346A2 (en) Purification of solvents used for the purification of alkylene oxide
JPS596197B2 (en) Method for regenerating houfu compound wastewater treatment agent
JPH07213922A (en) Recovery of catalytic component from heteropoly-acid salt type catalyst