JP2779393B2 - Melting method of high melting point active metal alloy - Google Patents

Melting method of high melting point active metal alloy

Info

Publication number
JP2779393B2
JP2779393B2 JP63029213A JP2921388A JP2779393B2 JP 2779393 B2 JP2779393 B2 JP 2779393B2 JP 63029213 A JP63029213 A JP 63029213A JP 2921388 A JP2921388 A JP 2921388A JP 2779393 B2 JP2779393 B2 JP 2779393B2
Authority
JP
Japan
Prior art keywords
metal
melting
alloy
rod
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63029213A
Other languages
Japanese (ja)
Other versions
JPH01205039A (en
Inventor
和臣 東
博章 白石
弘行 市橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMITOMO SHICHITSUKUSU KK
Original Assignee
SUMITOMO SHICHITSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMITOMO SHICHITSUKUSU KK filed Critical SUMITOMO SHICHITSUKUSU KK
Priority to JP63029213A priority Critical patent/JP2779393B2/en
Publication of JPH01205039A publication Critical patent/JPH01205039A/en
Application granted granted Critical
Publication of JP2779393B2 publication Critical patent/JP2779393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、Ti,Nb,Zr等の高融点活性金属を少なくと
も1種含有するNb−Ti,Ti−Al,Ti−Ni等の合金溶解方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to melting of alloys such as Nb-Ti, Ti-Al, Ti-Ni and the like containing at least one high melting point active metal such as Ti, Nb, and Zr. About the method.

〔従来の技術〕[Conventional technology]

Ti、Nb、Zr等の高融点金属を含む合金の溶製は、従来
より真空アーク溶解法等によって行われてきた。
The melting of alloys containing high melting point metals such as Ti, Nb and Zr has been conventionally performed by a vacuum arc melting method or the like.

Nb−Ti合金の場合について、この溶解法を説明する
と、通常Ti板とNb板をそれぞれの目標成分値となる寸法
に形を揃えて交互に重ね合せ、溶接により固定してなる
消耗電極を真空アーク炉にセットし、該消耗電極と銅鋳
型(溶湯生成後は溶湯)間に発生するアークにより溶解
させて鋳型に鋳込む方法である。
In the case of Nb-Ti alloy, this melting method will be described. Normally, a consumable electrode formed by fixing a Ti plate and an Nb plate alternately on top of each other in the form of the target component values and fixing them by welding is a vacuum. This is a method of setting in an arc furnace, melting by an arc generated between the consumable electrode and the copper mold (the molten metal after the molten metal is formed), and casting the molten metal into the mold.

また、最近になって棒状Nbを電子ビーム等により先端
から加熱溶解して鋳型内に滴下せしめるとともに、鋳型
内溶融プールにチタンスポンジを添加してNb−Ti合金を
溶製する合金溶解法も提案されている(特開昭60−1748
38号)。
Recently, an alloy melting method has also been proposed, in which rod-shaped Nb is heated and melted from the tip with an electron beam and dropped into the mold, and titanium sponge is added to the molten pool in the mold to melt the Nb-Ti alloy. (JP-A-60-1748)
No. 38).

しかしながら、いずれの方法も次のような問題があ
る。
However, both methods have the following problems.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前者の真空アーク溶解法では、 (イ)Nbの融点が2467℃、Tiの融点が1670℃であって、
Nbの融点が797℃も高く、このためTiが優先的に溶解
し、Nbが溶解しにくく、ために鋳塊中にNbの溶け残りが
生じ、溶解成分が不均一となる傾向がある。
In the former vacuum arc melting method, (a) the melting point of Nb is 2467 ° C and the melting point of Ti is 1670 ° C,
The melting point of Nb is as high as 797 ° C., so that Ti is preferentially dissolved and Nb is difficult to dissolve, so that Nb remains undissolved in the ingot, and the dissolved component tends to be non-uniform.

(ロ)消耗電極として圧延板等を用いる必要があり、そ
のためコスト的に高くなることは避けられず、またそれ
ぞれ所定の形状に揃えた消耗電極を重合して不活性ガス
雰囲気下で固定する溶接の作業性が悪い等の問題があ
る。
(B) It is necessary to use a rolled plate or the like as a consumable electrode, which inevitably increases the cost. Also, welding in which an expendable electrode having a predetermined shape is polymerized and fixed in an inert gas atmosphere is performed. Workability is poor.

後者のドリップ溶解による方法では、 (ハ)Nbの溶融プール内にTiが添加されるため、Nbの溶
け残りが生じる危険はなく、また製造されたチタンスポ
ンジがそのまま使用できるので、溶解コストも大幅に低
減されるという利点はあるものの、実際の操業において
は溶解成分の調整が困難で、所望の合金比率が得られな
い可能性がある。
In the latter method using drip melting, (c) Ti is added to the molten pool of Nb, so there is no danger of remaining undissolved Nb, and since the manufactured titanium sponge can be used as it is, the melting cost is large. However, in actual operation, it is difficult to adjust the melting components, and a desired alloy ratio may not be obtained.

合金比率は合金特性に大きな影響を与え、特に形状記
憶合金として使用されるTi−Ni合金においては僅かの偏
差でも作用温度が大きく変動する結果となる。他の高融
点金属を含む合金の場合も、ほぼ同様である 本発明は、ドリップ溶解による方法に改良を加え、そ
の合金成分の各供給量および生成量を正確に検出するこ
とにより、成分比率を高精度に制御しながら低コストで
溶製を行うようにした溶解方法の提供を目的とする。
The alloy ratio has a large effect on the alloy properties, and in particular, in the case of a Ti-Ni alloy used as a shape memory alloy, even a slight deviation results in a large variation in the operating temperature. The present invention improves the method by drip melting, and accurately detects each supply amount and generation amount of the alloy component to thereby reduce the component ratio. It is an object of the present invention to provide a melting method that performs melting at low cost while controlling with high precision.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の方法は、高融点活性金属を少なくとも1種含
有する合金の溶解において、合金成分のうちの1種金属
を棒状としてその先端より加熱溶解して鋳型内に滴下す
るとともに、他の1種または複数種の金属を粒状または
塊状として容器内から前記鋳型内に供給して金属鋳塊を
生成する際に、棒状金属、容器内金属および生成鋳塊の
各重量を測定し、棒状金属および容器内金属の各重量変
化から金属供給量を検出し、所定濃度の合金鋳塊を溶製
するべく前記金属供給量および加熱量を調整すると共
に、生成鋳塊の重量変化と、棒状金属および容器内金属
の各重量変化との偏差に基づいて金属供給量を補正する
高融点活性金属合金の溶解方法である。
In the method of the present invention, in dissolving an alloy containing at least one high-melting-point active metal, one of the alloy components is made into a rod shape, heated and melted from the tip thereof, dropped into a mold, and the other one is melted. Alternatively, when a metal ingot is produced by supplying a plurality of types of metals in the form of granules or lump into the mold from within the container, the bar-shaped metal, the weight of the metal in the container and the produced ingot are measured, and the rod-shaped metal and the container are measured. The metal supply amount is detected from each weight change of the inner metal, and the metal supply amount and the heating amount are adjusted so as to melt the alloy ingot having a predetermined concentration. This is a method for dissolving a high melting point active metal alloy in which the amount of supplied metal is corrected based on a deviation from each weight change of the metal.

また鋳型内の溶融金属に電極攪拌を加え、更に均一化
を充分にはかるものである。
Further, the molten metal in the mold is agitated with an electrode to further sufficiently homogenize the molten metal.

本発明の方法において、棒状金属の加熱源としては電
子ビーム、プラズマビーム等のビーム照射やプラズマア
ークを用いる。
In the method of the present invention, a beam irradiation such as an electron beam or a plasma beam or a plasma arc is used as a heating source for the rod-shaped metal.

照射する場合は、ビームを棒状金属の先端部とともに
鋳型内の金属表面に照射し、鋳型内溶融プールの安定形
成に寄与させるのがよい。
In the case of irradiation, the beam is preferably irradiated to the metal surface in the mold together with the tip of the rod-shaped metal to contribute to the stable formation of the molten pool in the mold.

棒状金属としては合金成分のうちの最も融点の高い金
属が基本的に選択されるが、成分間で融点に大きな差の
ない場合は、鋳型内の金属表面にビーム照射を行うこと
と合せた形で、高融点の金属のほうを粒状、塊状として
鋳型内に供給することが可能である。
As the rod-shaped metal, the metal with the highest melting point among the alloy components is basically selected, but if there is no significant difference in the melting point between the components, the shape combined with irradiating the metal surface in the mold with the beam is used. Thus, it is possible to supply the high melting point metal into the mold as granules or lump.

鋳型内に生成される鋳塊は、順次鋳型下方に引抜き、
溶融プールの鋳型内高さは一定に保つことが望まれる。
The ingot generated in the mold is drawn out sequentially below the mold,
It is desirable to keep the height of the molten pool in the mold constant.

〔作用〕[Action]

棒状金属の重量変化を検出することにより、棒状金属
の供給量が加熱量やその他の溶解速度変動要因、更には
鋳型内の溶融金属がスプラッシュによって棒状金属に再
付着する現象に影響されることなく正確に求まる。同様
に、容器内の粒状、塊状金属についてもその重量変化か
ら供給量が求まる。そして、それぞれの供給量を調整
し、調整された供給量に見合った加熱量を与えることに
より、合金濃度が高精度に制御される。また電極攪拌に
より、成分がより均一となる。
By detecting the weight change of the rod-shaped metal, the supply amount of the rod-shaped metal is not affected by the heating amount and other dissolution rate fluctuation factors, and furthermore, the phenomenon that the molten metal in the mold is re-attached to the rod-shaped metal by splash. Determined exactly. Similarly, the supply amount of the granular or massive metal in the container can be determined from the change in weight. Then, by adjusting each supply amount and giving a heating amount corresponding to the adjusted supply amount, the alloy concentration is controlled with high accuracy. Further, the components are made more uniform by the electrode stirring.

また、本発明が対象とするような合金の溶解において
は、合金成分が蒸気やスプラッシュとなって鋳型外へ逸
散することが多い。この逸散は主に融点の低い金属のほ
うで起る。したがって、目標とする合金比率に応じた供
給量を与えても、得られる合金比率は必ずしも目標比率
に一致しない。しかし、生成される合金鋳塊の重量を測
定し、これを重量測定時までの供給量と比較し、これに
基づいて供給量に補正を加えることにより、合金比率が
一層高精度に制御される。
Further, in dissolving an alloy as the object of the present invention, the alloy component often escapes as a vapor or splash outside the mold. This escape mainly occurs in metals with lower melting points. Therefore, even if a supply amount corresponding to the target alloy ratio is given, the obtained alloy ratio does not always match the target ratio. However, by measuring the weight of the produced alloy ingot, comparing this with the supply amount up to the time of the weight measurement, and correcting the supply amount based on this, the alloy ratio is controlled with higher precision. .

〔実施例〕〔Example〕

以下、本発明法を図面を参照して説明する。 Hereinafter, the method of the present invention will be described with reference to the drawings.

第1図は本発明を採用したNb−Ti合金の電子ビームに
よる溶解法を模式的に示す説明図である。棒状金属1は
高融点金属のNbを棒状に成形したもの(Nb棒)で、この
Nb棒1の重量測定を行うロードセル3を介して電子ビー
ム溶解炉12内に矢印方向へ進行可能に垂直状にセットす
る。2は電子ビーム銃で、前記Nb棒1側方の炉内に位置
し、その銃口より放射する電子ビームがNb棒1の先端と
鋳型10内を照射できるように装置される。鋳型10は水冷
銅鋳型で、Nb棒1の直下に設置され、Nb棒1端から溶解
滴下するNb金属を受容して溶融プール6を形成し、水冷
銅鋳型により溶融プール6の下方側から順次冷却され、
凝固して鋳塊6aとなり引下げ装置9により徐々に下方に
引下げる。11は電磁攪拌装置で溶融プールの6の合金を
均一に混合する。8は鋳塊6aの重量測定用ロードセルで
ある。
FIG. 1 is an explanatory view schematically showing a method of melting an Nb—Ti alloy using an electron beam, employing the present invention. The rod-shaped metal 1 is a high-melting metal Nb formed into a rod shape (Nb rod).
The Nb rod 1 is set vertically through the load cell 3 for measuring the weight in the electron beam melting furnace 12 so as to be able to advance in the direction of the arrow. Reference numeral 2 denotes an electron beam gun, which is located in the furnace on the side of the Nb bar 1 and is arranged so that an electron beam emitted from the muzzle can irradiate the tip of the Nb bar 1 and the inside of the mold 10. The mold 10 is a water-cooled copper mold, which is installed immediately below the Nb rod 1, receives the Nb metal melted and dropped from one end of the Nb rod 1, forms a molten pool 6, and sequentially forms the molten pool 6 from the lower side of the molten pool 6 with the water-cooled copper mold. Cooled,
It solidifies to form an ingot 6a and is gradually lowered by the lowering device 9. Numeral 11 denotes an electromagnetic stirrer for uniformly mixing the 6 alloys in the molten pool. 8 is a load cell for measuring the weight of the ingot 6a.

4はチタンスポンジで、下部に重量測定用のロードセ
ル7を装置したホッパ4aに収納し、フィーダ5操作によ
りチタンスポンジを溶融プール6内に投下するよう構成
される。
Reference numeral 4 denotes a titanium sponge, which is housed in a hopper 4a provided with a load cell 7 for measuring weight at a lower portion, and is configured to drop the titanium sponge into a melting pool 6 by operating a feeder 5.

上述のように構成した装置によりNb−Ti合金を溶製す
るには、Nb棒1先端部に電子ビーム銃2より電子ビーム
を放射してNb棒1先端部を溶解せしめその溶滴を落下さ
せて、水冷銅鋳型10内に溶融プール6を形成し、この溶
融滴下による消耗に対応してNb棒1を矢印方向に進行さ
せて溶融滴下を継続するとともに、溶融プール6にも電
子ビームが放射される。この場合、Nb棒1はロードセル
3を用いて刻々に重量測定し、溶解速度を検出する。
In order to melt the Nb-Ti alloy using the apparatus configured as described above, an electron beam is emitted from the electron beam gun 2 to the tip of the Nb rod 1 to melt the tip of the Nb rod 1 and drop the droplet. Then, the molten pool 6 is formed in the water-cooled copper mold 10, and the Nb rod 1 is advanced in the direction of the arrow to continue the molten dropping in response to the consumption by the molten dropping, and the electron beam is also emitted to the molten pool 6. Is done. In this case, the weight of the Nb rod 1 is measured every moment using the load cell 3, and the dissolution rate is detected.

他方チタンスポンジ4を、ホッパ4aよりフィーダ5を
操作して投入量を調整しながら前記溶融プール6内に投
入添加する。このチタンスポンジ4はホッパ4a下部に設
けたロードセル7により刻々に重量測定してその供給速
度を検出制御する。
On the other hand, the titanium sponge 4 is charged into the molten pool 6 while operating the feeder 5 from the hopper 4a to adjust the charging amount. The weight of the titanium sponge 4 is measured by a load cell 7 provided below the hopper 4a, and the supply speed is detected and controlled.

Nb棒1の溶解速度及びチタンスポンジの供給速度を所
定の割合に保持することによって、溶融プール6内の合
金成分が目標値に保たれる。
By maintaining the melting rate of the Nb rod 1 and the supply rate of the titanium sponge at a predetermined ratio, the alloy components in the molten pool 6 are maintained at target values.

水冷銅鋳型10内に形成された溶融プール6の合金は、
電磁攪拌を受けつつその下方側より順次冷却されて鋳塊
6aを生成し、この鋳塊6aは、ロードセル8を装着した引
下げ装置9により、Nb−Tiの溶解速度に対応した引下げ
速度を自動的に調節制御しながら引下げられるととも
に、刻々に鋳塊6aの重量をロードセル8にて測定し、測
定重量を、ロードセル3の信号により求めたNb棒1の供
給量と、ロードセル7の信号より求めたチタンスポンジ
4の供給量との合計値と比較する。
The alloy of the molten pool 6 formed in the water-cooled copper mold 10 is:
While receiving electromagnetic stirring, it is cooled sequentially from the lower side
6a, and the ingot 6a is lowered by the lowering device 9 equipped with the load cell 8 while automatically adjusting and controlling the lowering speed corresponding to the dissolution speed of Nb-Ti. The weight is measured by the load cell 8, and the measured weight is compared with the total value of the supply amount of the Nb bar 1 obtained from the signal of the load cell 3 and the supply amount of the titanium sponge 4 obtained from the signal of the load cell 7.

上記は、Nb−Tiの2元系合金の溶解についての説明で
あるが、溶融プール6に投入添加する原料の種類を増加
して多元系合金を溶解しようとする場合、ホッパ4aを複
数設けて添加することができる。
The above is the description of the melting of the binary alloy of Nb-Ti. However, when it is desired to melt the multi-component alloy by increasing the types of raw materials charged and added to the molten pool 6, a plurality of hoppers 4a are provided. Can be added.

第2図は上記方法における制御方式を系続図である。 FIG. 2 is a continuation diagram of the control method in the above method.

制御装置13には演算、制御等に必要な基準資料を入力
しておき、ロードセル3は刻々のNb棒の重量を測定し、
ロードセル7は刻々のチタンスポンジの重量を測定し、
又ロードセル8は鋳塊6aの重量を測定して、それぞれ制
御装置13に入力する。この入力に基づいて制御装置13
は、予め入力されている基準資料と対比してNb棒1の溶
解速度、チタンスポンジの供給速度、溶融プール合金の
成分組成(鋳塊成分組成)等を演算し、電子ビーム銃の
出力制御調整、チタンスポンジ供給用フィーダ5の作動
制御をそれぞれ指令し、Nb棒1およびチタンスポンジの
溶解速度に対応する鋳塊6aの引き下げ速度を演算し、引
き下げ装置9に指令してそれぞれ自動制御する。
The reference material necessary for calculation, control, etc. is input to the control device 13, and the load cell 3 measures the weight of the Nb bar every moment,
The load cell 7 measures the weight of the titanium sponge every moment,
The load cell 8 measures the weight of the ingot 6a and inputs the measured weight to the control device 13. Control device 13 based on this input
Calculates the melting speed of the Nb rod 1, the supply speed of titanium sponge, the composition of the molten pool alloy (ingot composition), etc., in comparison with pre-input reference data, and adjusts the output control of the electron beam gun. , The operation control of the titanium sponge supply feeder 5 is commanded, and the lowering speed of the ingot 6a corresponding to the melting speed of the Nb rod 1 and the titanium sponge is calculated.

次に、本発明法についての更に具体的な実施例を説明
する。
Next, more specific examples of the method of the present invention will be described.

第1図に示す電子ビーム溶解炉を用いて前記の手順に
より、目標成分Ti46.5wt%、Nb53,5wt%のNb−Ti合金10
0kgを溶製した。Nb原料としては100mmφの棒状試料を用
い、Tiとしては1/2インチ〜20メッシュのチタンスポン
ジを用いた。又比較のため、従来行われている、Nb、Ti
板を重ね合わせた消耗電極を用いて、真空アーク2回溶
解を行った。
Using the electron beam melting furnace shown in FIG. 1, the Nb-Ti alloy 10 having a target composition of Ti46.5 wt% and Nb53,5 wt%
0 kg was melted. A rod sample of 100 mmφ was used as the Nb raw material, and a titanium sponge of 1/2 inch to 20 mesh was used as Ti. For comparison, Nb, Ti
Using a consumable electrode on which the plates were stacked, melting was performed twice in a vacuum arc.

第3図に本発明法により溶解した鋳塊表層におけるTi
の分析結果を示す。同図に示すように、Tiのバラツキは
±0.5%以内に抑えられていることが判る。また鋳塊を
切断して内装を調べた結果、Nbの未溶解部分は全く認め
られなかった。
FIG. 3 shows the Ti in the ingot surface layer melted by the method of the present invention.
2 shows the analysis results. As shown in the figure, it can be seen that the variation in Ti is kept within ± 0.5%. As a result of cutting the ingot and examining the interior, no undissolved portion of Nb was observed.

一方、上記比較材の鋳塊表層におけるTiの分析結果
を、第3図に併せて示す。同図に示すようにTiのバラツ
キは±1%以内に拡がっており、本発明法によりバラツ
キが大きいことが判る。
On the other hand, the analysis results of Ti in the surface layer of the ingot of the comparative material are also shown in FIG. As shown in the figure, the variation of Ti is spread within ± 1%, and it is understood that the variation is large by the method of the present invention.

〔発明の効果〕〔The invention's effect〕

以上に説明したように、本発明法は高融点活性金属を
含む多元系合金を、未溶解部分がなく、かつ各成分を均
一に且つ高い合金比率精度で溶解できるものであり、上
記合金の品質向上作業性の向上およびコスト低減等の著
しい改善が可能であるという多大な効果を奏するもので
ある。
As described above, the method of the present invention is capable of dissolving a multi-component alloy containing a high melting point active metal without any undissolved portion and uniformly dissolving each component with a high alloy ratio accuracy. This has a great effect that remarkable improvements such as improved workability and cost reduction are possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図はNb−Ti合金の本発明法における溶解の一例を模
式滴に示す説明図、第2図は本発明法における制御方式
図、第3図は本発明溶解法によって溶製した鋳塊のTi分
析結果を示す線図である。 図中、1:棒状金属(Nb棒)、2:電子ビーム銃、3,7,8:ロ
ードセル、4:チタンスポンジ、4a:ホッパー、5:フィー
ダ、6:溶融プール、9:引下げ装置、10:水冷銅鋳型、11:
電磁攪拌装置、12:電子ビーム溶解炉、13:制御装置。
FIG. 1 is a schematic diagram illustrating an example of melting of an Nb-Ti alloy in the method of the present invention, FIG. 2 is a control method diagram in the method of the present invention, and FIG. 3 is an ingot produced by the melting method of the present invention. FIG. 3 is a diagram showing the results of Ti analysis of FIG. In the figure, 1: rod-shaped metal (Nb rod), 2: electron beam gun, 3, 7, 8: load cell, 4: titanium sponge, 4a: hopper, 5: feeder, 6: molten pool, 9: pull-down device, 10 : Water-cooled copper mold, 11:
Electromagnetic stirrer, 12: electron beam melting furnace, 13: controller.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−174838(JP,A) 特開 昭62−238339(JP,A) 欧州公開244255(EP,A1) (58)調査した分野(Int.Cl.6,DB名) C22C 1/02────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-174838 (JP, A) JP-A-62-238339 (JP, A) European publication 244255 (EP, A1) (58) Fields studied (Int .Cl. 6 , DB name) C22C 1/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高融点活性金属を少なくとも1種含有する
合金の溶解において、合金成分のうちの1種金属を棒状
としてその先端より加熱溶解して鋳型内に滴下するとと
もに、他の1種または複数種の金属を粒状または塊状と
して容器内から前記鋳型内に供給して金属鋳塊を生成す
る際に、棒状金属、容器内金属および生成鋳塊の各重量
を測定し、棒状金属および容器内金属の各重量変化から
金属供給量を検出し、所定濃度の合金鋳塊を溶製するべ
く前記金属供給量および加熱量を調整すると共に、生成
鋳塊の重量変化と、棒状金属および容器内金属の各重量
変化との偏差に基づいて金属供給量を補正することを特
徴とする高融点活性金属合金の溶解方法。
An alloy containing at least one high-melting-point active metal is melted by heating one of the alloy components into a rod shape from the tip thereof and dropping it into a mold. When a metal ingot is produced by supplying a plurality of types of metals in the form of granules or lump into the mold from the inside of the container, the bar-shaped metal, the weight of the metal in the container and the produced ingot are measured, and the rod-shaped metal and the inside of the container are measured. The metal supply amount is detected from each weight change of the metal, and the metal supply amount and the heating amount are adjusted so as to melt the alloy ingot having a predetermined concentration, and the weight change of the produced ingot, the rod-shaped metal and the metal in the container are performed. A method for melting a high melting point active metal alloy, comprising correcting a metal supply amount based on a deviation from each of the weight changes.
【請求項2】鋳型内の溶融金属を電磁攪拌装置により均
一に混合することを特徴とする特許請求の範囲第1項に
記載の高融点活性金属合金の溶解方法。
2. The method for melting a high melting point active metal alloy according to claim 1, wherein the molten metal in the mold is uniformly mixed by an electromagnetic stirrer.
【請求項3】棒状金属が合金成分の中で最も高融点の金
属である特許請求の範囲第1項または第2項に記載の高
融点活性金属合金の溶解方法。
3. The method for melting a high melting point active metal alloy according to claim 1, wherein the rod-shaped metal is a metal having the highest melting point among the alloy components.
【請求項4】棒状金属の加熱手段が電子ビーム照射、プ
ラズマビーム照射またはプラズマアーク照射である特許
請求の範囲第1項、第2項または第3項に記載の高融点
活性金属合金の溶解方法。
4. A method for melting a high melting point active metal alloy according to claim 1, wherein the means for heating the rod-shaped metal is electron beam irradiation, plasma beam irradiation or plasma arc irradiation. .
【請求項5】照射が棒状金属の先端部と鋳型内金属の双
方に対して行われる特許請求の範囲第4項に記載の高融
点活性金属合金の溶解方法。
5. The method for melting a high melting point active metal alloy according to claim 4, wherein the irradiation is performed on both the tip of the rod-shaped metal and the metal in the mold.
【請求項6】鋳型内の生成鋳塊が順次下方に引き抜かれ
る特許請求の範囲第1項〜第5項のいずれかに記載の高
融点活性金属合金の溶解方法。
6. The method for melting a high melting point active metal alloy according to claim 1, wherein the formed ingot in the mold is sequentially drawn downward.
JP63029213A 1988-02-10 1988-02-10 Melting method of high melting point active metal alloy Expired - Fee Related JP2779393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029213A JP2779393B2 (en) 1988-02-10 1988-02-10 Melting method of high melting point active metal alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029213A JP2779393B2 (en) 1988-02-10 1988-02-10 Melting method of high melting point active metal alloy

Publications (2)

Publication Number Publication Date
JPH01205039A JPH01205039A (en) 1989-08-17
JP2779393B2 true JP2779393B2 (en) 1998-07-23

Family

ID=12269915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029213A Expired - Fee Related JP2779393B2 (en) 1988-02-10 1988-02-10 Melting method of high melting point active metal alloy

Country Status (1)

Country Link
JP (1) JP2779393B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101861932B1 (en) 2016-11-30 2018-05-28 영남대학교 산학협력단 Melting apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513026A (en) * 2009-12-07 2013-04-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ An alloy comprising two refractory metals, in particular tungsten and tantalum, and an X-ray anode comprising said alloy, and a method for fabricating said alloy and X-ray anode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174838A (en) * 1984-02-20 1985-09-09 Sumitomo Metal Ind Ltd Melting method of nb-ti alloy
JPS6228839A (en) * 1985-07-31 1987-02-06 Nec Corp Data processor
GB8610717D0 (en) * 1986-05-01 1986-06-04 Alform Alloys Ltd Production of alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101861932B1 (en) 2016-11-30 2018-05-28 영남대학교 산학협력단 Melting apparatus

Also Published As

Publication number Publication date
JPH01205039A (en) 1989-08-17

Similar Documents

Publication Publication Date Title
CN106544544B (en) A kind of method of electron-beam cold bed furnace single melting TC4 titan alloy casting ingots
Hu et al. Effect of heat input on cracking in laser solid formed DZ4125 superalloy
JP2779393B2 (en) Melting method of high melting point active metal alloy
JPH0266129A (en) Method for regulating composition of titanium and titanium alloy in electron beam melting
JP3077387B2 (en) Automatic control plasma melting casting method and automatic control plasma melting casting apparatus
US4007770A (en) Semi-consumable electrode vacuum arc melting process for producing binary alloys
JP6994392B2 (en) Ingot made of an alloy containing titanium as the main component, and its manufacturing method
JP7173152B2 (en) Manufacturing method and manufacturing apparatus for titanium alloy ingot
JP5652953B2 (en) Melting furnace for melting metal and method for melting alloy ingot using the same
JPH04272146A (en) Production of titanium and titanium alloy product
US8077754B1 (en) Pool power control in remelting systems
US4091229A (en) Slag and alloy feeding based on electrode weight
JPH02236232A (en) Method for melting and casting titanium and titanium alloy
JPS6369928A (en) Production of alloy
JPH0421727A (en) Method and apparatus for producing titanium cast ingot
US3865174A (en) Method for the nonconsumable electrode melting of reactive metals
JPH0559465A (en) Method for refining high activity alloy containing high melting point metal element
JP3511718B2 (en) How to dissolve titanium
Reitz et al. Fundamentals of desoxidation behaviour of Ti-alloys by chamber ESR with Ca-reactive slags
JP7256385B2 (en) Manufacturing method and manufacturing apparatus for titanium alloy ingot
JPS61106731A (en) Production of ingot of high melting active metallic alloy
JPH03197625A (en) Control method for esr slag
RU2204618C1 (en) Method for making tantalum ingots
JPH04124229A (en) Method for electron beam melting of titanium alloy
GB769502A (en) Improvements in or relating to the arc-melting of high melting point metals or alloys

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees