JP2773951B2 - Manufacturing method of electromagnetic thick plate with excellent low-field magnetic properties - Google Patents

Manufacturing method of electromagnetic thick plate with excellent low-field magnetic properties

Info

Publication number
JP2773951B2
JP2773951B2 JP2072560A JP7256090A JP2773951B2 JP 2773951 B2 JP2773951 B2 JP 2773951B2 JP 2072560 A JP2072560 A JP 2072560A JP 7256090 A JP7256090 A JP 7256090A JP 2773951 B2 JP2773951 B2 JP 2773951B2
Authority
JP
Japan
Prior art keywords
rolling
less
thick plate
magnetic properties
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2072560A
Other languages
Japanese (ja)
Other versions
JPH04143220A (en
Inventor
達也 熊谷
幸男 冨田
良太 山場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2072560A priority Critical patent/JP2773951B2/en
Publication of JPH04143220A publication Critical patent/JPH04143220A/en
Application granted granted Critical
Publication of JP2773951B2 publication Critical patent/JP2773951B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低磁場磁気特性に優れた電磁厚板の製造法
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing an electromagnetic thick plate having excellent low-field magnetic properties.

(従来の技術) 近年、磁気シールドの必要性はますます高まってお
り、なかでもより低磁場での磁気シールドが問題になっ
てきている。例えば、病院のMRI診断室周辺でのペース
メーカへの影響や、インテリジェントビル内のコンピュ
ータ機器へのエレベータのモーター等からの影響などを
考えると、数十ガウス以下の磁界に対しても十分なシー
ルド性が必要である。
(Prior Art) In recent years, the need for a magnetic shield has been increasing more and more, and in particular, a magnetic shield in a lower magnetic field has become a problem. For example, considering the effects on pacemakers around the MRI diagnostic room in hospitals and the effects of elevator motors on computer equipment in intelligent buildings, etc., sufficient shielding properties against magnetic fields of tens of gauss or less are considered. is required.

磁気シールドに用いられる電磁厚板にも、非常に低い
磁場、例えば磁化力20A/m以下においても高い磁束密度
を有し、かつ板厚方向均一性がよいことが要求される。
An electromagnetic thick plate used for a magnetic shield is required to have a high magnetic flux density even at a very low magnetic field, for example, a magnetizing force of 20 A / m or less, and to have good uniformity in the thickness direction.

磁束密度に優れた電磁鋼板としては、従来から薄板分
野で珪素鋼板、電磁軟鉄板をはじめとする数多くの材料
が提供されているのは公知である。しかし、構造部材と
して使用するには組み立て加工上および強度上の問題が
あり、厚鋼板を利用する必要が生じてくる。これまで電
磁厚板としては特開昭60−96749号公報や特開平1−142
028号公報などが公知である。
It is well known that many materials such as silicon steel sheets and soft magnetic iron sheets have been provided in the field of thin sheets as electromagnetic steel sheets having excellent magnetic flux density. However, when used as a structural member, there are problems in terms of assembly processing and strength, and it becomes necessary to use a thick steel plate. Until now, electromagnetic thick plates have been disclosed in JP-A-60-96749 and JP-A-1-142.
No. 028 is known.

数十ガウス以下の磁界に対して有効なシールド性を発
揮するためには、例えば磁化力20A/m程度のごく低い磁
場において高い磁束密度を有することが必要であるが、
従来開発された鋼材ではこのレベルの特性については考
慮されておらず、したがって磁化力20A/mでは高い磁束
密度は得られていない。
In order to exhibit effective shielding properties for magnetic fields of tens of gauss or less, it is necessary to have a high magnetic flux density in a very low magnetic field of, for example, a magnetizing force of about 20 A / m,
Conventionally developed steel materials do not consider this level of characteristics, and therefore high magnetic flux densities cannot be obtained with a magnetizing force of 20 A / m.

(発明が解決しようとする課題) 本発明の目的は以上の点に鑑みなされたもので、磁化
力20A/mにおける磁束密度0.6Tesla以上を有する、低磁
場磁気特性に優れた電磁厚板の製造頬を提供することで
ある。
(Problems to be Solved by the Invention) The object of the present invention has been made in view of the above points, and is to manufacture an electromagnetic thick plate having a magnetic flux density of 0.6 Tesla or more at a magnetizing force of 20 A / m and excellent in low magnetic field magnetic properties. Is to provide cheeks.

(課題を解決するための手段) 本発明の要旨は以下の通りである。(Means for Solving the Problems) The gist of the present invention is as follows.

1.重量%で、C:0.005%以下、Si:0.2%を超え、3.5%以
下、Al:0.2%を超え、3.5%以下で、SiとAlの重量%の
和が1.5%以上、Mn:0.5%以下、S:0.010%以下、N:0.00
8%以下、O:0.006%以下を含み、残部実質的に鉄からな
る鋼組成の鋼片または鋳片を、900℃以上で圧延形状比
Aが0.6以上の圧延パスを1回以上はとる圧延を行な
い、引き続き700℃以上900℃以下で圧下率を35%以上70
%以下とする圧延を行ない、950℃〜1150℃で焼鈍する
ことを特徴とする低磁場磁気特性に優れた電磁厚板の製
造法。
1. By weight%, C: 0.005% or less, Si: more than 0.2%, 3.5% or less, Al: more than 0.2%, 3.5% or less, the sum of the weight% of Si and Al is 1.5% or more, Mn: 0.5% or less, S: 0.010% or less, N: 0.00
Rolling a steel slab or slab having a steel composition of 8% or less, O: 0.006% or less, and the balance substantially consisting of iron at least one rolling pass at 900 ° C or more and a rolling shape ratio A of 0.6 or more. And continuously reduce the rolling reduction from 35% to 70 at 700 ° C to 900 ° C.
%. A method for producing an electromagnetic thick plate excellent in low magnetic field magnetic properties, characterized in that rolling is carried out to not more than 10% and annealing is performed at 950 ° C. to 1150 ° C.

ただし、 A :圧延形状比 hi:入側板厚(mm) ho:出側板厚(mm) R :圧延ロール半径(mm) 2.重量%で、C:0.005%以下、Si:0.2%を超え、3.5%以
下、Al:0.2%を超え、3.5%以下で、SiとAlの重量%の
和が1.5%以上、Mn:0.5%以下、S:0.010%以下、N:0.00
8%以下、O:0.006%以下を含み、残部実質的に鉄からな
る鋼組成の鋼片または鋳片を、900℃以上で圧延形状比
Aが0.6以上の圧延パスを1回以上はとる圧延を行な
い、引き続き700℃以上900℃以下で圧下率を35%以上70
%以下とする圧延を行ない、1000℃〜1200℃で焼準する
ことを特徴とする低磁場磁気特性に優れた電磁厚板の製
造法。
However, A: Rolling shape ratio h i : Incoming plate thickness (mm) h o : Outgoing plate thickness (mm) R: Rolling roll radius (mm) 2. By weight%, C: 0.005% or less, Si: Exceeding 0.2%, 3.5% or less, Al: more than 0.2%, 3.5% or less, the sum of the weight percentages of Si and Al is 1.5% or more, Mn: 0.5% or less, S: 0.010% or less, N: 0.00
Rolling a steel slab or slab having a steel composition of 8% or less, O: 0.006% or less, and the balance substantially consisting of iron at least one rolling pass at 900 ° C or more and a rolling shape ratio A of 0.6 or more. And continuously reduce the rolling reduction from 35% to 70 at 700 ° C to 900 ° C.
%. A method for producing an electromagnetic thick plate excellent in low magnetic field magnetic properties, characterized in that rolling is carried out to at most 1000% and normalizing is performed at 1000 ° C. to 1200 ° C.

ただし、 A :圧延形状比 hi:入側板厚(mm) ho:出側板厚(mm) R :圧延ロール半径(mm) (作用) まず、磁化のプロセスについて述べる。However, A: rolling shape ratio h i: thickness at entrance side (mm) h o: thickness at delivery side (mm) R: rolling roll radius (mm) (action) will be described first magnetization process.

消磁状態においては鋼内部の磁区は一つの結晶粒内に
おいて細かく分かれ、それぞれが磁区容易方向のうちい
ずれかをとり、全体としては完全に無秩序である。その
鋼をある方向に磁化させていくと、次第に外からの磁化
方向に近い方向をもった磁区が、他の磁区を蚕食併合し
て拡大していく。つまり、磁壁の移動が起こるわけで、
低磁場では主にこれによって磁化がすすむ。
In the demagnetized state, the magnetic domains inside the steel are finely divided within one crystal grain, each of which takes one of the magnetic domain easy directions, and is totally disordered as a whole. When the steel is magnetized in a certain direction, the magnetic domain having a direction close to the direction of magnetization from the outside gradually expands by combining other magnetic domains with silkworms. In other words, the domain wall moves.
In a low magnetic field, this mainly promotes magnetization.

したがって低磁場での磁束密度を決めるのは、磁壁の
移動のしやすさである。高い磁束密度を得るために、従
来からも、磁壁移動の障害となる結晶粒界の減少すなわ
ち結晶粒の粗大化が重要であることは定性的にはいわれ
ていた(特開昭60−96749号公報)。
Therefore, it is easy to move the domain wall that determines the magnetic flux density in the low magnetic field. It has been qualitatively said that, in order to obtain a high magnetic flux density, it is important to reduce the crystal grain boundaries which hinder domain wall movement, that is, to make the crystal grains coarser (Japanese Patent Application Laid-Open No. 60-96749). Gazette).

しかし、厚板の場合、板厚全体にわたって安定的に粗
大粒を得る方法も確立されていなかった。従来、電磁厚
板の結晶粒粗大化には圧延後の熱処理による再結晶が利
用されており(特開昭60−96749号公報)、その際、熱
処理温度が高いほうが再結晶が促進され結晶粒が粗大に
なる。しかしAc1変態点を超える温度で熱処理を行なう
と、かえって変態の際に細粒化されるため、900℃前後
が熱処理温度の限界であった。
However, in the case of a thick plate, a method for stably obtaining coarse particles over the entire thickness has not been established. Conventionally, recrystallization by heat treatment after rolling has been used for coarsening the crystal grains of an electromagnetic thick plate (Japanese Patent Application Laid-Open No. 60-96749). Becomes coarse. However, when the heat treatment is performed at a temperature exceeding the Ac 1 transformation point, the particles are refined during the transformation, so that the heat treatment temperature limit is around 900 ° C.

発明者らはここにおいて、粗大粒を得るための化学成
分と圧延条件、熱処理条件について詳細な検討を行なっ
た場合、極めて大きな結晶粒を板厚全体にわたって安定
的に得ることに成功したものである。
Here, the inventors succeeded in stably obtaining extremely large crystal grains over the entire sheet thickness when a detailed study was performed on the chemical composition, rolling conditions, and heat treatment conditions for obtaining coarse grains. .

0.005%以下の極低Cで、SiとAlの重量%の和が1.5%
以上の場合には、圧延後に、Ac1変態点を超える温度で
熱処理を行っても細粒化されることなく、著しい粗粒化
を図れることを見出した。具体的には950℃以上での焼
鈍ないしは1000℃以上での焼準によって粗大粒を得るこ
とができる。Si+Alの量が増すと靭性が低下するが、こ
れに対しては極低CとしたうえにSも低減することで靭
性が確保可能であることを知見した。
Very low C of 0.005% or less, and the sum of the weight percentages of Si and Al is 1.5%
In the above case, it has been found that even after the rolling, heat treatment is performed at a temperature exceeding the Ac 1 transformation point, whereby remarkable coarsening can be achieved without fineness. Specifically, coarse grains can be obtained by annealing at 950 ° C. or higher or normalizing at 1000 ° C. or higher. It has been found that the toughness decreases when the amount of Si + Al increases, but it is found that toughness can be ensured by decreasing the S and reducing the S to extremely low.

さらに、圧延時に900℃以下において35%以上70%以
下の圧下率をとることで、高温熱処理前の結晶粒を微細
化して再結晶をさせやすくするとともに、鋼中に歪を導
入して、この歪を熱処理時の再結晶の駆動力とすること
で、極めて大きな結晶粒を板厚全体にわたって安定的に
得られることを知見した。
Furthermore, by taking a rolling reduction of 35% or more and 70% or less at 900 ° C. or less during rolling, the crystal grains before high-temperature heat treatment are refined to facilitate recrystallization, and strain is introduced into the steel. By using the strain as a driving force for recrystallization during heat treatment, it was found that extremely large crystal grains can be stably obtained over the entire thickness.

第1図に、0.004%C−0.7%Si−1.2%Al鋼での700℃
〜900℃での圧下率と、結晶粒度No.の関係を示す。
Fig. 1 shows 700 ° C in 0.004% C-0.7% Si-1.2% Al steel.
The relationship between the rolling reduction at ℃ 900 ° C. and the crystal grain size No. is shown.

35%以上の圧下率において極めて粗粒となることがわ
かる。ただし、70%を超える圧下率では表面の結晶はか
えって細かくなり、板厚方向の粒度のばらつきが大きく
なる。
It can be seen that the grains become extremely coarse at a rolling reduction of 35% or more. However, when the rolling reduction exceeds 70%, the crystals on the surface become rather fine, and the variation in the grain size in the thickness direction increases.

第2図に、同じ鋼の700℃〜900℃での圧下率と、磁化
力20A/mでの磁束密度および板厚方向の磁束密度のばら
つきを示す。
FIG. 2 shows the reduction ratio of the same steel at 700 ° C. to 900 ° C., and the variation of the magnetic flux density at a magnetizing force of 20 A / m and the magnetic flux density in the thickness direction.

35%以上の圧下率において高い磁束密度が得られてお
り、第1図の結晶粒度No.と対応していることがわか
る。また、70%を超える圧下率では、やはり粒度のばら
つきに対応して、板厚方向の磁束密度のばらつきが大き
くなっている。
It can be seen that a high magnetic flux density was obtained at a rolling reduction of 35% or more, which corresponds to the crystal grain size No. in FIG. At a rolling reduction of more than 70%, the variation in the magnetic flux density in the thickness direction also increases, corresponding to the variation in the grain size.

第3図は、同じ成分の5mm,60mm,100mmの板圧の鋼材に
ついて、900℃以下での圧下率40%の場合の、焼鈍およ
び焼準温度と20A/mでの磁気特性の関係である。
FIG. 3 shows the relationship between the annealing and normalizing temperatures and the magnetic properties at 20 A / m when the reduction ratio is 40% at 900 ° C. or less for steel materials having the same composition and 5 mm, 60 mm, and 100 mm sheet pressure. .

950℃以上の焼鈍、1000℃以上の焼準でいずれも高い
磁束密度が得られている。
High magnetic flux densities are obtained in both annealing at 950 ° C or higher and normalizing at 1000 ° C or higher.

すなわち、700℃〜900℃で35〜70%の圧下率をとり、
950℃以上の焼鈍あるいは1000℃以上の焼準を施せば、
粒度No.−2番以下の粗大粒となり、磁化力20A/mにおい
て0.6Tesla以上の磁束密度が得られるものである。
In other words, take the reduction of 35-70% at 700-900 ° C,
By annealing at 950 ° C or higher or normalizing at 1000 ° C or higher,
It becomes coarse grains with a grain size of No.-2 or less, and a magnetic flux density of 0.6 Tesla or more can be obtained at a magnetizing force of 20 A / m.

さらに、空隙性欠陥の作用についても詳細な検討を行
なった結果、そのサイズが100μm以上のものが低磁場
の磁気特性を大幅に低下させることを知見した。そして
この100μm以上の有害な空隙性欠陥をなくすためには
圧延形状比Aが0.6以上必要であることを見出した。
Furthermore, as a result of a detailed study of the action of the void defects, it was found that those having a size of 100 μm or more significantly reduce the magnetic properties in a low magnetic field. It has been found that the rolling shape ratio A is required to be 0.6 or more in order to eliminate the harmful void defects of 100 μm or more.

ただし、 A :圧延形状比 hi:入側板厚(mm) ho:出側板厚(mm) R :圧延ロール半径(mm) 第4図に示すように0.004%C−0.7%Si−1.2%Al鋼
で高形状比圧延により、空隙性欠陥のサイズを100μ以
下にすることで低磁場の磁気特性が向上することがわか
る。
However, A: Rolling shape ratio h i : Incoming plate thickness (mm) h o : Outgoing plate thickness (mm) R: Rolling roll radius (mm) As shown in Fig. 4, 0.004% C-0.7% Si-1.2% Al steel It can be seen that the magnetic properties in a low magnetic field are improved by reducing the size of the void defect to 100 μ or less by high shape ratio rolling.

次に成分限定理由を述べる。 Next, the reasons for limiting the components will be described.

Cは変態温度に大きく影響する元素があり、C量が増
加するとγ変態を消失させるためにはSiおよびAlを多く
添加する必要がある。したがって0.005%を上限とす
る。
C has elements that greatly affect the transformation temperature, and it is necessary to add a large amount of Si and Al in order to eliminate γ transformation when the amount of C increases. Therefore, the upper limit is 0.005%.

SiおよびAlは本発明のなかで重要な元素であり、γ変
態を消失させるためにはSi+Al≧1.5%が必要である。
しかし、それぞれ3.5%を超えると靭性の確保が困難で
あるのでこれを上限とする。
Si and Al are important elements in the present invention, and Si + Al ≧ 1.5% is required to eliminate the γ transformation.
However, if each exceeds 3.5%, it is difficult to secure toughness, so this is set as the upper limit.

PおよびSは靭性確保の点からそれぞれ0.01%以下と
する。
P and S are each set to 0.01% or less from the viewpoint of securing toughness.

Mnは低磁場での磁束密度の点からは低いほうがよく、
0.5%以下とする。
Mn should be low in terms of magnetic flux density at low magnetic field,
0.5% or less.

NはAl Nによって結晶粒を微細化させ、低磁場磁気特
性には非常に有害な元素であるので、極力低減すること
が必要であり、0.008%を上限とし、望ましくは0.004%
以下とする。
Since N is an element which makes crystal grains fine by AlN and is very harmful to low-field magnetic properties, it is necessary to reduce it as much as possible. The upper limit is 0.008%, preferably 0.004%.
The following is assumed.

Oは鋼中において非金属介在物を形成し、磁壁の移動
を妨げ磁束密度を低下させるので、0.006%以下とす
る。
O forms nonmetallic inclusions in the steel, hinders the movement of the domain wall and lowers the magnetic flux density.

次に製造条件について述べる。 Next, the manufacturing conditions will be described.

圧延前加熱温度については、特に限定する必要はな
い。
The heating temperature before rolling is not particularly limited.

熱間圧延にあたり前述の空隙性欠陥は鋼の凝固過程で
大小はあるが、必ず発生するものであり、これをなくす
手段は圧延によらなければならない。すなわち、圧延一
回当たりの変形量を大きくし板厚中心部にまで変形がお
よぶ熱間圧延が有効である。具体的には圧延形状比Aが
0.6以上の圧延パスを一回以上含む高形状圧延を行な
い、空隙性欠陥のサイズを100μ以下にすることが磁気
特性によい。
In hot rolling, although the above-mentioned void defects have a large or small size during the solidification process of steel, they always occur, and the means for eliminating them must be by rolling. That is, hot rolling, in which the amount of deformation per rolling is increased and the deformation reaches the center of the sheet thickness, is effective. Specifically, the rolling shape ratio A is
It is good for magnetic properties that high-form rolling including at least one rolling pass of 0.6 or more is performed to reduce the size of void defects to 100 μ or less.

次に700℃〜900℃の温度において累積35%以上の圧下
率により結晶粒を微細化するとともに歪を導入し、これ
につづく高温熱処理時の再結晶を促進させる。ただし70
%超の圧下率になると、熱処理後結晶粒度が板厚方向に
不均一になり、磁束密度のばらつきを大きくする。した
がって板厚方向に均一な粗大粒を得るために、圧下率は
35〜70%とする。
Next, at a temperature of 700 ° C. to 900 ° C., the crystal grains are refined with a rolling reduction of 35% or more and a strain is introduced, thereby promoting recrystallization during the subsequent high-temperature heat treatment. But 70
%, The grain size after heat treatment becomes non-uniform in the sheet thickness direction, and the variation in magnetic flux density increases. Therefore, in order to obtain uniform coarse grains in the thickness direction, the rolling reduction is
35% to 70%.

焼鈍および焼準は、結晶粒粗大化および内部歪除去の
ために行なうが、それぞれ950℃および1000℃以下では
結晶粒粗大化が不十分である。また、1150℃以上の焼
鈍、1200℃以上の焼準はスケールロスの防止、省エネル
ギーの観点から不必要であるため上限をそれぞれ1150
℃,1200℃とする。
Annealing and normalizing are performed for coarsening the crystal grains and removing internal strain. However, at 950 ° C. and 1000 ° C. or less, the coarsening of the crystal grains is insufficient. Further, since annealing at 1150 ° C or higher and normalizing at 1200 ° C or higher are unnecessary from the viewpoint of scale loss prevention and energy saving, the upper limit is set to 1150
℃, 1200 ℃.

(実 施 例) 第1表に電磁厚板の成分、第2表に製造条件と空隙性
欠陥の大きさ、フェライト粒径、磁化力20A/mにおける
磁束密度、板厚方向の磁束密度のばらつき、および靭性
の指標として0℃におけるシャルピー試験の吸収エネル
ギーvEoを示す。
(Examples) Table 1 shows the components of the electromagnetic thick plate, Table 2 shows the manufacturing conditions and the size of void defects, ferrite grain size, magnetic flux density at a magnetizing force of 20 A / m, and variations in the magnetic flux density in the thickness direction. , And the absorbed energy vEo of the Charpy test at 0 ° C. as an index of toughness.

例1〜11は本発明の実施例を示し、例12〜25は比較例
を示す。
Examples 1 to 11 show examples of the present invention, and Examples 12 to 25 show comparative examples.

例1〜7は板厚60mmに仕上げたもので、例8〜9は10
0mm、例10は20mm、例11は5mmにそれぞれ仕上げたもので
ある。これらはいずれも磁化力20A/mにおける磁束密度
が高く、板厚方向のばらつきが少ない。
Examples 1 to 7 were finished to a plate thickness of 60 mm, and Examples 8 to 9 were
Example 10 was finished to 20 mm, Example 10 was finished to 5 mm, and Example 11 was finished to 5 mm. All of these have a high magnetic flux density at a magnetizing force of 20 A / m and have little variation in the thickness direction.

例12はCが上限を超え、例13,14はSi量とAl量の和が
1.5%に満たないため、いずれも高温においてγ領域が
存在し、熱処理時の変態により細粒となって磁束密度が
低い。例15はSiが、例16はAlが上限を超えるため、靭性
が低い。例17はMnが、例18はSが、例19はNが、例20は
Oがそれぞれ上限を超えているので磁束密度が低く、例
18の場合は靭性も低い。例21は圧延形状比が不足してお
り、空隙性欠陥が大きいため磁気特性が低い。例22は70
0℃〜900℃での圧下率が下限未満であるので磁束密度が
低い。例23は700℃〜900℃での圧下率が上限を超えてい
るので、磁束密度のばらつきが大きい。例24は焼鈍温度
が下限未満で、例25は焼準温度が下限未満であるため粒
成長が不十分であり、磁束密度が低い。
In Example 12, C exceeded the upper limit, and in Examples 13 and 14, the sum of the Si amount and the Al amount
Since it is less than 1.5%, a γ region exists at any high temperature, and becomes fine grains due to transformation during heat treatment, resulting in low magnetic flux density. Example 15 has low toughness because Si exceeds the upper limit in Example 16 and Al in Example 16 exceeds the upper limit. Example 17 has Mn, Example 18 has S, Example 19 has N, and Example 20 has O which exceeds the upper limit.
In the case of 18, the toughness is low. In Example 21, the rolling shape ratio was insufficient, and the magnetic properties were low due to large void defects. Example 22 is 70
Since the rolling reduction at 0 ° C. to 900 ° C. is less than the lower limit, the magnetic flux density is low. In Example 23, since the rolling reduction at 700 ° C. to 900 ° C. exceeds the upper limit, the variation in the magnetic flux density is large. In Example 24, the annealing temperature was lower than the lower limit, and in Example 25, the grain growth was insufficient because the normalizing temperature was lower than the lower limit, and the magnetic flux density was low.

(発明の効果) 以上詳細に述べたごとく、本発明によれば適切な成分
と製造法の限定により、磁化力20A/mの低磁場において
磁束密度0.6Tesla以上で、かつ板厚方向に均一な磁気特
性を具備せしめることに成功し、数十ガウス以下の磁界
に対する磁気シールドへの適用を可能としたもので、産
業上多大な効果を奏するものである。
(Effects of the Invention) As described above in detail, according to the present invention, the magnetic flux density is 0.6 Tesla or more in a low magnetic field of 20 A / m and uniform in the thickness direction by limiting the appropriate components and the manufacturing method. It succeeds in providing magnetic properties and can be applied to a magnetic shield for a magnetic field of several tens of gauss or less, and has a great industrial effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図は700℃〜900℃での圧下率が、結晶粒度No.に及
ぼす影響を示す図表、第2図は700℃〜900℃での圧下率
が、磁化力20A/mにおける磁束密度および磁束密度のば
らつきに及ぼす影響を示す図表、第3図は焼鈍および焼
準温度が、磁化力20A/mにおける磁束密度に及ぼす影響
を示す図表、第4図は空隙性欠陥のサイズが、磁化力20
A/mにおける磁束密度に及ぼす影響を示す図表である。
FIG. 1 is a chart showing the effect of the reduction at 700 ° C. to 900 ° C. on the grain size No., and FIG. 2 is a graph showing the reduction at 700 ° C. to 900 ° C. FIG. 3 is a graph showing the effect of the magnetic flux density on variation, FIG. 3 is a graph showing the effect of annealing and normalizing temperature on the magnetic flux density at a magnetizing force of 20 A / m, and FIG. 20
4 is a chart showing the effect on magnetic flux density at A / m.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C21D 8/12Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) C21D 8/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、 C :0.005%以下、 Si:0.2%を超え、3.5%以下、 Al:0.2%を超え、3.5%以下で、SiとAlの重量%の和が
1.5%以上、 Mn:0.5%以下、 S :0.010%以下、 N :0.008%以下、 O :0.006%以下 残部実質的に鉄からなる鋼組成の鋼片または鋳片を、90
0℃以上で圧延形状比Aが0.6以上の圧延パスを1回以上
はとる圧延を行ない、引き続き700℃以上900℃以下で圧
下率を35%以上70%以下とする圧延を行ない、950℃〜1
150℃で焼鈍することを特徴とする低磁場磁気特性に優
れた電磁厚板の製造法。 ただし、 A :圧延形状比 hi:入側板厚(mm) ho:出側板厚(mm) R :圧延ロール半径(mm)
(1) In weight%, C: 0.005% or less, Si: more than 0.2%, 3.5% or less, Al: more than 0.2%, 3.5% or less, and the sum of the weight percentages of Si and Al is
1.5% or more, Mn: 0.5% or less, S: 0.010% or less, N: 0.008% or less, O: 0.006% or less The balance of a steel slab or slab consisting essentially of iron
Rolling is performed at least once at a rolling pass having a rolling shape ratio A of 0.6 or more at 0 ° C or more, and then rolling at a rolling reduction of 35% to 70% at 700 ° C to 900 ° C is performed. 1
A method for producing an electromagnetic thick plate having excellent low-field magnetic properties, characterized by annealing at 150 ° C. However, A: Rolling shape ratio h i : Inlet thickness (mm) h o : Outlet thickness (mm) R: Rolling roll radius (mm)
【請求項2】900℃以上で圧延形状比Aが0.6以上の圧延
パスを1回以上はとる圧延を行ない、引き続き700℃以
上900℃以下で圧下率を35%以上70%以下とする圧延を
行ない、1000℃〜1200℃で焼準することを特徴とする請
求項1記載の低磁場磁気特性に優れた電磁厚板の製造
法。
2. Rolling is performed at least once in a rolling pass at a rolling shape ratio A of 0.6 or more at 900 ° C. or more, followed by rolling at a rolling reduction of 35% to 70% at 700 ° C. to 900 ° C. The method for producing an electromagnetic thick plate excellent in low magnetic field magnetic properties according to claim 1, wherein the heat treatment is performed at a temperature of 1000 ° C to 1200 ° C.
JP2072560A 1990-03-22 1990-03-22 Manufacturing method of electromagnetic thick plate with excellent low-field magnetic properties Expired - Lifetime JP2773951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2072560A JP2773951B2 (en) 1990-03-22 1990-03-22 Manufacturing method of electromagnetic thick plate with excellent low-field magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2072560A JP2773951B2 (en) 1990-03-22 1990-03-22 Manufacturing method of electromagnetic thick plate with excellent low-field magnetic properties

Publications (2)

Publication Number Publication Date
JPH04143220A JPH04143220A (en) 1992-05-18
JP2773951B2 true JP2773951B2 (en) 1998-07-09

Family

ID=13492871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2072560A Expired - Lifetime JP2773951B2 (en) 1990-03-22 1990-03-22 Manufacturing method of electromagnetic thick plate with excellent low-field magnetic properties

Country Status (1)

Country Link
JP (1) JP2773951B2 (en)

Also Published As

Publication number Publication date
JPH04143220A (en) 1992-05-18

Similar Documents

Publication Publication Date Title
JP2773951B2 (en) Manufacturing method of electromagnetic thick plate with excellent low-field magnetic properties
JPH0711026B2 (en) Manufacturing method of non-directional electromagnetic thick plate with high magnetic flux density
JP2503110B2 (en) Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties
JPH079040B2 (en) Manufacturing method of good electromagnetic thick plate with good machinability and uniform magnetic properties in the plate thickness direction
JPH0713264B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with uniform magnetic properties in the thickness direction
JPH06104866B2 (en) Method for manufacturing electromagnetic thick plate for direct current magnetization
JP2503111B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties
JP2503113B2 (en) Manufacturing method of non-oriented electromagnetic thick plate
JPH0745688B2 (en) Method for manufacturing high magnetic flux density electromagnetic thick plate
JP2503112B2 (en) Manufacturing method of good electromagnetic plate
JP2503122B2 (en) Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties
JP2503123B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties
JPH0745690B2 (en) Manufacturing method of good electromagnetic thick plate
JP2503125B2 (en) Manufacturing method of good electromagnetic plate
JPH0762174B2 (en) Method for manufacturing non-oriented electromagnetic thick plate with high magnetic flux density
JPH0689401B2 (en) Manufacturing method of electromagnetic thick plate for non-directional DC magnetization
JP2001107202A (en) Steel sheet for magnetic shield structure and its production method
JPH0762175B2 (en) Method for manufacturing non-oriented electromagnetic thick plate having uniform magnetic properties in the thickness direction
JPH0689399B2 (en) Manufacturing method of electromagnetic thick plate for DC magnetization
JPH0726326A (en) Production of nonoriented silicon steel plate
JPH0745692B2 (en) Method for manufacturing non-oriented electromagnetic thick plate with high magnetic flux density
JP2503124B2 (en) Manufacturing method of good electromagnetic thick plate
JPH0745691B2 (en) Non-directional good electromagnetic thick plate manufacturing method
JPH0745689B2 (en) Manufacturing method of good electromagnetic thick plate
JPH0726327A (en) Production of nonoriented silicon steel plate