JP2769744B2 - Image chip and manufacturing method thereof - Google Patents

Image chip and manufacturing method thereof

Info

Publication number
JP2769744B2
JP2769744B2 JP22354790A JP22354790A JP2769744B2 JP 2769744 B2 JP2769744 B2 JP 2769744B2 JP 22354790 A JP22354790 A JP 22354790A JP 22354790 A JP22354790 A JP 22354790A JP 2769744 B2 JP2769744 B2 JP 2769744B2
Authority
JP
Japan
Prior art keywords
electrode
light receiving
emitting surface
lateral displacement
displacement detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22354790A
Other languages
Japanese (ja)
Other versions
JPH04106987A (en
Inventor
俊次 村野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP22354790A priority Critical patent/JP2769744B2/en
Publication of JPH04106987A publication Critical patent/JPH04106987A/en
Application granted granted Critical
Publication of JP2769744B2 publication Critical patent/JP2769744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、1つの半導体基板上に多数の受発光面を
設けた、画像チップとその製造方法とに関する。この発
明は特に、電極の受発光面に対する横ずれの防止とその
検出とに関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image chip having a large number of light receiving / emitting surfaces on one semiconductor substrate and a method for manufacturing the same. The present invention particularly relates to prevention of lateral displacement of an electrode with respect to a light receiving / emitting surface and detection thereof.

[従来技術] 多数の受発光面を設けると共に、各受発光面上に電極
を積層した画像チップは周知である。このような画像チ
ップは、発光タイオードやフォトダイオード等を多数集
積化したものであり、光プリンタのヘッドやイメージセ
ンサのヘッド等に用いられる。
2. Description of the Related Art Image chips in which a large number of light receiving and emitting surfaces are provided and electrodes are stacked on each light receiving and emitting surface are well known. Such an image chip is obtained by integrating a large number of light emitting diodes and photodiodes, and is used for a head of an optical printer, a head of an image sensor, and the like.

ここで問題は、電極と受発光面との位置合わせが不正
確な場合、発光効率や受光効率が低下する点にある。第
9図に、発光ダイオードを例に、問題点を示す。この発
光ダイオード2は発明者が開発中のもので、図において
4は発光面、6は拡散防止層で、不純物拡散等による発
光面4の形成時に、不純物が周囲に拡散しないようにす
るためのものである。8は電極で、発光面4の中央部を
横切ることを特徴とする。
The problem here is that if the alignment between the electrode and the light receiving / emitting surface is incorrect, the luminous efficiency and the light receiving efficiency are reduced. FIG. 9 shows a problem using a light emitting diode as an example. The light emitting diode 2 is under development by the inventor. In the figure, reference numeral 4 denotes a light emitting surface, and 6 denotes a diffusion preventing layer, which is used to prevent impurities from diffusing to the surroundings when the light emitting surface 4 is formed by impurity diffusion or the like. Things. Reference numeral 8 denotes an electrode, which crosses the center of the light emitting surface 4.

発光ダイオード2では、図での縦方向に電極がずれて
も、発光面4に対する電極8の位置関係は一定であり、
発光効率には影響しない。電極8のずれが著しい場合に
は、発光効率は低下するが、発光面4の外の電極8の遊
び部の範囲のずれであれば、発光効率には関係がない。
しかしながら、第9図の発光ダイオード2で、電極8が
発光面4に対し図での横方向にずれると、発光効率が低
下する。
In the light emitting diode 2, even if the electrodes are shifted in the vertical direction in the figure, the positional relationship of the electrode 8 with respect to the light emitting surface 4 is constant.
It does not affect the luminous efficiency. If the displacement of the electrode 8 is significant, the luminous efficiency is reduced, but if the displacement is within the range of the play portion of the electrode 8 outside the light emitting surface 4, the luminous efficiency is not related.
However, in the light emitting diode 2 shown in FIG. 9, when the electrode 8 is shifted from the light emitting surface 4 in the horizontal direction in the figure, the luminous efficiency is reduced.

発光面4と電極8とがずれるのは、半導体ウェハーと
電極マスクとを相互に精度よく位置合わせすることが難
しいためである。例えば従来法では、ウェハーの端と電
極マスクの端とで位置合わせを行っていた。
The reason why the light emitting surface 4 and the electrode 8 are shifted is that it is difficult to accurately align the semiconductor wafer and the electrode mask with each other. For example, in the conventional method, alignment is performed between the edge of the wafer and the edge of the electrode mask.

横ずれの影響を防止するものとして、第10図の発光ダ
イオード12を発明者は検討した。発光ダイオード12で
は、電極18を十字状に設け、電極18が縦方向にずれても
横方向にずれても、発光効率が低下しない。
The inventor examined the light emitting diode 12 in FIG. 10 to prevent the influence of the lateral displacement. In the light emitting diode 12, the electrodes 18 are provided in a cross shape, and the luminous efficiency does not decrease even if the electrodes 18 are shifted in the vertical direction or the horizontal direction.

しかしながら、電極で覆われている部分は発光に寄与
しない。第10図のように、電極面積を大きくすると、発
光ダイオードの出力が低下する。このため、電極パター
ンを複雑にする方向での解決には限界がある。
However, the portion covered with the electrode does not contribute to light emission. As shown in FIG. 10, when the electrode area is increased, the output of the light emitting diode is reduced. For this reason, there is a limit to the solution in the direction of complicating the electrode pattern.

第9図の発光ダイオード2の特性を、第11図に示す。
電極8が発光面4の中央部にある場合には、図の実線の
発光強度分布が得られる。電極8が横方向にずれると鎖
線の特性となり、発光ダイオード2の全体の出力と、発
光強度分布とが変化する。
FIG. 11 shows the characteristics of the light emitting diode 2 shown in FIG.
When the electrode 8 is located at the center of the light emitting surface 4, the light emission intensity distribution indicated by the solid line in the figure is obtained. When the electrode 8 is displaced in the horizontal direction, the characteristic becomes a dashed line, and the overall output of the light emitting diode 2 and the emission intensity distribution change.

発光ダイオード2の出力や強度分布が変動すると、光
プリンタヘッドの場合、ドットの中心位置がずれると共
に、ドット毎に濃淡のむらが生じる。
When the output or the intensity distribution of the light emitting diode 2 fluctuates, in the case of an optical printer head, the center position of the dot shifts, and unevenness of density occurs for each dot.

[発明の課題] この発明の課題は、 (1) 電極形状の改良で、受発光面に対する電極の縦
ずれの影響を防止すると共に、 (2) 受発光面に対する、電極の横ずれの検出を容易
にすることに有る(請求項1)。
[Problems of the Invention] An object of the present invention is to (1) improve the shape of an electrode to prevent the influence of vertical displacement of an electrode with respect to a light receiving / emitting surface, and (2) easily detect lateral displacement of an electrode with respect to a light receiving / emitting surface. (Claim 1).

この発明の課題はまた、これに応じた画像チップの製
造方法を提供すると共に、半導体ウェハーでの電極形成
時に、電極マスクと受発光面との位置合わせを容易に
し、電極の横ずれを防止し、画像チップの収率を向上さ
せることにある。
Another object of the present invention is to provide a method of manufacturing an image chip in accordance with the above, and at the time of forming an electrode on a semiconductor wafer, to facilitate alignment between an electrode mask and a light emitting / receiving surface, to prevent lateral displacement of the electrode, It is to improve the yield of image chips.

[発明の構成] この発明の画像チップは、半導体基板上に多数の受発
光面を形成し、各受発光面上に少なくとも1個の電極を
積層した画像チップにおいて、 電極を受発光面の中央部を横切る形状とすると共に、 受発光面と特定の位置関係にある、少なくとも1個の
横ずれ検出面を半導体基板上に設け、電極と特定の位置
関係にあり、かつ受発光面での電極の方向と垂直な方向
に設けた横ずれ検出マークを、横ずれ検出面の付近に配
置したことを特徴とする。
[Constitution of the Invention] An image chip according to the present invention is an image chip in which a large number of light receiving and emitting surfaces are formed on a semiconductor substrate, and at least one electrode is laminated on each light receiving and emitting surface. And at least one lateral displacement detection surface, which has a specific positional relationship with the light receiving and emitting surface, is provided on the semiconductor substrate, and has a specific positional relationship with the electrode, and the electrode on the light receiving and emitting surface has The lateral displacement detection mark provided in the direction perpendicular to the direction is arranged near the lateral displacement detection surface.

なおこの明細書において、受発光面とは受発光を行う
画像チップ上の場所を意味し、完成した受発光素子とは
異なる意味で用いる。
In this specification, the light receiving / emitting surface means a place on an image chip where light is received / emitted, and is used in a different sense from a completed light emitting / receiving element.

ここで受発光面と横ずれ検出面との特定の位置関係の
実現には、これを同一のマスクで同時に製造すれば良
い。また電極と横ずれ検出マークとの位置関係の実現
は、電極と横ずれ検出マークとを同一のマスクで同時に
製造すれば良い。
Here, in order to realize a specific positional relationship between the light receiving / emitting surface and the lateral displacement detection surface, these may be simultaneously manufactured using the same mask. The positional relationship between the electrode and the lateral displacement detection mark can be realized by simultaneously manufacturing the electrode and the lateral displacement detection mark using the same mask.

横ずれ検出面は、受発光面とは別に設けても良い。し
かし受発光面をそのまま横ずれ検出面に兼用する方が、
実際の電極と実際の受発光面とのずれを検出できるた
め、より直接的な検出ができる。横ずれ検出面を受発光
面とは別に設ける場合、例えば画像チップの基板への搭
載時に、受発光面の位置を検出するためのマーカを、受
発光面と同時に設け、これを横ずれ検出面人兼用すれば
良い。
The lateral displacement detecting surface may be provided separately from the light receiving / emitting surface. However, it is better to use the light receiving / emitting surface as the lateral displacement detection surface as it is,
Since the deviation between the actual electrode and the actual light receiving / emitting surface can be detected, more direct detection can be performed. When the lateral displacement detection surface is provided separately from the light receiving / emitting surface, for example, when mounting the image chip on the substrate, a marker for detecting the position of the light receiving / emitting surface is provided at the same time as the light receiving / emitting surface, and this is also used as the lateral displacement detection surface. Just do it.

受発光面を横ずれ検出面に兼用する場合、受発光面の
内部に横ずれ検出マークが入り込まないように、横ずれ
検出マークを受発光面から所定の間隔だけ離しても設け
るのが好ましい。横ずれ検出マークが受発光面に入り込
む原因としては、検出マークの縦ずれがある。検出マー
クと受発光面との間隔は例えば、縦方向の位置合わせ精
度を基準とし、位置合わせ誤差からその2倍程度の間隔
とすれば良い。
When the light receiving / emitting surface is also used as the lateral displacement detection surface, it is preferable to provide the lateral displacement detection mark at a predetermined distance from the light receiving / emitting surface so that the lateral displacement detection mark does not enter the inside of the light receiving / emitting surface. A cause of the lateral displacement detection mark entering the light receiving / emitting surface is a vertical displacement of the detection mark. The distance between the detection mark and the light emitting / receiving surface may be, for example, about twice as long as the positioning accuracy in the vertical direction as a reference and the positioning error.

横ずれ検出マークには例えば、両端部に電極と平行な
方向の目盛りを刻むようにする。目盛りにより両端部が
強調され、検出マークの端部の確認が容易になると共
に、横ずれの程度を目盛りから読み取ることが可能にな
る。あるいはまた、横ずれ検出マークの両端を、受発光
面の両端部から所定の間隔だけ短くし、検出マークが受
発光面の端部からはみ出しているか否かを検出するよう
にしても良い。この場合、検出マークは受発光面より、
例えば位置合わせの許容誤差の程度だけ短くし、許容誤
差を越えるずれがあるか否かを検出する。
For example, a scale in a direction parallel to the electrodes is engraved on both ends of the lateral displacement detection mark. Both ends are emphasized by the scale, so that the end of the detection mark can be easily checked and the degree of the lateral shift can be read from the scale. Alternatively, both ends of the lateral displacement detection mark may be shortened by a predetermined distance from both ends of the light receiving and emitting surface to detect whether the detection mark protrudes from the end of the light receiving and emitting surface. In this case, the detection mark is from the light receiving / emitting surface,
For example, the positioning error is shortened by the allowable error, and it is detected whether or not there is a deviation exceeding the allowable error.

この発明での画像チップの製造方法は、次の点にあ
る。
The method for manufacturing an image chip according to the present invention is as follows.

(1) 半導体ウェハーに多数の受発光面を形成し、 (2) ウェハーのほぼ全面に電極材料層とフォトレジ
スト層とを順次設け、 (3) ウェハーには、受発光面と同時に横ずれ検出面
を形成し、横ずれ検出面の付近の電極マスクに、受発光
面での電極方向と垂直な方向の横ずれ検出マークを設
け、 (4) 横ずれ検出マークを横ずれ検出面に位置合わせ
して、電極マスクを受発光面に対し位置合わせし、 (5) 次いで電極マスクでフォトレジスト層を露光し
て、受発光面の中央部を横切る電極を形成する。
(1) A large number of light receiving / emitting surfaces are formed on a semiconductor wafer; (2) an electrode material layer and a photoresist layer are sequentially provided on substantially the entire surface of the wafer; And forming a lateral displacement detection mark in a direction perpendicular to the electrode direction on the light receiving / emitting surface on the electrode mask near the lateral displacement detection surface, and (4) aligning the lateral displacement detection mark with the lateral displacement detection surface to form an electrode mask. (5) Next, the photoresist layer is exposed to light using an electrode mask to form an electrode crossing the center of the light emitting / receiving surface.

以下に、発光ダイオードを集積化した画像チップを例
に、実施例を説明する。
Hereinafter, an embodiment will be described using an image chip in which light emitting diodes are integrated as an example.

[実施例] 第1図において、2は発光ダイオードで、例えば1個
の画像チップに64個程度直線上に配置したものである。
4は発光面、6は周囲の拡散防止層、8は発光面4の中
央部を横切る電極である。発光面4は、50μm(電極8
に垂直な方向)×60μm(電極8に平行な方向)の大き
さとした。発光面4は、1インチ当たり300個の密度で
配置した。電極8は発光面4を貫通しなくても良く、電
極8の基部側から見て、発光面4の反対側の端面の手前
で止めても良い。しかしこの場合には、電極8の縦ずれ
への許容幅が低下する。
[Embodiment] In FIG. 1, reference numeral 2 denotes a light emitting diode, for example, which is arranged on a single image chip in approximately 64 lines.
Reference numeral 4 denotes a light emitting surface, 6 denotes a peripheral diffusion preventing layer, and 8 denotes an electrode crossing the center of the light emitting surface 4. The light emitting surface 4 is 50 μm (electrode 8
) × 60 μm (direction parallel to the electrode 8). The light emitting surfaces 4 were arranged at a density of 300 per inch. The electrode 8 does not have to penetrate the light emitting surface 4 and may be stopped just before the end face on the opposite side of the light emitting surface 4 when viewed from the base side of the electrode 8. However, in this case, the allowable width of the electrode 8 to vertical displacement is reduced.

20は横ずれ検出マークで、電極8と垂直に設け、発光
面4の端部から10μm離れた位置で、発光面4の端部に
平行に配置した。実施例での電極8の縦方向精度は10μ
m程度であり、これに応じた間隔だけ、マーク20を離
し、マーク20が発光面4に入り込まないようにした。マ
ーク20の両端には目盛り22を複数個5μm程度の間隔で
刻み、両端を発光面4の端部と揃えた。電極8と発光面
4との位置合わせが完全な場合、マーク22の端部は発光
面4の端部と揃い、位置合わせが不正確な場合、横ずれ
の程度を目盛り22の刻みで読み取る。5μmは、横ずれ
に対する許容誤差である。
Reference numeral 20 denotes a lateral displacement detection mark which is provided perpendicular to the electrode 8 and is arranged at a position 10 μm away from the end of the light emitting surface 4 and in parallel with the end of the light emitting surface 4. The vertical accuracy of the electrode 8 in the embodiment is 10μ.
m, and the mark 20 was separated by an interval corresponding to this, so that the mark 20 did not enter the light emitting surface 4. A plurality of graduations 22 were cut at both ends of the mark 20 at intervals of about 5 μm, and both ends were aligned with the end of the light emitting surface 4. When the alignment between the electrode 8 and the light emitting surface 4 is perfect, the end of the mark 22 is aligned with the end of the light emitting surface 4, and when the alignment is inaccurate, the degree of the lateral displacement is read by the scale 22. 5 μm is an allowable error for the lateral displacement.

なお検出マーク22は、電極8の基部側(図での下側)
に設けても良く、また電極8と切断されていても良い。
また電極は、第2図のように中央部に突起を設けても良
い。第2図において、32は発光ダイオード、38は電極で
ある。
The detection mark 22 is located on the base side of the electrode 8 (the lower side in the figure).
And may be cut off from the electrode 8.
Further, the electrode may have a projection at the center as shown in FIG. In FIG. 2, 32 is a light emitting diode, and 38 is an electrode.

この明細書での縦、横とは、第1図の電極8の発光面
4での方向を縦、第1図での横方向を横とする。
The vertical and horizontal directions in this specification are the vertical direction on the light emitting surface 4 of the electrode 8 in FIG. 1 and the horizontal direction in FIG.

第3図は、検出マーク40の両端を、発光面4より間隔
Aだけ短くした例である。ここで間隔Aは許容誤差の5
μmとし、5μmを越える横ずれが生じると、マーク40
の端部が発光面4の端部に重なるようにした。そして許
容誤差の5μmを越える横ずれを、マーク40が発光面4
の端部を越えることから検出する。位置認識がより困難
になるが、逆にマーク40の端部を発光面4の端部から5
μmずつ伸ばし、マーク40の端部が、発光面4の内側に
入ることから横ずれを検出することも可能である。
FIG. 3 shows an example in which both ends of the detection mark 40 are shorter than the light-emitting surface 4 by an interval A. Here, the interval A is an allowable error of 5
μm, if a lateral displacement exceeding 5 μm occurs, the mark 40
Is overlapped with the end of the light emitting surface 4. The mark 40 indicates that the light emitting surface 4 has a lateral displacement exceeding the allowable error of 5 μm.
Is detected from exceeding the end of. Although it is more difficult to recognize the position, the end of the mark 40 is
It is also possible to detect a lateral displacement by extending the mark 40 by μm and entering the end of the mark 40 inside the light emitting surface 4.

いずれの実施例についても、横ずれ検出マークは、全
ての発光面4に設けたが、少なくとも1個の発光面に設
ければ良い。64個の発光面4の内、電極位置の確認は、
3〜4個の発光面4で確認すれば良いからである。
In any of the embodiments, the lateral displacement detection marks are provided on all the light emitting surfaces 4, but may be provided on at least one light emitting surface. Confirmation of electrode position among 64 light emitting surfaces 4
This is because it is only necessary to confirm three or four light emitting surfaces 4.

第4図〜第8図により、第1図の実施例の製造過程を
示す。n型のGa−As基板40上に、n型Ga−As−P層42を
エピタキシー成長させる。次に、SiO2やSi3N4等の拡散
防止層6を積層する(第4図)。拡散防止層6をフォト
レジストを介してエッチングして、不純物拡散窓を設
け、Zn等のp型不純物を拡散させ、発光面4とする。p
型拡散層の発光面4とGa−As−Pのn型層42との接合部
が発光部で、ここに流れ込む電流で発光する。
4 to 8 show the manufacturing process of the embodiment of FIG. An n-type Ga-As-P layer 42 is epitaxially grown on an n-type Ga-As substrate 40. Next, a diffusion preventing layer 6 such as SiO 2 or Si 3 N 4 is laminated (FIG. 4). The diffusion preventing layer 6 is etched through a photoresist to provide an impurity diffusion window, and a p-type impurity such as Zn is diffused to form the light emitting surface 4. p
The junction between the light emitting surface 4 of the mold diffusion layer and the Ga-As-P n-type layer 42 is a light emitting portion, and emits light by a current flowing therein.

Ga−As基板400のウェハーにはほぼ全面に、Alの電極
材料層44を蒸着し、フォトレジスト層46を塗布する(第
5図)。電極材料層44には、発光面4と拡散防止層6と
の段差のため、発光面4の周囲にエッジEができる。フ
ォトレジスト層46が透明なため、この段差Eは顕微鏡で
見ることができ、段差Eを位置合わせに用いる。次に、
電極マスクを用いて、電極8と横ずれ検出マーク20とを
形成する。この過程を第6図に示す。
Al electrode material layer 44 is deposited on almost the entire surface of the wafer of Ga-As substrate 400, and a photoresist layer 46 is applied (FIG. 5). The electrode material layer 44 has an edge E around the light emitting surface 4 due to a step between the light emitting surface 4 and the diffusion preventing layer 6. Since the photoresist layer 46 is transparent, the step E can be seen with a microscope, and the step E is used for alignment. next,
The electrode 8 and the lateral displacement detection mark 20 are formed using an electrode mask. This process is shown in FIG.

第6図において、50はウェハーで、升目は画像チップ
52に対応する。54は、ウェハー50と電極マスクとを、大
まかに位置合わせするためのマークである。位置合わせ
用のマーク54を用い、電極マスクとウェハー50とを大ま
かに位置合わせする。次いで受発光面4の周囲の段差E
から受発光面4の位置を検出し、ウェハー50の位置を微
調整する。即ちウェハー50の数箇所で、横ずれ検出マー
ク21と受発光面4の上部の段差Eとを用いて位置合わせ
を行い、誤差が有る場合にはその値を目盛り22から読み
取り、位置合わせする(第7図)。
In FIG. 6, reference numeral 50 denotes a wafer, and cells are image chips.
Corresponds to 52. Reference numeral 54 denotes a mark for roughly aligning the wafer 50 with the electrode mask. The electrode mask and the wafer 50 are roughly aligned using the alignment mark 54. Next, a step E around the light receiving / emitting surface 4
Then, the position of the light receiving / emitting surface 4 is detected, and the position of the wafer 50 is finely adjusted. That is, in several places on the wafer 50, alignment is performed using the lateral displacement detection mark 21 and the step E above the light receiving / emitting surface 4, and if there is an error, the value is read from the scale 22, and the alignment is performed. 7).

位置合わせの後に、フォトレジスト層46を露光し、エ
ッチングで電極8を形成する(第8図)。またウェハー
の裏面に共通電極を形成する。
After the alignment, the photoresist layer 46 is exposed and the electrodes 8 are formed by etching (FIG. 8). Further, a common electrode is formed on the back surface of the wafer.

これらの後、ウェハー50を切断し、画像チップ52を切
り出す。切り出した画像チップ52に対し、再度横ずれ検
出マーク20を用いて、画像チップ毎に電極の横ずれを検
出し、不良品を除外する。
Thereafter, the wafer 50 is cut, and the image chips 52 are cut out. With respect to the cut out image chip 52, the lateral displacement of the electrode is detected for each image chip again using the lateral displacement detection mark 20, and defective products are excluded.

[発明の効果] 請求項1の発明では、 (1) 電極形状の改良で、受発光面に対する電極の縦
ずれの影響を防止すると共に、 (2) 受発光面に対する、電極の横ずれの検出を容易
にする。
[Effects of the Invention] According to the invention of claim 1, (1) by improving the electrode shape, the effect of vertical displacement of the electrode with respect to the light receiving and emitting surface is prevented, and (2) detection of lateral displacement of the electrode with respect to the light receiving and emitting surface. make it easier.

請求項2の発明では、半導体ウェハーでの電極形成時
に、電極マスクと受発光面との位置合わせを容易にし、
電極の横ずれを防止し、画像チップの収率を向上させ
る。
According to the second aspect of the present invention, at the time of forming an electrode on a semiconductor wafer, alignment between an electrode mask and a light receiving / emitting surface is facilitated,
It prevents lateral displacement of the electrodes and improves the yield of image chips.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第3図は、それぞれ実施例の要部平面図、 第4図,第5図は実施例の製造工程を表す断面図、 第6図は実施例の製造工程を表す平面図、 第7図は実施例の製造工程を表す要部平面図、 第8図は実施例の製造工程を表す断面図、 第9図,第10図は従来例の断面図、 第11図は従来例の特性図である。 図において、 4……発光面、6拡散防止層、 8,18,34……電極、 20,40……横ずれ検出マーク, 22……目盛り。 1 to 3 are plan views of a main part of the embodiment, respectively, FIGS. 4 and 5 are cross-sectional views showing manufacturing steps of the embodiment, FIG. 6 is a plan view showing manufacturing steps of the embodiment, FIG. 7 is a plan view of a main part showing a manufacturing process of the embodiment, FIG. 8 is a cross-sectional view showing a manufacturing process of the embodiment, FIGS. 9 and 10 are cross-sectional views of a conventional example, and FIG. FIG. In the figure, 4 ... light emitting surface, 6 diffusion prevention layer, 8,18,34 ... electrode, 20,40 ... lateral displacement detection mark, 22 ... scale.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に多数の受発光面を形成する
と共に、各受発光面上に少なくとも1個の電極を積層し
た画像チップにおいて、 電極を受発光面の中央部を横切る形状とすると共に、 受発光面と特定の位置関係にある、少なくとも1個の横
ずれ検出面を半導体基板上に設け、 電極と特定の位置関係にあり、かつ受発光面での電極の
方向と垂直な方向に設けた横ずれ検出マークを、横ずれ
検出面の付近に配置したことを特徴とする、画像チッ
プ。
1. An image chip having a plurality of light receiving / emitting surfaces formed on a semiconductor substrate and at least one electrode laminated on each light receiving / emitting surface, wherein the electrodes have a shape crossing a central portion of the light receiving / emitting surface. At least one lateral displacement detection surface having a specific positional relationship with the light receiving and emitting surface is provided on the semiconductor substrate, and has a specific positional relationship with the electrode and in a direction perpendicular to the direction of the electrode on the light receiving and emitting surface. An image chip, wherein the provided lateral displacement detection mark is arranged near a lateral displacement detection surface.
【請求項2】多数の受発光面を設けると共に、各受発光
面上には少なくとも1個の電極を積層した1枚の半導体
ウェハーから、多数の画像チップを切り出す画像チップ
の製造方法において、 半導体ウェハーに多数の受発光面を形成した後、半導体
ウェハーのほぼ全面に電極材料層とフォトレジスト層と
を順次設け、 次いで、受発光面の中央部を横切る電極パターンを設け
た電極マスクでフォトレジスト層を露光して、受発光面
の中央部を横切る電極を形成するに際して、 半導体ウェハーには、受発光面と同時に横ずれ検出面を
形成し、 横ずれ検出面の付近の電極マスクに、受発光面での電極
方向と垂直な方向の横ずれ検出マークを設け、横ずれ検
出マークを横ずれ検出面に位置合わせして電極の受発光
面に対する横ずれを防止するようにした、画像チップの
製造方法。
2. A method of manufacturing an image chip, comprising: providing a large number of light receiving / emitting surfaces and cutting out a large number of image chips from one semiconductor wafer having at least one electrode laminated on each light receiving / emitting surface; After forming a large number of light receiving and emitting surfaces on the wafer, an electrode material layer and a photoresist layer are sequentially provided on almost the entire surface of the semiconductor wafer, and then the photoresist is formed using an electrode mask having an electrode pattern crossing the center of the light receiving and emitting surface. When exposing the layer to form an electrode that crosses the center of the light receiving and emitting surface, a semiconductor wafer is provided with a lateral displacement detection surface at the same time as the light receiving and emitting surface, and an electrode mask near the lateral displacement detecting surface is provided with a light receiving and emitting surface. A lateral displacement detection mark in the direction perpendicular to the electrode direction is provided, and the lateral displacement detection mark is aligned with the lateral displacement detection surface to prevent lateral displacement of the electrode with respect to the light receiving / emitting surface. Also, a method for manufacturing an image chip.
JP22354790A 1990-08-24 1990-08-24 Image chip and manufacturing method thereof Expired - Fee Related JP2769744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22354790A JP2769744B2 (en) 1990-08-24 1990-08-24 Image chip and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22354790A JP2769744B2 (en) 1990-08-24 1990-08-24 Image chip and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04106987A JPH04106987A (en) 1992-04-08
JP2769744B2 true JP2769744B2 (en) 1998-06-25

Family

ID=16799870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22354790A Expired - Fee Related JP2769744B2 (en) 1990-08-24 1990-08-24 Image chip and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2769744B2 (en)

Also Published As

Publication number Publication date
JPH04106987A (en) 1992-04-08

Similar Documents

Publication Publication Date Title
US5943586A (en) LED array alignment mark, method and mask for forming same, and LED array alignment method
US4633280A (en) Unit of light emitting diode arrays
US6603114B1 (en) Scanning head comprising a semiconductor substrate with a blind hole containing a light source
US20030181122A1 (en) Producing self-aligned and self-exposed photoresist patterns on light emitting devices
US6136627A (en) High-resolution light-sensing and light-emitting diode array and fabrication method thereof
JP2009231804A (en) Light reception/emission integration type element array, and sensor device
US6441504B1 (en) Precision aligned and marked structure
US6064418A (en) Led array, print head, and electrophotographic printer
JP2769744B2 (en) Image chip and manufacturing method thereof
US7361286B2 (en) Method of detecting etching end-point
JP3812827B2 (en) Mounting method of light emitting element
JP3316252B2 (en) Optical print head
JPH09102473A (en) Manufacture of semiconductor device
JP3253841B2 (en) Method for manufacturing semiconductor device
JPS6170781A (en) Semiconductor laser and manufacture thereof
JPH05190899A (en) Semiconductor element array chip and manufacture thereof
JPH06237015A (en) Light emitting diode array
JPS6218722A (en) Semiconductor device
JP2513198B2 (en) Semiconductor laser device
JPS62128118A (en) Semiconductor device
JP3234344B2 (en) Light emitting diode
JPH03231478A (en) Array of light-emitting element or photodetector, apparatus for photographic printing or reading using the array, and manufacture of the array
JPH06340119A (en) Image device
JPH06166213A (en) Led array
JPH11340512A (en) Semiconductor inspection device and method for inspecting edge surface-emission type light-emitting optical semiconductor element wafer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees