JPH06166213A - Led array - Google Patents

Led array

Info

Publication number
JPH06166213A
JPH06166213A JP4345598A JP34559892A JPH06166213A JP H06166213 A JPH06166213 A JP H06166213A JP 4345598 A JP4345598 A JP 4345598A JP 34559892 A JP34559892 A JP 34559892A JP H06166213 A JPH06166213 A JP H06166213A
Authority
JP
Japan
Prior art keywords
light
led array
substrate
refractive index
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4345598A
Other languages
Japanese (ja)
Inventor
Shunji Murano
俊次 村野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4345598A priority Critical patent/JPH06166213A/en
Publication of JPH06166213A publication Critical patent/JPH06166213A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the effect to illuminants on a side face luminous LED array at the time of cutting a substrate, control the scatter of light beam because of the recesses and projections of a cut face and enhance the pickup efficiency of beam. CONSTITUTION:Illuminants are arranged at intervals from the side face onto the main face of an LED array 2 to avoid the effect at the time of cutting. The side face of a GaAs substrate 4 is coated with a resin layer 14 to avoid the scatter of beam all over the recesses and projections on the end face of the substrate 4, and the light shutting-up effect generated by the difference between the refraction index of air and that of the GaAs substrate 4 is controlled to enhance the pickup efficiency of beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】この発明は、LEDプリントヘッド
等に用いるLEDアレイの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in LED arrays used in LED print heads and the like.

【0002】[0002]

【従来技術】特開平4−216684号公報等は、端面
発光型のLEDアレイを提案している。このLEDアレ
イでは、GaAs等の半導体基板の端面に沿って発光体
を形成し、アレイの端面から光を取り出す。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 4-216684 proposes an edge-emitting LED array. In this LED array, a light emitter is formed along the end surface of a semiconductor substrate such as GaAs, and light is extracted from the end surface of the array.

【0003】しかしながら基板の端面は、ウェハーから
LEDアレイを切り出す際の切断面であり、ここに発光
体を設けると切断時の影響を受け易くなる。この結果発
光体の出力ばらつきや不良率が増加する。LEDアレイ
の端面は平滑ではなく、切断面が平滑ではないため、凹
凸がある。ここで端面から光を取り出すと、端面の凹凸
により光が拡散し、指向角が広がる。凹凸の程度にはば
らつきがあるため、発光体の出力分布もさらに広がる。
また主面から光を取り出す場合に比べ、端面から光を取
り出すと、外部への光の取り出し効率が低下する。
However, the end surface of the substrate is a cut surface when the LED array is cut out from the wafer, and if a light emitting body is provided here, it is easily affected by the cutting. As a result, the output variation of the light emitter and the defect rate increase. Since the end surface of the LED array is not smooth and the cut surface is not smooth, there are irregularities. Here, when light is extracted from the end face, the light is diffused due to the unevenness of the end face, and the directional angle is widened. Since the degree of unevenness varies, the output distribution of the light emitting body is further widened.
Further, when the light is extracted from the end surface, the efficiency of extracting light to the outside is lower than in the case where the light is extracted from the main surface.

【0004】[0004]

【発明の課題】請求項1の発明の課題は、側面発光型の
LEDアレイにおいて、ウェハーから基板を切断する際
の影響を小さくし、切断時の衝撃やストレスにより発光
体に不良が生じたり、出力がばらついたりするのを防止
することにある。また請求項1の発明での他の課題は、
基板の端面の凹凸による光の拡散を抑制することにあ
る。請求項1の発明での他の課題は、発光体からの光の
取り出し効率を向上させることにある。請求項1の発明
でのさらに他の課題は、アレイをLEDヘッドに用いた
際のヘッド幅の短縮を可能にし、光プリンタの小型化を
容易にすることにある。
SUMMARY OF THE INVENTION An object of the present invention is to reduce the influence of cutting a substrate from a wafer in a side-emission type LED array and to cause a defect in the light-emitting body due to impact or stress at the time of cutting. This is to prevent the output from fluctuating. Another problem in the invention of claim 1 is that
This is to suppress light diffusion due to the unevenness of the end surface of the substrate. Another object of the invention of claim 1 is to improve the extraction efficiency of light from the light emitting body. Still another object of the invention of claim 1 is to make it possible to reduce the head width when the array is used for an LED head, and to facilitate miniaturization of the optical printer.

【0005】請求項2の発明での課題はこれらに加え
て、LEDアレイの解像度の向上を容易にすることにあ
る。請求項3及び請求項4の発明での課題は、請求項1
での課題に加えて、LEDアレイからの光の取り出し効
率をさらに向上させることにある。
In addition to these, the object of the invention of claim 2 is to facilitate the improvement of the resolution of the LED array. The problems in the inventions of claims 3 and 4 are:
In addition to the above problem, it is to further improve the extraction efficiency of light from the LED array.

【0006】[0006]

【発明の構成】この発明のLEDアレイは、半導体基板
の一主面で、一側面から間隔をおいた位置に多数の発光
体を配置するとともに、各発光体の上部を電極で被覆
し、各発光体の発する光を前記半導体基板の一側面より
放射させるようにしたLEDアレイであって、前記半導
体基板の光が放射される一側面を周囲の媒質よりも屈折
率が高い樹脂層で被覆したことを特徴とする。好ましく
は前記半導体基板の一主面で、前記一側面から間隔をお
いた位置に、複数の列状をなすように発光体を配置し、
かつ前記一側面からの距離が大きい方の列の発光体の発
光強度を、一側面からの距離が小さい方の列の発光体の
発光強度よりも大きくする。また好ましくは、前記屈折
率が高い樹脂層の表面に反射層を設ける。反射層は樹脂
層の両側の表面に設けることが好ましいが、一方の表面
にのみ設けても良く、その場合半導体基板の前記一主面
側に、即ち電極で被覆した側に設けることが好ましい。
さらに好ましくは、前記半導体基板の一側面を被覆する
樹脂層で、半導体基板の一主面の少なくとも一部を被覆
し、かつ該半導体基板の一主面を被覆する樹脂層表面に
反射層を設る。
According to the LED array of the present invention, a large number of light emitting bodies are arranged on one main surface of a semiconductor substrate at a position spaced from one side surface, and the upper portion of each light emitting body is covered with an electrode. An LED array in which light emitted from a light emitter is emitted from one side surface of the semiconductor substrate, wherein one side surface of the semiconductor substrate from which light is emitted is covered with a resin layer having a refractive index higher than that of a surrounding medium. It is characterized by Preferably, on one main surface of the semiconductor substrate, the light-emitting bodies are arranged in a plurality of rows at a position spaced from the one side surface,
Further, the emission intensity of the light-emitting body in the row having a larger distance from the one side surface is made higher than the emission intensity of the light-emitting body in the row having a smaller distance from the one side surface. Further, preferably, a reflective layer is provided on the surface of the resin layer having a high refractive index. The reflective layer is preferably provided on both surfaces of the resin layer, but may be provided on only one surface, in which case it is preferably provided on the one main surface side of the semiconductor substrate, that is, on the side covered with the electrodes.
More preferably, a resin layer covering one side surface of the semiconductor substrate covers at least a part of one main surface of the semiconductor substrate, and a reflection layer is provided on the surface of the resin layer covering one main surface of the semiconductor substrate. It

【0007】[0007]

【発明の作用】この発明では、半導体基板の主面上に、
側面から間隔をおいて発光体を配列する。発光体は基板
の側面(端面)から距離があるので、発光体への基板の
切断時の影響を小さくし、歩留りの低下や出力のばらつ
きを避けることができる。次に半導体基板の側面を、周
囲の媒質よりも屈折率が高い樹脂の層で被覆する。一般
に半導体基板の屈折率は周囲の空気等の媒質の屈折率よ
りも高く、基板側面に凹凸があると、光は凹凸の影響を
受けて散乱する。ここで空気等よりも屈折率が高い樹脂
で側面を被覆すると、基板の内外での屈折率の差が減少
し、凹凸による光の散乱が少なくなる。例えば樹脂の屈
折率が半導体基板の屈折率と等しければ、光には基板と
樹脂の界面での屈折率の差は認識できず、光は散乱され
ずに直進する。半導体基板と同じ屈折率の樹脂を探すこ
とは基板の屈折率が高いため困難であるが、樹脂の屈折
率が基板の屈折率に近づけば、それだけ基板と樹脂の界
面での光の散乱を小さくすることができる。
According to the present invention, on the main surface of the semiconductor substrate,
The light emitters are arranged at intervals from the side surface. Since the light-emitting body has a distance from the side surface (end surface) of the substrate, it is possible to reduce the influence of cutting the substrate onto the light-emitting body, and to reduce the yield and the variation in output. Next, the side surface of the semiconductor substrate is covered with a layer of resin having a higher refractive index than the surrounding medium. Generally, the refractive index of a semiconductor substrate is higher than the refractive index of a medium such as ambient air, and if the side surface of the substrate has irregularities, light is scattered under the influence of the irregularities. Here, if the side surface is covered with a resin having a higher refractive index than air or the like, the difference in refractive index between the inside and outside of the substrate is reduced, and light scattering due to unevenness is reduced. For example, if the refractive index of the resin is equal to the refractive index of the semiconductor substrate, the light cannot recognize the difference in the refractive index at the interface between the substrate and the resin, and the light goes straight without being scattered. It is difficult to find a resin with the same refractive index as the semiconductor substrate because the refractive index of the substrate is high, but if the refractive index of the resin approaches the refractive index of the substrate, the light scattering at the interface between the substrate and the resin will be reduced. can do.

【0008】被覆した樹脂層には、光の散乱を防止する
以外に、LEDアレイからの光の取り出し効率を改善す
るという作用がある。半導体基板の屈折率は、周囲の空
気の屈折率よりもはるかに大きい。このため発光体で生
じた光の一部が、LEDアレイの内部に閉じ込められ
る。例えば基板の界面への入射角が0度(界面に垂直に
入射)でも、屈折率に差があると透過率は100%では
なく、光の一部が基板内に戻ってしまう。ここで半導体
基板の側面を周囲の空気等の媒質よりも屈折率が高い樹
脂で被覆すると、界面での屈折率の差が減少し、LED
アレイからの光の取り出し効率が改善する。また電極は
発光体の上部を被覆するようにし、上部への発光を電極
で反射させて側面から取り出し、側面への発光強度を高
める。
The coated resin layer has the function of improving the efficiency of extracting light from the LED array, in addition to preventing the scattering of light. The refractive index of the semiconductor substrate is much higher than that of the surrounding air. Therefore, a part of the light generated by the light emitter is trapped inside the LED array. For example, even if the angle of incidence on the interface of the substrate is 0 degrees (incident perpendicularly to the interface), if there is a difference in refractive index, the transmittance is not 100%, and part of the light returns to the inside of the substrate. Here, when the side surface of the semiconductor substrate is covered with a resin having a higher refractive index than the surrounding medium such as air, the difference in the refractive index at the interface is reduced and the LED
The efficiency of light extraction from the array is improved. Further, the electrode covers the upper part of the light-emitting body, and the light emitted to the upper part is reflected by the electrode and taken out from the side surface to enhance the intensity of light emission to the side surface.

【0009】通常のLEDヘッドでは、LEDアレイを
搭載した基板の幅で、ヘッドの幅が定まる。これはアレ
イの主面から光を取り出すために、アレイを搭載したガ
ラス等の基板の幅がヘッドの最小幅となるからである。
実際のヘッドの幅は、ガラス等の基板の幅にハウジング
の幅を加えたものとなる。このためヘッドの幅を小さく
することには限界がある。これに対してLEDアレイの
側面から光を取り出すようにすれば、基板に平行にレン
ズアレイを配置することになり、ヘッドの幅はガラス等
の基板の幅の制約を受けない。そしてこの場合のヘッド
の幅は、基板の厚さとLEDアレイの厚さの和が下限と
なる。この結果プリントヘッドの幅を小さくし、感光体
ドラムの小径化を計り、プリンタを小形化することがで
きる。即ちヘッドの幅を小さくすれば、より小さな感光
体ドラムを用い、プリンタを小形化することができる。
In an ordinary LED head, the width of the head is determined by the width of the substrate on which the LED array is mounted. This is because the width of the substrate such as glass on which the array is mounted becomes the minimum width of the head in order to extract light from the main surface of the array.
The actual width of the head is the width of the substrate such as glass plus the width of the housing. Therefore, there is a limit to reducing the width of the head. On the other hand, if the light is extracted from the side surface of the LED array, the lens array is arranged in parallel with the substrate, and the width of the head is not restricted by the width of the substrate such as glass. The lower limit of the width of the head in this case is the sum of the thickness of the substrate and the thickness of the LED array. As a result, the width of the print head can be reduced, the diameter of the photosensitive drum can be reduced, and the size of the printer can be reduced. That is, if the width of the head is made smaller, a smaller photosensitive drum can be used and the printer can be made smaller.

【0010】LEDヘッドの幅の小径化に伴って、次の
作用が得られる。従来のLEDヘッドでは、LEDアレ
イ等を搭載した基板とその駆動ICとを搭載した基板と
を別の2枚の基板とし、これらの間を接続している。こ
れは1枚の基板を用いると、ヘッドの幅が大きくなるか
らである。これに対して、基板の厚さとLEDアレイの
厚さの和でヘッドの幅が定まるようになると、1枚の基
板に全ての回路を集約することができる。
The following effects can be obtained as the width of the LED head is reduced. In a conventional LED head, a board on which an LED array or the like is mounted and a board on which a driving IC for the LED array is mounted are separate two boards, and these boards are connected to each other. This is because the width of the head increases when one substrate is used. On the other hand, if the width of the head is determined by the sum of the thickness of the substrate and the thickness of the LED array, all the circuits can be integrated on one substrate.

【0011】側面発光型のLEDアレイを用いること
は、LEDアレイの解像度の向上を容易にする。例えば
主面から発光するLEDアレイの場合、発光体を2列に
配列すると、レンズアレイも2列に配列しない限り、結
像位置にずれが生じる。これに対して側面発光型のLE
Dアレイでは、側面から発光体までの距離を変えても、
結像位置は変わらない。このため発光体を2列にあるい
は3列等に配列することができ、解像度を容易に向上さ
せることができる。ここで半導体基板の側面からの距離
による光の広がりの程度の相違を補うため、側面から離
れた発光体程、発光面積を大きくし、光出力の低下を補
うようにする。
The use of the side-emitting LED array facilitates the improvement of the resolution of the LED array. For example, in the case of an LED array that emits light from the main surface, when the light emitters are arranged in two rows, the image forming position is displaced unless the lens array is also arranged in two rows. On the other hand, side emission type LE
In the D array, even if the distance from the side surface to the light emitter is changed,
The imaging position does not change. Therefore, the luminous bodies can be arranged in two rows or three rows, and the resolution can be easily improved. Here, in order to compensate for the difference in the degree of spread of light depending on the distance from the side surface of the semiconductor substrate, the light emitting body farther from the side surface has a larger light emitting area to compensate for the decrease in light output.

【0012】請求項3の発明では、樹脂層の少なくとも
一方の表面に反射層を設ける。このため樹脂層を進む光
は反射層で反射され、樹脂層は1種の光ガイドとなり、
光の取り出し効率がさらに改善される。また請求項4の
発明のように、前記半導体基板の一主面を樹脂層で被覆
し、その表面を反射層で被覆すると、樹脂層に入った光
は基板と反射層とで反射されて進み、効率的に側面から
光を取り出すことができる。
According to the third aspect of the invention, the reflective layer is provided on at least one surface of the resin layer. Therefore, the light traveling through the resin layer is reflected by the reflective layer, and the resin layer serves as a kind of light guide,
The light extraction efficiency is further improved. When one main surface of the semiconductor substrate is covered with a resin layer and the surface thereof is covered with a reflective layer, the light entering the resin layer is reflected by the substrate and the reflective layer and proceeds. , The light can be efficiently extracted from the side surface.

【0013】[0013]

【実施例】図1,図2に、最初の実施例を示す。図1に
おいて、02はガラス基板でLEDアレイ2を搭載する
ためのものであり、LEDアレイ2とは別のものであ
る。また04は図示しない感光体ドラム等に光を結像さ
せるためのレンズアレイである。LEDアレイ2につい
て説明すると、4は母体のGaAs基板で、その表面に
不純物濃度の異なるエピタキシャル成長部6をエピタキ
シャル成長させ、SiO2や窒化ケイ素等の拡散マスク
層8を介して不純物注入部10に不純物を注入し、pn
特性を反転させて接合を形成する。エピタキシャル成長
部6と不純物注入部10との界面(接合界面)が発光面
となる。12はAlやAu等の電極である。14は透明
シリコン樹脂やエポキシ樹脂,アクリル樹脂等の樹脂層
で、LEDアレイ2の光を取り出す側の端面を被覆す
る。樹脂層14の図での右側の端面は、平滑な端面とす
る。この発明のLEDアレイ2は、樹脂層14を含んだ
ものである。
EXAMPLE A first example is shown in FIGS. In FIG. 1, reference numeral 02 denotes a glass substrate for mounting the LED array 2, which is different from the LED array 2. Reference numeral 04 is a lens array for forming an image of light on a photosensitive drum or the like (not shown). Explaining the LED array 2, reference numeral 4 is a matrix GaAs substrate, on which epitaxial growth portions 6 having different impurity concentrations are epitaxially grown, and impurities are injected into the impurity injection portion 10 through a diffusion mask layer 8 such as SiO2 or silicon nitride. And then pn
The characteristics are inverted to form the junction. The interface (junction interface) between the epitaxial growth portion 6 and the impurity injection portion 10 serves as a light emitting surface. Reference numeral 12 is an electrode of Al, Au, or the like. A resin layer 14 such as a transparent silicon resin, an epoxy resin, or an acrylic resin covers the end surface of the LED array 2 on the light extraction side. The right end surface of the resin layer 14 in the drawing is a smooth end surface. The LED array 2 of the present invention includes the resin layer 14.

【0014】図2に、LEDアレイ2の一主面を示す。
不純物注入部10は、GaAs基板4の側面に平行に、
側面から間隔を置いて、主面上に例えば1列に配列す
る。この結果、ウェハーから切り出す際の損傷や出力変
動を防止することができる。なおLEDアレイ2では側
面から光を取り出すので、不純物注入部10を全面的に
電極12で被覆することができる。このため不純物注入
部10への電極12の接続が容易となる。
FIG. 2 shows one main surface of the LED array 2.
The impurity injection part 10 is parallel to the side surface of the GaAs substrate 4,
For example, one row is arranged on the main surface with a space from the side surface. As a result, it is possible to prevent damage and output fluctuation when cutting out from the wafer. Since light is extracted from the side surface of the LED array 2, the impurity injection portion 10 can be entirely covered with the electrode 12. Therefore, the connection of the electrode 12 to the impurity injection portion 10 becomes easy.

【0015】実施例の作用を示す。不純物注入部10と
エピタキシャル成長部6の界面で生じた光の一部が、ア
レイ2の側面から外部へと出て行く。この光は通常はL
EDアレイの洩れ光と呼ばれ、その強度は主面からの光
(電極12を設けた側の光)の30%程度である。実施
例ではこの光を側面から取り出し、樹脂層14を用いて
外部へと取り出す。ここでまず不純物注入部10を全面
的に電極12で被覆し、電極12による光の反射で側面
への光の取り出し効率を改善する。
The operation of the embodiment will be described. Part of the light generated at the interface between the impurity-implanted portion 10 and the epitaxial growth portion 6 goes out from the side surface of the array 2. This light is usually L
It is called leakage light of the ED array, and its intensity is about 30% of the light from the main surface (light on the side where the electrode 12 is provided). In the embodiment, this light is extracted from the side surface and is extracted to the outside using the resin layer 14. Here, first, the impurity-implanted portion 10 is entirely covered with the electrode 12, and the light is reflected by the electrode 12 to improve the light extraction efficiency to the side surface.

【0016】GaAs基板4の端面は、ウェハーからア
レイ2を取り出す際にカッターで切断して形成される。
このため基板4の端面は平滑ではなく、表面には凹凸が
多数ある。そしてこれらの凹凸のため、基板4の側面へ
と出る光は散乱されて広がる。ここで樹脂層14を設け
ると、基板4の端面の凹凸の影響が小さくなる。例えば
樹脂層14の屈折率が基板4の屈折率と同じであれば、
光にとって端面の凹凸は解消され、光は直進する。Ga
Asの屈折率は3.5程度と高く、これと等しい屈折率
の樹脂を見い出すのは容易ではない。しかしシリコン樹
脂等のように屈折率が1.5程度とGaAs基板4より
も小さくても、空気よりも屈折率が大きければ、基板4
の内外での屈折率の差が減少し、端面での光の散乱は小
さくなる。この結果GaAs基板4の端面の凹凸によ
る、光の散乱を小さくすることができる。
The end face of the GaAs substrate 4 is formed by cutting with a cutter when taking out the array 2 from the wafer.
Therefore, the end surface of the substrate 4 is not smooth, and the surface has many irregularities. Due to these irregularities, the light emitted to the side surface of the substrate 4 is scattered and spread. When the resin layer 14 is provided here, the influence of the unevenness of the end surface of the substrate 4 is reduced. For example, if the refractive index of the resin layer 14 is the same as the refractive index of the substrate 4,
The unevenness of the end face is eliminated by the light, and the light goes straight. Ga
The refractive index of As is as high as about 3.5, and it is not easy to find a resin having a refractive index equal to this. However, even if the refractive index is about 1.5, which is smaller than that of the GaAs substrate 4 like silicon resin, but the refractive index is larger than that of air, the substrate 4
The difference in the refractive index between the inside and the outside of the glass is reduced, and the light scattering at the end face is reduced. As a result, it is possible to reduce light scattering due to the unevenness of the end surface of the GaAs substrate 4.

【0017】樹脂層14を設けると、端面での凹凸の影
響を小さくすること以外にも、LEDアレイ2からの光
の取り出し効率が向上する。GaAsの屈折率をn1,
空気の屈折率をn2とすると、LEDアレイ2側から空
気へと出ようとする光の透過率は式(1)で与えられる。
ただし入射角が0度で、界面に垂直に入射した場合で、
樹脂層14を設けないものとする。 T=[1−(n1−n2)2/(n1+n2)2] (1) GaAsの屈折率n1は約3.5で、空気の屈折率n2は
1.0で、式(1)での透過率Tは69%となる。これに対
して、中間に屈折率がn3の樹脂層14を設けると、L
EDアレイ2から空気への光の透過率Tは、式(2)で定
まる。 T=[1−(n1−n3)2/(n1+n3)2] ・[1−(n3−n2)2/(n3+n2)2] (2) ここで樹脂層14の材質をシリコン樹脂とし、その屈折
率n3を1.5とすると、透過率Tは約81%となる。こ
れは屈折率の大きな差のため、GaAs基板4に閉じ込
められた光を、樹脂層14を介在させて界面での屈折率
の差を小さくし、光を取り出せるようにしたことを表
す。ここで透過率Tは約20%向上したが、これは界面
に垂直に入射する光の場合であり、入射角が0度以外の
場合をも加味すると、透過率Tは全体で約30%向上す
る。
Providing the resin layer 14 improves the efficiency of extracting light from the LED array 2 in addition to reducing the influence of unevenness on the end face. The refractive index of GaAs is n1,
Assuming that the refractive index of air is n2, the transmittance of light from the LED array 2 side to the air is given by equation (1).
However, when the incident angle is 0 degree and the light enters the interface perpendicularly,
The resin layer 14 is not provided. T = [1- (n1-n2) 2 / (n1 + n2) 2 ] (1) The refractive index n1 of GaAs is about 3.5, the refractive index n2 of air is 1.0, and the transmission by the formula (1) is The rate T is 69%. On the other hand, if a resin layer 14 having a refractive index of n3 is provided in the middle,
The transmittance T of light from the ED array 2 to the air is determined by the equation (2). T = [1- (n1-n3) 2 / (n1 + n3) 2 ]-[1- (n3-n2) 2 / (n3 + n2) 2 ] (2) Here, the resin layer 14 is made of silicone resin and its refraction When the rate n3 is 1.5, the transmittance T is about 81%. This means that the light confined in the GaAs substrate 4 can be extracted by interposing the resin layer 14 to reduce the difference in the refractive index at the interface due to the large difference in the refractive index. Here, the transmittance T was improved by about 20%, but this is the case of light that is incident perpendicularly to the interface, and when the incident angle other than 0 degrees is taken into consideration, the transmittance T is improved by about 30% as a whole. To do.

【0018】[0018]

【実施例2】図3に、第2の実施例を示す。図におい
て、32は新たなLEDアレイで、34は樹脂層14の
基板側に設けた反射層で、36は空気側に設けた反射層
である。基板側反射層34には、例えば基板02に設け
たAlやAu等の反射率の高い電極を用いる。また空気
側反射層36には例えば銀ペーストを用い、樹脂層14
の形成後に銀ペーストを塗布して空気側反射層36とす
る。このようにすると、樹脂層14に入った光は2つの
反射層34,36で反射されながら進み、樹脂層14が
一種の光ガイドとなる。この結果光の取り出し効率がさ
らに改善される。図3の実施例では、樹脂層14を発光
体を覆うように被覆し、発光体の上部の部分にも空気側
反射層36を設けて、発光体の主面側に洩れた光を空気
側反射層36で反射させながらレンズアレイ04へと導
く。この結果、樹脂層14と空気側反射層36は、Ga
As基板4の主面側へ漏れた光に対しても、光ガイドと
して作用する。なお空気側反射層36は、電極12と短
絡しないように配置する。また基板側反射層34は設け
なくても良い。
Second Embodiment FIG. 3 shows a second embodiment. In the figure, 32 is a new LED array, 34 is a reflective layer provided on the substrate side of the resin layer 14, and 36 is a reflective layer provided on the air side. For the substrate-side reflective layer 34, for example, an electrode having a high reflectance such as Al or Au provided on the substrate 02 is used. For the air-side reflection layer 36, for example, silver paste is used, and the resin layer 14
After forming, the silver paste is applied to form the air side reflection layer 36. With this configuration, the light entering the resin layer 14 travels while being reflected by the two reflective layers 34 and 36, and the resin layer 14 serves as a kind of light guide. As a result, the light extraction efficiency is further improved. In the embodiment of FIG. 3, the resin layer 14 is coated so as to cover the light emitting body, and the air side reflection layer 36 is also provided on the upper portion of the light emitting body so that the light leaked to the main surface side of the light emitting body is exposed to the air side. The light is guided to the lens array 04 while being reflected by the reflective layer 36. As a result, the resin layer 14 and the air-side reflective layer 36 have Ga
It also acts as a light guide for the light leaked to the main surface side of the As substrate 4. The air-side reflective layer 36 is arranged so as not to short-circuit with the electrode 12. Further, the substrate side reflection layer 34 may not be provided.

【0019】[0019]

【実施例3】図4に、第3の実施例を示す。図におい
て、42は新たなLEDアレイ、44は新たな拡散マス
ク層、46は新たな電極、48は光ガイドで、SiO2
や窒化ケイ素等の膜で構成し、光ガイド48に設けた穴
から電極46を接続する。図3の実施例との違いは、光
ガイド48にあり、光ガイド48で不純物注入部10の
表面の大部分を覆い、一部に設けた窓から電極46を不
純物注入部10に接続する。発光体で生じた光の中で主
面側に進んだ光は、光ガイド48と拡散マスク層44に
閉じ込められる。これは光ガイド48の表面を電極46
で被覆し、電極46で光を反射させるからである。また
光ガイド48及び拡散マスク層44と、不純物注入部1
0やエピタキシャル成長部6との間には大きな屈折率の
違いがあり、光ガイド48や拡散マスク層44に入り込
んだ光はここに閉じ込められることになる。例えば光ガ
イド48と拡散マスク層44の屈折率が等しいとする。
前記の式(1)において、透過率Tはn1とn2とに対して
対称である。このためGaAsに比べ屈折率の小さな拡
散マスク層44や光ガイド48の側にも、光を閉じ込め
ることができる。先ず周囲の空気との間には電極46が
あり、光は電極46で反射されて閉じ込められる。Ga
As側との間では、屈折率に大きな差があるためGaA
s側への透過率は小さく、屈折率の小さな拡散マスク層
44や光ガイド48の側に光を閉じ込めることができ
る。ここで光ガイド48を設けるのは、不純物注入部1
0の表面に出た光を光ガイド48に閉じ込めて、側面へ
取り出すためである。即ち不純物注入部10の表面へ出
る光が最も強く、これを基板4へ戻さず、光ガイド48
と拡散マスク層44で導くのである。
Third Embodiment FIG. 4 shows a third embodiment. In the figure, 42 is a new LED array, 44 is a new diffusion mask layer, 46 is a new electrode, 48 is a light guide, SiO2
And a film of silicon nitride or the like, and the electrode 46 is connected through a hole provided in the light guide 48. The difference from the embodiment of FIG. 3 lies in the light guide 48, in which the light guide 48 covers most of the surface of the impurity implantation part 10 and the electrode 46 is connected to the impurity implantation part 10 through a window provided in a part thereof. Of the light generated by the light emitter, the light that has traveled to the main surface side is confined in the light guide 48 and the diffusion mask layer 44. This is because the surface of the light guide 48 is the electrode 46.
It is because it is covered with and the light is reflected by the electrode 46. In addition, the light guide 48, the diffusion mask layer 44, and the impurity implantation portion
0 and the epitaxial growth portion 6 have a large difference in refractive index, and the light entering the light guide 48 and the diffusion mask layer 44 is confined there. For example, it is assumed that the light guide 48 and the diffusion mask layer 44 have the same refractive index.
In the above formula (1), the transmittance T is symmetrical with respect to n1 and n2. Therefore, light can be confined also on the side of the diffusion mask layer 44 and the light guide 48, which have a smaller refractive index than GaAs. First, there is an electrode 46 between the surrounding air and the light is reflected by the electrode 46 and confined. Ga
Since there is a large difference in the refractive index between the As side and the As side, GaA
The transmittance to the s side is small, and light can be confined on the side of the diffusion mask layer 44 or the light guide 48 having a small refractive index. Here, the light guide 48 is provided in the impurity injection part 1.
This is because the light emitted from the surface of 0 is confined in the light guide 48 and is extracted to the side surface. That is, the light emitted to the surface of the impurity-implanted portion 10 is the strongest, and the light is not returned to the substrate 4.
And the diffusion mask layer 44 leads.

【0020】なお不純物注入部10への電極の接続形態
自体は任意で、例えば図5の変形例のLEDアレイ52
のようにしても良い。図5において、54は新たな拡散
マスク層、58は新たな光ガイドである。この変形例で
は、主面に出た光を、拡散マスク層54の右側の部分と
光ガイド58に閉じ込め、空気側反射層36で反射させ
ながら導いて取り出す。
It should be noted that the connection form of the electrodes to the impurity injection portion 10 itself is arbitrary, and for example, the LED array 52 of the modified example of FIG. 5 is used.
You may do like this. In FIG. 5, 54 is a new diffusion mask layer, and 58 is a new light guide. In this modification, the light emitted to the main surface is confined in the right side portion of the diffusion mask layer 54 and the light guide 58, and is guided and extracted while being reflected by the air side reflection layer 36.

【0021】[0021]

【実施例4】図6,図7に、第4の実施例を示す。図に
おいて、62は新たなLEDアレイ、64はSiO2や
窒化ケイ素等の新たな拡散マスク層、66,67は電極
で、68,70は2列に配列した不純物注入部である。
この実施例では、GaAs基板4の主面上に、その一方
の側面からの間隔を変えて、2列に発光体を配列するこ
とになる。LEDアレイ62の側面から光を取り出すの
で、発光体を2列に配列しても、図示しない感光体ドラ
ム等への光の結像位置は変わらない。この結果発光体を
2列に配列することで、例えば解像度600ドット/イ
ンチの高解像度のLEDアレイ62を容易に得ることが
できる。しかもこの場合、パターンの精度等は300ド
ット/インチのLEDアレイと同じである。次にGaA
s基板4の端面からの距離が増す程、発光体からの光は
拡散して樹脂層14に入り、光の強度が低下する。そこ
で側面から遠い発光体ほど発光面積を大きくし、不純物
注入部70の面積を不純物注入部68の面積よりも大き
くする。
Fourth Embodiment FIGS. 6 and 7 show a fourth embodiment. In the figure, 62 is a new LED array, 64 is a new diffusion mask layer such as SiO2 or silicon nitride, 66 and 67 are electrodes, and 68 and 70 are impurity implantation portions arranged in two rows.
In this embodiment, the light emitters are arranged in two rows on the main surface of the GaAs substrate 4 while changing the distance from one side surface thereof. Since the light is extracted from the side surface of the LED array 62, even if the light emitters are arranged in two rows, the image forming position of the light on the photoconductor drum or the like not shown does not change. As a result, by arranging the light emitters in two rows, it is possible to easily obtain a high resolution LED array 62 having a resolution of 600 dots / inch, for example. Moreover, in this case, the accuracy of the pattern is the same as that of the LED array of 300 dots / inch. Next, GaA
As the distance from the end surface of the substrate 4 increases, the light from the light emitting body diffuses and enters the resin layer 14, and the intensity of the light decreases. Therefore, the light-emitting area farther from the side surface has a larger light-emitting area, and the area of the impurity injection portion 70 is larger than that of the impurity injection portion 68.

【0022】[0022]

【実施例5】図8,図9に、第5の実施例を示す。図に
おいて、82は新たなLEDアレイ、84は新たな拡散
マスク層、86,87は電極、88,90は例えば2列
に配列した不純物注入部、91は新たな光ガイドであ
る。光ガイド91には、SiO2膜や窒化ケイ素膜など
を用いる。図8,図9の実施例と、図6,図7の実施例
との違いは不純物注入部に対する電極の接続と光ガイド
91にあり、図8,図9の実施例では、光ガイド91に
設けた小さな円形の穴から電極86,87を不純物注入
部88,90に接続し、不純物注入部88,90の表面
への光を拡散マスク層84と光ガイド91で閉じ込めて
側面から取り出す。
Fifth Embodiment FIGS. 8 and 9 show a fifth embodiment. In the figure, 82 is a new LED array, 84 is a new diffusion mask layer, 86 and 87 are electrodes, 88 and 90 are impurity implantation portions arranged in, for example, two rows, and 91 is a new light guide. For the light guide 91, a SiO2 film or a silicon nitride film is used. The difference between the embodiment shown in FIGS. 8 and 9 and the embodiment shown in FIGS. 6 and 7 lies in the connection of the electrode to the impurity implantation portion and the light guide 91. In the embodiment shown in FIGS. The electrodes 86 and 87 are connected to the impurity implantation portions 88 and 90 through the provided small circular holes, and the light to the surfaces of the impurity implantation portions 88 and 90 is confined by the diffusion mask layer 84 and the light guide 91 and extracted from the side surface.

【0023】[0023]

【実施例6】図10に第6の実施例を示す。図におい
て、92は新たなLEDアレイで、樹脂層14や空気側
反射層36の配置以外の点では、図6,図7の実施例と
同様である。そしてこの実施例では、樹脂層14や空気
側反射層36で不純物注入部68,70を被覆し、LE
Dアレイ92の主面側に出た光を反射層36で反射させ
て樹脂層14内を導き、図の右側の端面から取り出す。
Sixth Embodiment FIG. 10 shows a sixth embodiment. In the figure, reference numeral 92 denotes a new LED array, which is the same as the embodiment of FIGS. 6 and 7 except for the arrangement of the resin layer 14 and the air side reflection layer 36. Further, in this embodiment, the resin layer 14 and the air side reflection layer 36 cover the impurity injection portions 68 and 70,
The light emitted to the main surface side of the D array 92 is reflected by the reflective layer 36 to be guided through the resin layer 14 and taken out from the end surface on the right side of the drawing.

【0024】[0024]

【発明の効果】請求項1の発明では、側面発光型のLE
Dアレイにおいて、ウェハーから基板を切断する際の影
響を小さくし、切断時の衝撃やストレスにより発光体に
不良が生じたり、出力がばらついたりするのを防止す
る。また請求項1の発明では、基板の端面の凹凸による
光の拡散を抑制する。また請求項1の発明では、界面で
の屈折率の差を減少させ、LEDアレイからの光の取り
出し効率を向上させる。さらに請求項1の発明では、ア
レイをLEDヘッドに用いた際のヘッド幅の短縮を可能
にし、光プリンタの小型化を容易にする。
According to the first aspect of the invention, the side emission type LE is used.
In the D array, the influence when the substrate is cut from the wafer is reduced, and it is possible to prevent the light emitting body from being defective or the output from being varied due to the impact and stress at the time of cutting. Further, according to the invention of claim 1, the diffusion of light due to the unevenness of the end face of the substrate is suppressed. Further, in the invention of claim 1, the difference in the refractive index at the interface is reduced, and the light extraction efficiency from the LED array is improved. Further, in the invention of claim 1, the head width can be shortened when the array is used for the LED head, and the miniaturization of the optical printer is facilitated.

【0025】請求項2の発明では、これらに加えて、L
EDアレイの解像度を向上させる。請求項3及び請求項
4の発明では、請求項1の発明の効果に加えて、LED
アレイからの光の取り出し効率をさらに向上させる。
In the invention of claim 2, in addition to these, L
Improve the resolution of the ED array. According to the inventions of claim 3 and claim 4, in addition to the effect of the invention of claim 1,
Further improve the extraction efficiency of light from the array.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のLEDアレイの断面図FIG. 1 is a sectional view of an LED array according to an embodiment.

【図2】 実施例のLEDアレイの平面図FIG. 2 is a plan view of an LED array according to an embodiment.

【図3】 第2の実施例のLEDアレイの断面図FIG. 3 is a sectional view of an LED array according to a second embodiment.

【図4】 第3の実施例のLEDアレイの断面図FIG. 4 is a sectional view of an LED array according to a third embodiment.

【図5】 変形例のLEDアレイの断面図FIG. 5 is a cross-sectional view of a modified LED array.

【図6】 第4の実施例のLEDアレイの断面図FIG. 6 is a sectional view of an LED array according to a fourth embodiment.

【図7】 第4の実施例のLEDアレイの平面図FIG. 7 is a plan view of an LED array according to a fourth embodiment.

【図8】 第5の実施例のLEDアレイの断面図FIG. 8 is a sectional view of an LED array of a fifth embodiment.

【図9】 第5の実施例のLEDアレイの、一部切り
欠き部付き平面図
FIG. 9 is a plan view of an LED array according to a fifth embodiment with a partially cutout portion.

【図10】 第6の実施例のLEDアレイの断面図FIG. 10 is a sectional view of an LED array of a sixth embodiment.

【符号の説明】[Explanation of symbols]

2,32,42,52,62,82 LEDアレイ 02 ガラス基板 04 レンズアレイ 4 GaAs基板 6 エピタキシャル
成長部 10,68,70,89,90 不純物注入部 8,44,64,84 拡散マスク層 12,46,66,67,86,87 電極 14 樹脂層 34 基板側反射層 36 空気側反射層 48,58,91 光ガイド
2, 32, 42, 52, 62, 82 LED array 02 Glass substrate 04 Lens array 4 GaAs substrate 6 Epitaxial growth part 10, 68, 70, 89, 90 Impurity injection part 8, 44, 64, 84 Diffusion mask layer 12, 46 , 66, 67, 86, 87 Electrode 14 Resin layer 34 Substrate side reflection layer 36 Air side reflection layer 48, 58, 91 Light guide

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/29 23/31 27/15 8934−4M 33/00 N 7376−4M H04N 1/036 A 8721−5C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location H01L 23/29 23/31 27/15 8934-4M 33/00 N 7376-4M H04N 1/036 A 8721-5C

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一主面で、一側面から間隔
をおいた位置に多数の発光体を配置するとともに、各発
光体の上部を電極で被覆し、各発光体の発する光を前記
半導体基板の一側面より放射させるようにしたLEDア
レイであって、前記半導体基板の光が放射される一側面
を周囲の媒質よりも屈折率が高い樹脂層で被覆したこと
を特徴とする、LEDアレイ。
1. A large number of light-emitting bodies are arranged on one main surface of a semiconductor substrate at a position spaced from one side surface, and an upper portion of each light-emitting body is covered with an electrode so that light emitted by each light-emitting body is An LED array in which light is emitted from one side of a semiconductor substrate, wherein one side of the semiconductor substrate from which light is emitted is covered with a resin layer having a refractive index higher than that of a surrounding medium. array.
【請求項2】 前記半導体基板の一主面で、前記一側面
から間隔をおいた位置に配置された発光体が複数の列状
をなし、かつ前記一側面からの距離が大きい方の列の発
光体の発光強度を、一側面からの距離が小さい方の列の
発光体の発光強度よりも大きくしたことを特徴とする、
請求項1に記載のLEDアレイ。
2. A light emitting body arranged at a position spaced from the one side surface in a plurality of rows on one main surface of the semiconductor substrate, and a row having a larger distance from the one side surface. The luminous intensity of the luminous body is set to be larger than the luminous intensity of the luminous body of the row whose distance from one side is smaller,
The LED array according to claim 1.
【請求項3】 前記屈折率が高い樹脂層の表面に反射層
を設けたことを特徴とする、請求項1に記載のLEDア
レイ。
3. The LED array according to claim 1, wherein a reflective layer is provided on the surface of the resin layer having a high refractive index.
【請求項4】 前記半導体基板の一側面を被覆する樹脂
層が前記半導体基板の一主面の少なくとも一部を被覆
し、かつ該半導体基板の一主面を被覆する樹脂層表面に
反射層を設けたことを特徴とする、請求項1に記載のL
EDアレイ。
4. A resin layer covering one side surface of the semiconductor substrate covers at least a part of one main surface of the semiconductor substrate, and a reflection layer is provided on a surface of the resin layer covering one main surface of the semiconductor substrate. The L according to claim 1, wherein the L is provided.
ED array.
JP4345598A 1992-11-30 1992-11-30 Led array Pending JPH06166213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4345598A JPH06166213A (en) 1992-11-30 1992-11-30 Led array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4345598A JPH06166213A (en) 1992-11-30 1992-11-30 Led array

Publications (1)

Publication Number Publication Date
JPH06166213A true JPH06166213A (en) 1994-06-14

Family

ID=18377678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4345598A Pending JPH06166213A (en) 1992-11-30 1992-11-30 Led array

Country Status (1)

Country Link
JP (1) JPH06166213A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153277A (en) * 2002-10-29 2004-05-27 Lumileds Lighting Us Llc Light-emitting device spot emitter with enhanced brightness
JP2007214923A (en) * 2006-02-09 2007-08-23 Ricoh Co Ltd Lighting system, image scanner, and image forming apparatus
US7884380B2 (en) 2007-06-06 2011-02-08 Epistar Corporation Semiconductor light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153277A (en) * 2002-10-29 2004-05-27 Lumileds Lighting Us Llc Light-emitting device spot emitter with enhanced brightness
JP2007214923A (en) * 2006-02-09 2007-08-23 Ricoh Co Ltd Lighting system, image scanner, and image forming apparatus
US7884380B2 (en) 2007-06-06 2011-02-08 Epistar Corporation Semiconductor light emitting device
US8148196B2 (en) 2007-06-06 2012-04-03 Epistar Corporation Semiconductor light emitting device
USRE47892E1 (en) 2007-06-06 2020-03-03 Epistar Corporation Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
US5132751A (en) Light-emitting diode array with projections
US5162878A (en) Light-emitting diode array with projections
JP3241976B2 (en) Semiconductor light emitting device
US6357903B1 (en) Line type illuminator
US6593602B2 (en) Edge emission type semiconductor device for emitting super luminescent light, its manufacture and spatial optical communication device
US5077587A (en) Light-emitting diode with anti-reflection layer optimization
US5055893A (en) Light-emitting diode array with reflective layer
JPH0858155A (en) Led printing head and led array chip and manufacture of the led array chip
US5135877A (en) Method of making a light-emitting diode with anti-reflection layer optimization
JP2001203393A (en) Light-emitting diode
JP4939446B2 (en) Surface light source and display device
US6064418A (en) Led array, print head, and electrophotographic printer
JPH06166213A (en) Led array
JP4389529B2 (en) Surface illumination device and light guide plate
JP2005071971A (en) Light guide plate for surface light emitting device, and surface light emitting device
US6395577B1 (en) Photodetecting device and method of manufacturing the same
JP4259377B2 (en) Line light source and image sensor
JPH07183573A (en) Edge-luminous light-emitting diode
US4937638A (en) Edge emitting light emissive diode
JP2843219B2 (en) Light emitting element array device
JP3093439B2 (en) Semiconductor light emitting device
JPH01184879A (en) Light emitting diode array chip
JPH05136459A (en) Semiconductor light emitting device
JP3666547B2 (en) Optical device and manufacturing method thereof
JP2002094126A (en) Printed head and method of manufacturing led array chip

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees