JP2768996B2 - Anti-reflection coating for optical articles made of synthetic resin - Google Patents
Anti-reflection coating for optical articles made of synthetic resinInfo
- Publication number
- JP2768996B2 JP2768996B2 JP1254987A JP25498789A JP2768996B2 JP 2768996 B2 JP2768996 B2 JP 2768996B2 JP 1254987 A JP1254987 A JP 1254987A JP 25498789 A JP25498789 A JP 25498789A JP 2768996 B2 JP2768996 B2 JP 2768996B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- refractive index
- layer
- range
- synthetic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Surface Treatment Of Optical Elements (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は合成樹脂製光学物品の反射防止膜に係り、特
に眼鏡レンズなどの光学用レンズ、ワードプロセッサ
ー、コンピューター、などの表示画面に付設する光学フ
ィルター、自動車の計器カバーなどに好適な反射防止膜
に関する。Description: BACKGROUND OF THE INVENTION The present invention relates to an antireflection film for an optical article made of synthetic resin, and in particular, to an optical lens such as an eyeglass lens, an optical lens attached to a display screen of a word processor, a computer, or the like. The present invention relates to an antireflection film suitable for a filter, an instrument cover of an automobile, and the like.
光学物品の反射防止膜については多数の公知例が有
り、合成樹脂を基板とする反射防止膜についても、真空
蒸着等によって形成される無機物質の膜や、溶液塗布等
によって形成される有機高分子物質の膜についての公知
例が多数開示されている。反射防止膜の膜構成について
は種々の特徴を持つ組合せが多数提案されており、本発
明と関連する5層反射防止膜についても特開昭49−8603
2号公報、特開昭59−208501号公報などが提案されてい
る。There are many known examples of an antireflection film for an optical article, and an antireflection film using a synthetic resin as a substrate is also a film of an inorganic substance formed by vacuum deposition or an organic polymer formed by solution coating or the like. Many known examples of a film of a substance are disclosed. Numerous combinations having various characteristics have been proposed for the film configuration of the antireflection film, and a five-layer antireflection film related to the present invention is also disclosed in JP-A-49-8603.
No. 2, JP-A-59-208501, and the like have been proposed.
しかしながら、上記従来技術は、可視域の低反射率化
を目的とする例がほとんどであって、特に可視域の極力
広帯域にわたる低反射率化をめざすものが多数であり、
前記の二つの公知例においても同様である。多層膜によ
って広帯域の低反射率化を行う場合に、膜による反射干
渉色は無色または淡い種々の色彩を示すが、それらの干
渉色は膜の形成条件の変動に伴って変動するため一定の
干渉色を得難い欠点がある。干渉色は用途によって問題
とされない場合も有り得るが、光学物品の外観品質とし
て低反射率と同様重要な要素であり、ことに干渉色の大
きなバラツキは好ましくなく歩留りにも影響する。本発
明の主要目的は低反射率化と共に好ましい干渉色を安定
して与える膜を得ることにある。However, most of the above-mentioned conventional techniques aim at lowering the reflectance in the visible region, and in particular, many aim at lowering the reflectance over as wide a band as possible in the visible region.
The same applies to the above two known examples. When lowering the reflectance over a wide band by using a multilayer film, the interference color reflected by the film shows various colors that are colorless or faint. There is a disadvantage that it is difficult to obtain color. Although the interference color may not be a problem depending on the application, it is an important factor in appearance quality of the optical article as well as the low reflectance, and a large variation in the interference color is not preferable and also affects the yield. A main object of the present invention is to obtain a film which stably gives a preferable interference color while reducing the reflectance.
特開昭59−208501号公報の請求範囲第1項記載の5層
反射膜においては、第1層、第3層、第5層を同一の低
屈折率物質で構成し、かつ屈折率を1.35〜1.47の範囲と
する必要がある。かかる低屈折率物質としては公知のSi
O2の他、MgF2、LiF、CaF2などの金属弗化物に限定され
ることになり、これらはいずれも合成樹脂基板への密着
性に問題がある。すなわち薄膜形成時に基板が耐え得る
温度に限界がある他、基板との親和性に乏しいため、長
期間の吸放湿やクリーナーを用いた清掃に耐えられない
膜となる危険性が高い。本発明の他の目的は合成樹脂基
板に強固に密着し、温度変化、湿度変化、クリーナー等
の溶剤の接触、屋内での軽度の摩擦などの実用耐久性に
優れ、長期間の反射防止特性の変化が小さく、バランス
のとれた性能の膜を得ることにある。In the five-layer reflecting film described in claim 1 of JP-A-59-208501, the first, third and fifth layers are made of the same low refractive index material and have a refractive index of 1.35. It must be in the range of ~ 1.47. As such a low refractive index material, known Si
In addition to O 2 , it is limited to metal fluorides such as MgF 2 , LiF, and CaF 2 , all of which have a problem in adhesion to a synthetic resin substrate. In other words, there is a limit to the temperature that the substrate can withstand during the formation of the thin film, and the affinity with the substrate is poor, so there is a high risk that the film will not be able to withstand long-term moisture absorption / desorption or cleaning using a cleaner. Another object of the present invention is to firmly adhere to a synthetic resin substrate, to have excellent practical durability such as temperature change, humidity change, contact of a solvent such as a cleaner, light friction indoors, and anti-reflection properties for a long time. The purpose is to obtain a film having a small change and a well-balanced performance.
本発明者等は、前記課題を解決するために、反射防止
膜を構成する物質および光学的膜厚について広汎にわた
り鋭意検討した結果、極めて優れた膜構成を見出し、本
発明を完成した。The present inventors have conducted extensive and extensive studies on the materials and the optical film thickness constituting the antireflection film in order to solve the above problems, and as a result, have found an extremely excellent film structure, and have completed the present invention.
すなわち本発明の目的とするところは、屈折率が1.4
〜1.6の合成樹脂基板の表面に設けられた5層反射防止
膜であって、基板側から第1層は屈折率1.5〜1.7の物質
から成り、第2層および第4層は屈折率1.9〜2.2の物質
から成り、第3層および第5層は屈折率1.4〜1.5の物質
から成り、かつ第1層〜第5層の光学的膜厚n1d1、n
2d2、n3d3、n4d4、n5d5はそれぞれ式(1)〜(5)を
満すことを特徴とする合成樹脂物品の反射防止膜を提供
するものである。That is, the object of the present invention is that the refractive index is 1.4
A five-layer antireflection film provided on the surface of a synthetic resin substrate having a refractive index of 1.5 to 1.7, and a second layer and a fourth layer having a refractive index of 1.9 to The third layer and the fifth layer are made of a material having a refractive index of 1.4 to 1.5, and the first to fifth layers have optical thicknesses n 1 d 1 and n 1 .
2 d 2, n 3 d 3 , n 4 d 4, n 5 d 5 is to provide an antireflection film of a synthetic resin article, characterized in that each formula (1) to (5) Mitsurusu.
0.0625λ≧n1d1≧0.0375λ ・・・(1) 0.0625λ≧n2d2≧0.0375λ ・・・(2) 0.1125λ≧n3d3≧0.0875λ ・・・(3) 0.450 λ≧n4d4≧0.400 λ ・・・(4) 0.250 λ≧n5d5≧0.225 λ ・・・(5) (λは設計波長) 更にまた、本発明の目的とするところは、第1層の物
質がSiOxであり、第2層および第4層の物質がTiO2また
はZrO2であり、第3層および第5層の物質がSiO2である
ことを特徴とする前記反射防止膜を提供するものであ
る。0.0625λ ≧ n 1 d 1 ≧ 0.0375λ (1) 0.0625λ ≧ n 2 d 2 ≧ 0.0375λ (2) 0.1125λ ≧ n 3 d 3 ≧ 0.0875λ (3) 0.450 λ ≧ n 4 d 4 ≧ 0.400 λ (4) 0.250 λ ≧ n 5 d 5 ≧ 0.225 λ (5) (where λ is a design wavelength) Further, the object of the present invention is as follows. a SiOx material layers, material of the second layer and the fourth layer is TiO 2 or ZrO 2, the antireflection film material of the third layer and the fifth layer is characterized by a SiO 2 To provide.
以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
基板として用いられる合成樹脂は、熱可塑性・熱硬化
性を問わないが、透明または着色透明の樹脂である必要
があり、通常容易に得られる合成樹脂の屈折率として屈
折率1.4〜1.6の範囲にあるものが使用できる。これらの
樹脂の例を挙げれば、ポリスチレン、ポリカーボネー
ト、硬質ポリ塩化ビニル、ポリエチレンテレフタレー
ト、ポリメタクリル酸メチル、含鉛メタクリル樹脂、三
酢酸セルローズ樹脂等が好適であり、これらに多官能
(メタ)アクリル系またはポリオルガノシラン系の表面
硬化処理を行なった樹脂基板は膜の密着性の点で特に好
ましい。The synthetic resin used as the substrate does not matter whether it is thermoplastic or thermosetting, but it needs to be a transparent or colored transparent resin, and the refractive index of the easily obtainable synthetic resin is in the range of 1.4 to 1.6. Some can be used. Examples of these resins include polystyrene, polycarbonate, rigid polyvinyl chloride, polyethylene terephthalate, polymethyl methacrylate, lead-containing methacrylic resin, cellulose triacetate resin, and the like, and polyfunctional (meth) acrylic resins. Alternatively, a resin substrate which has been subjected to a polyorganosilane-based surface hardening treatment is particularly preferable from the viewpoint of film adhesion.
本発明に用いる薄膜形成物質の具体例を以下に示す。
第1層の薄膜を形成する屈折率1.5〜1.7の物質はAl
2O3、SiOx、Y2O3、WO3などから選ぶことができるが、第
1層を形成するので基板への密着性が要求され、合成樹
脂表面との親和性が良く、結合力が特に強固なSiOx(2
>x>1)が最適である。第2層および第4層の薄膜を
形成する屈折率1.9〜2.2のいわゆる高屈折率物質はSb2O
3、SnO2、TiO2、ZnO、ZrO2などから選ぶことができる
が、膜形成精度の安定性からTiO2、ZrO2が好ましい。た
だし中間層に用いられるので耐久性能上の制約は小さ
い。第3層および第5層の薄膜を形成する屈折率1.4〜
1.5のいわゆる低屈折率物質はAlF3、CaF2、SiO2などか
ら選ぶことができるが、最外層の第5層を構成するので
耐擦傷性のある密な膜が必要とされSiO2が特に好まし
い。Specific examples of the thin film forming substance used in the present invention are shown below.
The substance having a refractive index of 1.5 to 1.7 forming the first layer thin film is Al
It can be selected from 2 O 3 , SiOx, Y 2 O 3 , WO 3, etc., but since the first layer is formed, adhesion to the substrate is required, good affinity with the synthetic resin surface, good binding force Especially strong SiOx (2
>X> 1) is optimal. The so-called high-refractive-index substance having a refractive index of 1.9 to 2.2, which forms the thin films of the second and fourth layers, is Sb 2 O
3 , SnO 2 , TiO 2 , ZnO, ZrO 2, etc., but TiO 2 and ZrO 2 are preferable from the viewpoint of stability of film forming accuracy. However, since it is used for the intermediate layer, the restriction on the durability performance is small. Refractive index of 1.4 to form thin films of the third and fifth layers
Called low refractive index material AlF 3 of 1.5, CaF 2, SiO 2 can be selected from such scratch resistance dense film having been required SiO 2 is particularly so constituting the fifth layer of the outermost layer preferable.
本発明に用いられる薄膜の形成方法は、金属酸化物等
の無機物質を、蒸着・イオンプレーティング・スパッタ
リングなどの公知の方法によることができる。The method for forming the thin film used in the present invention can be a known method such as vapor deposition, ion plating and sputtering of an inorganic substance such as a metal oxide.
SiOxは通常の薄膜形成法で1.6〜1.7(本発明のごとく
式(1)程度の薄い膜厚では1.6〜1.65)の屈折率の薄
膜を形成するが、長期間の酸化によって徐々に屈折率が
低下し、最終的に1.5程度まで低下する不安定さを有し
ている。この結果反射防止効果および干渉色も徐々に変
化して、反射防止効果が劣る膜になったり、好ましくな
い干渉色に変化してしまう不安定要因が有る。本発明で
はこの変化を考慮してSiOxを有効に用いる膜厚構成を採
用した。すなわち第1層に用いるSiOxの膜厚は必要最小
限に極力薄くし、第2層〜第5層を高屈折率物質と低屈
折率物質との組合せによって好適な膜厚構成を得たもの
である。この効果をシミュレーションおよび実例をもっ
て以下に示す。第5図(シミュレーション)および第6
図(実施例)のデータを第3表に一括して表示したが、
第3表においてYS、YP値は加重平均反射率であって可視
域全体にわたる反射防止効果を適切に表わす特性値であ
る。長期間の経時変化に伴うn1の低下につれてYS、YPは
変化するが、その変化は僅少であって、ほぼ一定ないし
低下傾向を示す。すなわち反射防止効果はほぼ一定にと
どまるか向上する。また干渉色の変化は第1図のC1〜C5
に示すごとく、ほぼ一定の色彩(青色または青紫色)の
範囲に留まるという優れた特徴を有している。SiOx forms a thin film having a refractive index of 1.6 to 1.7 (or 1.6 to 1.65 for a thin film thickness of about the formula (1) as in the present invention) by a normal thin film forming method. It has an instability that decreases and eventually decreases to about 1.5. As a result, the anti-reflection effect and the interference color gradually change, resulting in a film having poor anti-reflection effect and an unstable factor that changes to an undesired interference color. In the present invention, a film thickness configuration that effectively uses SiOx is adopted in consideration of this change. That is, the thickness of SiOx used for the first layer is made as thin as possible to the minimum necessary, and the second layer to the fifth layer are obtained with a suitable thickness configuration by a combination of a high refractive index material and a low refractive index material. is there. This effect is shown below with simulations and actual examples. FIG. 5 (simulation) and FIG.
The data of the figure (Example) is displayed collectively in Table 3.
In Table 3, the values of Y S and Y P are weighted average reflectances and are characteristic values that appropriately represent the antireflection effect over the entire visible range. Y S and Y P change with a decrease in n 1 due to a long-term change with time, but the changes are small and show a substantially constant or decreasing tendency. That is, the anti-reflection effect remains almost constant or is improved. The change in the interference color is represented by C 1 to C 5 in FIG.
As shown in (1), there is an excellent feature that the color stays in a substantially constant color range (blue or blue-violet).
本発明に用いる干渉色および加重平均反射率の具体的
・定量的表現方法を以下に記す。The specific and quantitative expression method of the interference color and the weighted average reflectance used in the present invention will be described below.
すなわち、国際照明委員会(CIE1931)色度座標にお
けるCIE色度によって表示される反射干渉色(A)(通
常x,yあるいはu,v値で表わされる)は次式(6)、
(7)、(8)で示される。CIEのXYZ表色法によれば、
X、Y、Zの3刺戟値に対して、 またJIS Z8727−1971には、物体色の測定方法として重
価係数を用いて次式(9)、(10)、(11)が与えられ
ている。That is, the reflected interference color (A) (usually represented by x, y or u, v values) represented by the CIE chromaticity in the International Commission on Illumination (CIE1931) chromaticity coordinates is expressed by the following equation (6):
(7) and (8). According to CIE's XYZ color scheme,
For three stimulation values of X, Y and Z, In addition, JIS Z8727-1971 gives the following equations (9), (10), and (11) using a weighting factor as a method for measuring an object color.
X=Σ(Ri×Pλ λi) ・・・・・(9) Y=Σ(Ri×Pλ λi) ・・・・・(10) Z=Σ(Ri×Pλ λi) ・・・・・(11) ここでiは波長であり380〜780nmの範囲で適用され
る。Riは分光反射率であり、Pλ λi,Pλ λi,Pλ
λiはそれぞれ3刺戟値に対する重価係数であって、
前記JISには標準光源に対する重価係数値が与えられて
いる。 X = Σ (R i × P λ λi) ····· (9) Y = Σ (R i × P λ λi) ····· (10) Z = Σ (R i × P λ λi) · (11) where i is the wavelength and is applied in the range of 380 to 780 nm. R i is the spectral reflectance, and P λ λi , P λ λi , P λ
λi is the weighting factor for each of the three stimulation values,
The JIS gives a weight coefficient value for a standard light source.
また測定光源の分光エネルギー強度をS、CIE標準観
測者に対する分光比視感度をV(暗所視Vs、明所視
Vp)、被測定面の分光反射率測定値をRとするとき、加
重平均反射率(B)は暗所視の場合式(12)で、明所視
の場合式(13)で示され、Riを%単位とするときは%の
単位で表わされる。The spectral energy intensity of the measuring light source S, a spectral luminous efficiency for CIE standard observer V (scotopic V s, photopic
V p ), when the measured value of the spectral reflectance of the surface to be measured is R, the weighted average reflectance (B) is expressed by equation (12) for scotopic vision and by equation (13) for photopic vision. , expressed in units% of the time to the R i% units.
反射防止膜の設計計算の方法については以下説明す
る。 The method of design calculation of the antireflection film will be described below.
特定の好ましい干渉色を有し、前記の加重平均反射率
(Ysおよび/またはYp)が最小となるように反射防止膜
を構成する薄膜の屈折率および光学的膜厚を決定するこ
とにより、多層反射防止膜の設計方法を提供するもので
ある。すなわち、3層膜の例を記載する第7図のフロウ
チャートに示す如く、まず基板、高屈折率物質、低屈折
率物質、必要により中間屈折率物質の屈折率をそれぞれ
選択して入力し、次いで光学的膜厚をλ/4(これを100
%として)の10%刻みで各層とも順次入力して、コンピ
ューターで多層膜の理論計算を行なって分光反射率を算
出する。次にこの分光反射率を用いて干渉色および加重
平均反射率を算出して、目標とする干渉色の範囲に入っ
ているか、また目標とする加重平均反射率以下になるか
否かを判定させることで、適切な膜構成をいくつか選択
することができる。これら複数の候補群について、その
周辺を含めてλ/4の5%刻みの光学的膜厚で再度理論計
算を行なって、適切な複数の候補群の範囲を絞り込む。
最後に膜形成の制御性、耐久性能の実用評価等を加味し
て最適膜構成を決定することが可能となる。Has a specific preferred interference color, by determining the refractive index and optical thickness of the thin film weighted average reflectance of the (Y s and / or Y p) constitute the anti-reflection film so as to minimize And a method for designing a multilayer antireflection film. That is, as shown in the flow chart of FIG. 7 describing an example of a three-layer film, first, the refractive index of the substrate, the high-refractive-index material, the low-refractive-index material, and if necessary, the refractive index of the intermediate-refractive-index material are selected and input, Then, the optical film thickness is set to λ / 4 (this is 100
%), Each layer is sequentially input at 10% intervals, and the theoretical reflectance of the multilayer film is calculated by a computer to calculate the spectral reflectance. Next, the interference color and the weighted average reflectance are calculated using the spectral reflectance, and it is determined whether the interference color and the weighted average reflectance are within the target interference color range or not. Thus, some appropriate film configurations can be selected. Theoretical calculation is again performed on the plurality of candidate groups, including the periphery thereof, with an optical film thickness in increments of 5% of λ / 4 to narrow down the appropriate range of the plurality of candidate groups.
Finally, the optimum film configuration can be determined in consideration of controllability of film formation, practical evaluation of durability performance, and the like.
光学的膜厚は通常λ/4を単位として表現されるが、本
発明では以降λ/4の膜厚を100%として、これに対する
割合で膜厚を表現することとする。この表現によれば
(1)〜(5)式は(1)′〜(5)′のように書き改
められる。The optical film thickness is usually expressed in units of λ / 4, but in the present invention, the film thickness of λ / 4 is hereinafter expressed as 100%, and the film thickness is expressed in proportion to this. According to this expression, equations (1) to (5) are rewritten as (1) 'to (5)'.
ここでλは設計波長であって、可視光線中の一つの波
長から選ばれ、本発明では550〜570nmを用いる。 Here, λ is a design wavelength, which is selected from one wavelength in visible light, and in the present invention, 550 to 570 nm is used.
この光学的膜厚の範囲を外れた場合には、加重平均
反射率1%以下、青色または青紫色の干渉色、第1
層の屈折率が1.7〜1.5の間で変化した時・が保持さ
れる、の3条件を共に満すことは極めて困難である。ま
た上記範囲がすべて青色または青紫色を示す範囲と合致
するとは限らず、第1図のCIE色度座標において次式(1
4),(15)を共に満す範囲に干渉色が属するような光
学的膜厚の組合せが好ましい。If the optical thickness is out of the range, the weighted average reflectance is 1% or less, the interference color of blue or blue-violet,
It is extremely difficult to satisfy all three conditions, that is, when the refractive index of the layer changes between 1.7 and 1.5. In addition, the above range does not always coincide with the range indicating blue or bluish purple, and the CIE chromaticity coordinates in FIG.
It is preferable to use a combination of optical film thicknesses such that the interference color belongs to a range satisfying both (4) and (15).
y≧2x−0.235およびy≧1.5x−0.135 ・・・(14) y≦0.5x+0.15 ・・・(15) この色調範囲は、多数のOAオペレーターによる目視観
察の結果好ましいと判定された干渉色を統計処理して求
めた干渉色の座標範囲である。y ≧ 2x−0.235 and y ≧ 1.5x−0.135 (14) y ≦ 0.5x + 0.15 (15) This color range is determined to be favorable as a result of visual observation by a number of OA operators. This is the coordinate range of the interference color obtained by statistically processing the colors.
以下実施例を挙げて本発明をさらに具体的に説明す
る。Hereinafter, the present invention will be described more specifically with reference to examples.
実施例1: 協和ガス化学工業(株)製のパラグラス透明板(メ
タクリル樹脂注型板、板厚2mm、屈折率n0=1.49、全光
線透過率93%)を基板として、第1層SiOx、第2層およ
び第4層TiO2、第3層および第5層SiO2の真空蒸着を10
-5Torr台の真空下で基板の両面に行なった。SiOxはSiO
を抵抗加熱方式により、TiO2は脱ガス後に電子ビーム加
熱方式により、SiO2は粒状物を電子ビーム加熱方式によ
り、いずれも気体酸素による圧力コントロールのもとに
行なった。各層の薄膜の屈折率はそれぞれ、およそn1=
1.60、n2=1.95、n3=n5=1.45、n4=2.00であり、光学
的膜厚はそれぞれ、n1d1=λ/4×20%、n2d2=λ/4×20
%、n3d3=λ/4×40%、n4d4=λ/4×170%、n5d5=λ/
4×95%であって第2図に示す模式図の如き膜構成であ
った。この蒸着品を(株)昭和真空製のSOM200型多色式
光学モニターを用いて測定し、第3図に示す反射率曲線
および第2表に示すデータを得た。第2表の13波長にお
ける反射率データを用い、前記の干渉色および加重平均
反射率の定量的表現方法によってデータ処理を行い、干
渉色として、x=0.163、y=0.198が算出され、第1図
に示すCIEを色度座標から青色の範囲に属していること
が判り、また加重平均反射率としてYs=1.43%(暗所
視)、Yp=0.90%(明所視)が得られた。透明基板への
反射防止膜としては良好な反射防止特性である。この膜
の耐久性能について評価を行い、第1表に示す結果が得
られた。基板への密着性はSiOxを用いても表面未処理の
メタクリル樹脂では不充分であることが判った。なお耐
久性能の評価項目および評価方法は次に示す基準を用い
て行なった。Example 1: Kyowa Gas Chemical Industry Co., Ltd. Paragurasu transparent plate (methacrylic resin cast plate, thickness 2 mm, refractive index n 0 = 1.49, a total light transmittance of 93%) as a substrate, a first layer SiOx, Vacuum deposition of the second and fourth layers TiO 2 , the third and fifth layers SiO 2
Performed on both sides of the substrate under a vacuum of -5 Torr. SiOx is SiO
TiO 2 was degassed by an electron beam heating method after degassing, and SiO 2 was processed by an electron beam heating method for granular materials under pressure control by gaseous oxygen. The refractive index of the thin film of each layer is approximately n 1 =
1.60, n 2 = 1.95, n 3 = n 5 = 1.45, n 4 = 2.00, and the optical film thicknesses are n 1 d 1 = λ / 4 × 20% and n 2 d 2 = λ / 4 ×, respectively. 20
%, N 3 d 3 = λ / 4 × 40%, n 4 d 4 = λ / 4 × 170%, n 5 d 5 = λ /
The film configuration was 4 × 95% as shown in the schematic diagram of FIG. The deposited product was measured using a SOM200 type multicolor optical monitor manufactured by Showa Vacuum Co., Ltd., and the reflectance curve shown in FIG. 3 and the data shown in Table 2 were obtained. Using the reflectance data at 13 wavelengths in Table 2, data processing is performed by the above-described quantitative expression method of the interference color and the weighted average reflectance, and x = 0.163 and y = 0.198 are calculated as interference colors. it turns out that belong to the range of the chromaticity coordinates a CIE blue shown, also Y s = 1.43% as a weighted average reflectance (scotopic vision), Y p = 0.90% (photopic) is obtained Was. It has good antireflection properties as an antireflection film for a transparent substrate. The durability performance of this film was evaluated, and the results shown in Table 1 were obtained. It has been found that even if SiOx is used, the untreated surface methacrylic resin is insufficient in adhesion to the substrate. The evaluation items and evaluation method of the durability performance were performed using the following criteria.
a.密着性 セロファンテープ剥離法による。通常の室内雰囲気に
保存して膜形成1ケ月後及び3ケ月後に、資料の両面4
隅について行い、膜剥離の有無を目視で観察する。デー
タを分数で表わし、分母は4隅の4で、分子は膜剥離を
生じなかった隅の数で示す。a. Adhesion by cellophane tape peeling method. Store in a normal indoor atmosphere, and after one month and three months after film formation,
The inspection is performed on the corners, and the presence or absence of film peeling is visually observed. The data are expressed as fractions, with the denominator being 4 at the four corners and the numerator being the number of corners where no film detachment occurred.
b.耐擦傷性 (株)東洋精機製作所製のクロスカット剥離試験機を
用いる。擦傷媒体としてネル布2枚重ねとし、荷重400g
/cm2、50往復後に往復方向の傷の発生の有無を目視で観
察する。b. Scratch resistance Use a cross cut peeling tester manufactured by Toyo Seiki Seisaku-sho, Ltd. Laminate two flannel cloths as a scratching medium, load 400g
After 50 reciprocations at / cm 2 , the occurrence of flaws in the reciprocating direction is visually observed.
c.過酷テスト 50℃・90%RHの雰囲気中に96時間保存して取出し、目
視観察および40倍の顕微鏡下での観察で膜の剥離、発
泡、白化等の異常の有無を調べると共に、セロファンテ
ープ剥離法により試料の両面中央について密着性を調べ
る。c. Severe test Save for 96 hours in an atmosphere of 50 ° C and 90% RH, take out, visually inspect and observe under a 40x microscope to check for abnormalities such as peeling, foaming and whitening of the film. The adhesiveness is examined at the center of both sides of the sample by a tape peeling method.
d.耐薬品性 脱脂綿片にエタノールを滲み込ませて、試料表面を手
で強く10往復摺動させた後、10倍のルーペで膜の剥離、
白化等の異常の有無を観察する。脱脂綿片を更新して同
様にエチルエーテル、アセトン、ピカピカ(協和ガス
化学工業(株)製OAフィルター用クリーナー)について
も行なう。d.Chemical resistance After soaking ethanol in a cotton wool piece, slide the sample surface back and forth by hand 10 times, then peel off the film with a 10x loupe.
Observe for abnormalities such as whitening. Renew the absorbent cotton pieces and perform the same procedure for ethyl ether, acetone, and shiny (Kyowa Gas Chemical Industry Co., Ltd. OA filter cleaner).
実施例2 パラグラススモークカラー板(メタクリル樹脂注型
板、表面硬化処理付、板厚2mm、銘柄番号TS−5KH、表面
硬化膜の屈折率n0=1.43)を基板として、実施例1と同
様基板の両面に真空蒸着を行い、反射防止膜を形成させ
た。実施例1では高屈折率物質としてTiO2を用いたが、
実施例2ではZrO2を用い膜の屈折率はほぼn2=n4=1.95
であった。また光学的膜厚はそれぞれn1d1=λ/4×20
%、n2d2=λ/4×15%、n3d3=λ/4×45%、n4d4=λ/4
×170%、n5d5=λ/4×95%、であって、その他の蒸着
条件は実施例1と同一であった。この蒸着品の反射防止
特性の評価結果は第4図および第2表に示す通りであ
り、干渉色としてx=0.173、y=0.201の青色範囲に属
し、Ys=0.64%、Yp=0.43%の良好な反射防止効果を有
していた。この蒸着品の耐久性能の評価結果は第1表に
示す通り、各評価項目とも全く問題のない性能であっ
た。Example 2 Same as Example 1 using a paragrass smoked color plate (methacrylic resin cast plate, with surface hardening treatment, plate thickness 2 mm, brand number TS-5KH, refractive index of surface hardened film n 0 = 1.43) as a substrate Vacuum evaporation was performed on both surfaces of the substrate to form an antireflection film. In Example 1, TiO 2 was used as the high refractive index substance.
In the second embodiment, ZrO 2 is used and the refractive index of the film is approximately n 2 = n 4 = 1.95.
Met. The optical film thicknesses are respectively n 1 d 1 = λ / 4 × 20
%, N 2 d 2 = λ / 4 × 15%, n 3 d 3 = λ / 4 × 45%, n 4 d 4 = λ / 4
× 170%, n 5 d 5 = λ / 4 × 95%, and the other deposition conditions were the same as in Example 1. Evaluation results of the anti-reflective properties of the deposited products are as shown in FIG. 4 and Table 2, x = 0.173 as the interference color, it belongs to the blue range of y = 0.201, Y s = 0.64 %, Y p = 0.43 % Of the antireflection effect. As shown in Table 1, the evaluation results of the durability performance of this vapor-deposited product showed no problem in each evaluation item.
実施例3 実施例2と同じ基板を用い、実施例1、2と同様基板
の両面に真空蒸着を行い、反射防止膜を形成させた。た
だし高屈折率物質としてTiO2を用い、膜の屈折率はほぼ
n2=2.00、n4=2.05であった、。また光学的膜厚および
その他の蒸着条件は実施例1と同一であった。この場合
のシュミレーション図を第5図に示した。この基板の全
光線透過率は50%であったが、可視域全体にわたって均
一ではないので、13点の波長におけるそれぞれの分光透
過率を用いて計算を行なった。また蒸着物質のSiOx、Ti
O2、SiO2は共に可視域での屈折率を一定と見なすには大
き過ぎる屈折率分散があるため、これを考慮して、13点
の波長におけるそれぞれの屈折率を用いた。実測によっ
て得られた結果を示すのが第6図であり、第5図との合
致はおおむね満足できるものであった。上記両図に示す
複数本の曲線は、蒸着後の長期の室内経時変化の様子を
表わすものである。SiOxのn1の低下に伴って若干の変化
を示しているが、干渉色は図1にも示す通り青色の範囲
に留まっており、加重平均反射率は第3表に示す通りほ
とんど一定、または小さくなる方向、すなわち反射防止
効果が向上する方向に変化するという長所を持った膜が
得られた。この反射防止膜の実用的耐久性能は第1表に
示すごとく、全く問題のない優れた膜であった。Example 3 Using the same substrate as in Example 2, vacuum deposition was performed on both surfaces of the substrate as in Examples 1 and 2 to form an antireflection film. However, TiO 2 is used as a high refractive index material, and the refractive index of the film is almost
n 2 = 2.00 and n 4 = 2.05. The optical film thickness and other vapor deposition conditions were the same as in Example 1. A simulation diagram in this case is shown in FIG. Although the total light transmittance of this substrate was 50%, it was not uniform over the entire visible range, so the calculation was performed using the respective spectral transmittances at 13 wavelengths. In addition, SiOx, Ti
Since both O 2 and SiO 2 have refractive index dispersions that are too large to assume that the refractive index in the visible region is constant, the refractive indices at 13 wavelengths were used in consideration of this. FIG. 6 shows the results obtained by actual measurement, and the agreement with FIG. 5 was almost satisfactory. The plurality of curves shown in the above both figures show how the room changes over time for a long time after vapor deposition. While indicating some change with decreasing n 1 of SiOx, interference color is remained in the range of as blue shown in Figure 1, the weighted average reflectance almost constant as shown in Table 3, or A film having the advantage of changing in the direction of decreasing the size, that is, the direction of improving the antireflection effect, was obtained. As shown in Table 1, the practical durability of this antireflection film was an excellent film having no problem at all.
〔発明の効果〕 以上のように本発明の反射防止膜によれば、青色また
は青紫色の好ましい反射干渉色を安定して(生産の変動
に対しても、経時的変化に対しても)有し、加重平均反
射率が1.5%以下で、かつ経時的に一定またはより低く
なる傾向を持つ反射防止効果を有し、優れた実用的耐久
性能を有しているので、合成樹脂光学物品に用いて好適
な反射防止膜を提供できる。 [Effects of the Invention] As described above, according to the antireflection film of the present invention, a preferable reflection interference color of blue or blue-violet is stably provided (with respect to fluctuations in production and changes with time). It has an antireflection effect with a weighted average reflectance of 1.5% or less, and tends to be constant or lower over time, and has excellent practical durability performance. Suitable antireflection film can be provided.
第1図は本発明の詳細説明および実施例に用いたCIE色
度図、第2図は実施例1に用いた模式図、第3図は実施
例1の反射率曲線、第4図は実施例2の反射率曲線、第
5図は実施例3に用いたシミューレーション図、第6図
は実施例3の反射率曲線、第7図は本発明の詳細な説明
に用いたフローチャート図である。 第1図において、 a……実施例1の蒸着品の色度座標値 b……実施例2の蒸着品の色度座標値 c1……実施例3における蒸着直後の色度座標値 c2……実施例3における蒸着4日後の色度座標値 c3……実施例3における蒸着26日後の色度座標値 c4……実施例3における蒸着34日後の色度座標値 c5……実施例3における蒸着72日後の色度座標値FIG. 1 is a CIE chromaticity diagram used in the detailed description and examples of the present invention, FIG. 2 is a schematic diagram used in Example 1, FIG. 3 is a reflectance curve of Example 1, and FIG. FIG. 5 is a simulation diagram used in the third embodiment, FIG. 6 is a reflectance curve used in the third embodiment, and FIG. 7 is a flowchart used in the detailed description of the present invention. is there. In FIG. 1, a: chromaticity coordinate values of the vapor-deposited product of Example 1 b: chromaticity coordinate values of the vapor-deposited product of Example 2 c 1 … chromaticity coordinate values of the vapor-deposited product of Example 3 immediately after vapor deposition c 2 ...... example chromaticity coordinate values of the deposition 4 days at 3 c 3 ...... example chromaticity coordinate values after deposition 26 days in 3 c 4 ...... example chromaticity coordinate values after deposition 34 days in 3 c 5 ...... Chromaticity coordinate value 72 days after vapor deposition in Example 3
Claims (2)
基板の表面に設けられた5層薄膜よりなる反射防止膜で
あって、該反射防止膜の基板側から空気側に向って、第
1層は屈折率が1.5〜1.7の範囲にある物質から成り、第
2層および第4層は屈折率1.9〜2.2の範囲にある同一の
物質から成り、第3層および第5層は屈折率1.4〜1.5の
範囲にある同一の物質から成り、かつ第1層〜第5層の
光学的膜厚n1d1、n2d2、n3d3、n4d4、n5d5はそれぞれ次
式(1)〜(5)の範囲を満すことを特徴とする合成樹
脂製光学物品の反射防止膜。 0.0625λ≧n1d1≧0.0375λ ・・・(1) 0.0625λ≧n2d2≧0.0375λ ・・・(2) 0.1125λ≧n3d3≧0.0875λ ・・・(3) 0.450 λ≧n4d4≧0.400 λ ・・・(4) 0.250 λ≧n5d5≧0.225 λ ・・・(5) (λは設計波長であって、550〜570nmを用いる。)1. An anti-reflection film comprising a five-layer thin film provided on the surface of a synthetic resin substrate having a refractive index in the range of 1.4 to 1.6, wherein the anti-reflection film extends from the substrate side to the air side. The first layer is made of a material having a refractive index in the range of 1.5 to 1.7, the second layer and the fourth layer are made of the same material having a refractive index in the range of 1.9 to 2.2, and the third and fifth layers are made of the same material. It is made of the same material having a refractive index in the range of 1.4 to 1.5, and the optical thicknesses n 1 d 1 , n 2 d 2 , n 3 d 3 , n 4 d 4 , n 5 of the first to fifth layers d 5 is the following equations (1) to (5) anti-reflection film of plastic optical article, characterized in that Mitsurusu the scope of. 0.0625λ ≧ n 1 d 1 ≧ 0.0375λ (1) 0.0625λ ≧ n 2 d 2 ≧ 0.0375λ (2) 0.1125λ ≧ n 3 d 3 ≧ 0.0875λ (3) 0.450 λ ≧ n 4 d 4 ≧ 0.400 λ (4) 0.250 λ ≧ n 5 d 5 ≧ 0.225 λ (5) (λ is a design wavelength and 550 to 570 nm is used.)
り、第2層および第4層の物質がTiO2またはZrO2であ
り、第3層および第5層の物質がSiO2であることを特徴
とする第1項記載の反射防止膜。2. The material of the first layer is SiOx (2>x> 1), the material of the second and fourth layers is TiO 2 or ZrO 2 , and the material of the third and fifth layers is 2. The antireflection film according to claim 1, wherein the antireflection film is SiO2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1254987A JP2768996B2 (en) | 1989-09-29 | 1989-09-29 | Anti-reflection coating for optical articles made of synthetic resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1254987A JP2768996B2 (en) | 1989-09-29 | 1989-09-29 | Anti-reflection coating for optical articles made of synthetic resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03116101A JPH03116101A (en) | 1991-05-17 |
JP2768996B2 true JP2768996B2 (en) | 1998-06-25 |
Family
ID=17272636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1254987A Expired - Fee Related JP2768996B2 (en) | 1989-09-29 | 1989-09-29 | Anti-reflection coating for optical articles made of synthetic resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2768996B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103282823A (en) * | 2010-09-29 | 2013-09-04 | 株式会社尼康依视路 | Optical component and method for producing same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5725959A (en) * | 1993-03-18 | 1998-03-10 | Canon Kabushiki Kaisha | Antireflection film for plastic optical element |
JP4915416B2 (en) * | 2008-12-24 | 2012-04-11 | コニカミノルタホールディングス株式会社 | Low reflection laminate |
JP5173076B2 (en) * | 2010-09-29 | 2013-03-27 | 株式会社ニコン・エシロール | Optical component and manufacturing method thereof |
-
1989
- 1989-09-29 JP JP1254987A patent/JP2768996B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103282823A (en) * | 2010-09-29 | 2013-09-04 | 株式会社尼康依视路 | Optical component and method for producing same |
KR101477940B1 (en) * | 2010-09-29 | 2014-12-30 | 가부시키가이샤 니콘. 에시로루 | Optical component and method for producing same |
CN103282823B (en) * | 2010-09-29 | 2014-12-31 | 株式会社尼康依视路 | Optical component and method for producing same |
US10371867B2 (en) | 2010-09-29 | 2019-08-06 | Nikon-Essilor Co., Ltd. | Optical component and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH03116101A (en) | 1991-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106537190B (en) | The low contrast antireflective product of scratch and fingerprint visibility with reduction | |
US20110229660A1 (en) | Ion beam assisted deposition of ophthalmic lens coatings | |
EP1892777A2 (en) | A light emitting device including anti-reflection layer(s) | |
JP4793259B2 (en) | Reflector | |
KR20100135837A (en) | Low reflection glass and protective plate for display | |
KR20020017997A (en) | Optical element having antireflection film | |
US6542302B2 (en) | Lens coating to reduce external fogging of scope lenses | |
JPH04221901A (en) | Antireflection film for silicon substrate or germanium substrate | |
JP2768996B2 (en) | Anti-reflection coating for optical articles made of synthetic resin | |
JP2005165249A (en) | Antireflection film, optical lens equipped therewith and optical lens unit | |
JP3221764B2 (en) | Anti-reflection coating for optical parts made of synthetic resin | |
JP2006289901A (en) | Reflection preventing film and display unit | |
JPH03242319A (en) | Transparent film having intermediate refractive index | |
JP3361621B2 (en) | Anti-reflection coating for infrared region | |
JPS61189501A (en) | Transparent low reflecter | |
KR20220055655A (en) | A Coating Lens Having an Enhancing Coating Lens and a Depositing Method for the Same | |
JPH06289227A (en) | Polarizing film for liquid crystal display screen | |
CN110221368A (en) | Single element multi-layered infrared high-reflecting film and preparation method thereof | |
JPH03102301A (en) | Method for evaluating characteristic of antireflection film and method for designing this film | |
JP2002277606A (en) | Antireflection film and optical element | |
JP3610777B2 (en) | Infrared antireflection film and transmission window | |
JPH01128829A (en) | Transparent plate built-up with antireflection film | |
JPH09281301A (en) | Antireflection film | |
JP7182804B2 (en) | anti-reflection film | |
Lafta et al. | Antireflective and Hard Multicoat Design for Allyl Diglycol Carbonate Plastic Spectacle Lenses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080410 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090410 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |