JP2767538B2 - Fine crystalline Pt powder, method for producing the same, and Pt paste for thick film conductor - Google Patents

Fine crystalline Pt powder, method for producing the same, and Pt paste for thick film conductor

Info

Publication number
JP2767538B2
JP2767538B2 JP5257551A JP25755193A JP2767538B2 JP 2767538 B2 JP2767538 B2 JP 2767538B2 JP 5257551 A JP5257551 A JP 5257551A JP 25755193 A JP25755193 A JP 25755193A JP 2767538 B2 JP2767538 B2 JP 2767538B2
Authority
JP
Japan
Prior art keywords
powder
paste
fine crystalline
fine
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5257551A
Other languages
Japanese (ja)
Other versions
JPH0794012A (en
Inventor
和尊 中山
淳 長井
廣樹 安藤
孝夫 小島
義昭 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORITAKE KANPANII RIMITEDO KK
Nippon Tokushu Togyo KK
Original Assignee
NORITAKE KANPANII RIMITEDO KK
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORITAKE KANPANII RIMITEDO KK, Nippon Tokushu Togyo KK filed Critical NORITAKE KANPANII RIMITEDO KK
Priority to JP5257551A priority Critical patent/JP2767538B2/en
Publication of JPH0794012A publication Critical patent/JPH0794012A/en
Application granted granted Critical
Publication of JP2767538B2 publication Critical patent/JP2767538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、貴金属(特にPt)の
粉末に関し、特にはアルミナ、ジルコニア等のセラミッ
ク基板上に厚膜導体として、電極、ヒーター、回路を形
成することに有効な貴金属粉末及び貴金属粉末ペースト
及びこれらの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a noble metal (particularly, Pt) powder, and more particularly to a noble metal powder effective for forming electrodes, heaters and circuits as a thick film conductor on a ceramic substrate such as alumina or zirconia. And a noble metal powder paste and a method for producing the same.

【0002】[0002]

【従来の技術】厚膜導体用Ptペーストには、還元析出
法や気相反応やガス還元等で得られる0.1〜5μmのP
t粉末が用いられる。これらのPt粉末を有機ビヒクル
に分散させて、必要に応じ種々の添加剤を加え、得られ
るペーストは、ドクターブレード法等でシート化された
アルミナ及びジルコニアのグリーンシート上にスクリー
ン印刷によって導体を形成し、同時に焼成することによ
って電極、ヒーター及び回路となる。
2. Description of the Related Art A Pt paste for a thick film conductor has a Pt paste of 0.1 to 5 .mu.m obtained by a reduction precipitation method, a gas phase reaction, a gas reduction, or the like.
t powder is used. These Pt powders are dispersed in an organic vehicle, and various additives are added as necessary. The resulting paste is used to form conductors by screen printing on green sheets of alumina and zirconia sheeted by a doctor blade method or the like. Then, firing at the same time becomes an electrode, a heater and a circuit.

【0003】ここで、上記周知の方法により得られるP
t粉末は、一般にアモルファス状である。
Here, the P obtained by the above-mentioned well-known method is used.
The t powder is generally amorphous.

【0004】[0004]

【発明が解決しようとする課題】ところが、これらのP
t粉末を用いたペーストの焼成温度が高温の場合、例え
ば1000℃以上になると、電極膜中のポアが多くなり、発
泡や剥離、異常収縮等の構造欠陥が生じるという欠点が
あった。
However, these P
When the baking temperature of the paste using the t powder is high, for example, at 1000 ° C. or more, the pores in the electrode film increase, and there is a defect that structural defects such as foaming, peeling, and abnormal shrinkage occur.

【0005】そこで、本発明は高温焼成しても発泡や剥
離、異常収縮等の構造欠陥が生じない厚膜導体用Ptペ
ーストを提供すること、及び、特に、そのために有用な
Pt粉末を提供することを目的とする。
Accordingly, the present invention provides a Pt paste for a thick film conductor which does not cause structural defects such as foaming, peeling, abnormal shrinkage, etc. even when baked at a high temperature, and particularly provides a Pt powder useful therefor. The purpose is to:

【0006】[0006]

【課題を解決するための手段】本発明者らは上記目的に
従い鋭意研究の結果、上記構造欠陥が、Ptの粒子成長
が激しく起こるために生じることを突き止め、Pt粉末
に所定の微細結晶性を付与することによりこれらが解消
され、上記目的が達成されることを見出し、本発明を完
成させた。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies according to the above-mentioned object, and as a result, have found that the above-mentioned structural defects occur due to vigorous Pt grain growth, and have given Pt powder a predetermined fine crystallinity. It has been found that these problems can be solved by the application and the above object can be achieved, and the present invention has been completed.

【0007】即ち、本発明は第1の視点において、アモ
ルファス状のPt粉末が不活性なガス雰囲気中かつ該P
t粉末同士が焼結をおこさない条件で加熱された粉末で
あって結晶子が35〜60nmである微細結晶質の粒子
からなるPt粉末を提供するものである。第2の視点に
おいて、不活性かつPt粉末同士が焼結をおこさない条
件でアモルファス状のPt粉末を350〜650℃で、
結晶子が35〜60nmになるまで加熱して結晶化させ
て微細結晶質にするものである。第3の視点において、
有機ビヒクルに、アモルファス状のPt粉末が不活性な
ガス雰囲気中かつ該Pt粉末同士が焼結をおこさない条
件で加熱された粉末であって結晶子が35〜60nmの
微細結晶質Pt粉末を所定量分散させてなるものであ
る。第4の視点において、第3の視点に基づき、微細結
晶質Pt粉末を全重量の60〜90重量%含有する。
That is, according to a first aspect of the present invention, in a first aspect, an amorphous Pt powder is mixed in an inert gas atmosphere with
The object of the present invention is to provide a Pt powder which is a powder which is heated under conditions that do not cause sintering of the t powders and has fine crystallites having a crystallite size of 35 to 60 nm. From the second viewpoint, the amorphous Pt powder is inert at 350 to 650 ° C. under the condition that the Pt powders do not cause sintering.
The crystallite is heated to be crystallized by heating until the crystallite becomes 35 to 60 nm to be finely crystalline. In a third perspective,
An organic vehicle contains a finely crystalline Pt powder having a crystallite of 35 to 60 nm, which is a powder heated in an inert gas atmosphere and under conditions that do not cause sintering of the Pt powders. It is one that is quantitatively dispersed. According to a fourth aspect, based on the third aspect, the fine crystalline Pt powder is contained in an amount of 60 to 90% by weight based on the total weight.

【0008】結晶化に際しては、不活性かつPt粉末粒
子同士の結合による急激な粒成長を生じない条件でPt
粉末粒子内での微細結晶子の生成を図る。これにより、
結晶の状態が安定化し、メタライズ時の高温加熱に際し
てもPtの粒子としての成長を抑制することができる。
これは、微細結晶子を予め生成させれば粒成長が一層増
大すると、一見考えられることに対する大きな驚きであ
り、アンチテーゼを成す。即ち、所定の微細結晶子の生
成は、Pt粉末をかえって温度に対して安定化させる効
果を有することが判明したのである。
In the crystallization, the Pt powder is inert under conditions that do not cause rapid grain growth due to the bonding of the Pt powder particles.
The aim is to generate fine crystallites in the powder particles. This allows
The crystal state is stabilized, and the growth of Pt as particles can be suppressed even at the time of high temperature heating during metallization.
This is a great surprise to the seemingly surprising possibility that the grain growth would be further increased if the fine crystallites were generated in advance, and would form an antithesis. That is, it has been found that the generation of a predetermined fine crystallite has an effect of stabilizing the Pt powder with respect to the temperature.

【0009】ここに、結晶子とは一つのPt粉末粒子の
中に含まれる微細結晶子のことをいう。また、結晶子の
大きさは、粉末X線回折から求められる値を指し、X線
回折チャートの強度ピークの半値幅を求め下記のシェラ
ーの式により算出される値とする。
Here, the crystallite refers to a fine crystallite contained in one Pt powder particle. The crystallite size refers to a value obtained from powder X-ray diffraction, and the half-value width of the intensity peak in the X-ray diffraction chart is obtained, and the value is calculated by the following Scherrer equation.

【0010】[0010]

【数1】 (Equation 1)

【0011】[0011]

【定義】本明細書中において、「アモルファスPt粉
末」とは、周知の方法、即ち、還元析出法、気相反応法
及びガス還元法等により製造された結晶性の低いアモル
ファス状のPt粉末をいうこととし、「微細結晶質性P
t粉末」とは、前記アモルファスPt粉末を不活性かつ
該Pt粉末同士が焼結をおこさない条件で熱処理して得
られる、又は不活性かつPt粉末同士が焼結をおこさな
い条件でアモルファス状のPt粉末を350〜650℃
で加熱して結晶化させて得られる、結晶子が35〜60
nmの微細結晶質を有するPt粉末をいうこととし、呼
び方を変えることで、両者を区別させることとする。
[Definition] In the present specification, the term "amorphous Pt powder" refers to an amorphous Pt powder having low crystallinity produced by a known method, that is, a reduction precipitation method, a gas phase reaction method, a gas reduction method, or the like. In other words, "fine crystalline P
"t powder" is obtained by heat-treating the amorphous Pt powder under the condition that the Pt powder is inactive and does not cause sintering of each other, or amorphous Pt powder at 350-650 ° C
35-60 crystallites obtained by crystallization by heating at
It refers to Pt powder having fine crystallinity of nm, and the two are distinguished by changing the designation.

【0012】[0012]

【作用】本発明の微細結晶質性Pt粉末を用いて作製さ
れた電極、ヒーター及び回路等は、焼成時の高温による
Pt粒子の異常成長が抑制され、セラミックシートの収
縮とペーストの収縮が合う為に発泡やシートからの剥
離、収縮等の構造欠陥が防止できる。また、本発明の微
細結晶質性Pt粉末は、その結晶性を上げて微細結晶質
としている為、高温時における粒子の異常成長が抑制さ
れる。従って、有機ビヒクル中に配合させると、前記種
々の構造欠陥を防止できる厚膜導体用Ptペーストを得
ることができる。 更には、本発明の微細結晶質性Pt
粉末の製造方法により、粒子の異常成長が抑制されたP
t粉末を製造することができる。
In the electrodes, heaters, circuits and the like manufactured using the fine crystalline Pt powder of the present invention, abnormal growth of Pt particles due to high temperature during firing is suppressed, and shrinkage of the ceramic sheet and shrinkage of the paste are matched. Therefore, structural defects such as foaming, peeling from the sheet, and shrinkage can be prevented. Further, since the fine crystalline Pt powder of the present invention is made to be fine crystalline by increasing its crystallinity, abnormal growth of particles at a high temperature is suppressed. Therefore, when incorporated in an organic vehicle, a Pt paste for a thick-film conductor that can prevent the above-described various structural defects can be obtained. Furthermore, the fine crystalline Pt of the present invention
P with suppressed abnormal growth of particles by powder manufacturing method
t powder can be produced.

【0013】従って、Pt粉末の結晶性をコントロール
することによって、種々の構造欠陥を防止することが期
待される。
Therefore, it is expected that various structural defects can be prevented by controlling the crystallinity of the Pt powder.

【0014】[0014]

【好適な実施態様】本発明の微細結晶質性Pt粉末の製
造方法は、周知の還元析出法、気相反応法及びガス還元
法等で製造されるアモルファスPt粉末を材料とする。
本発明に適用するPt粉末の好ましい粒子径は0.2〜2
μmである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing fine crystalline Pt powder of the present invention uses amorphous Pt powder produced by a well-known reduction precipitation method, gas phase reaction method, gas reduction method or the like as a material.
The preferred particle size of the Pt powder applied to the present invention is 0.2 to 2
μm.

【0015】結晶子が35〜60nmの微細結晶質から
なるPt粉末は焼結の際の異常粒成長が抑制されたもの
となる。結晶子が35nm未満では粒成長を抑制するこ
とができず、発泡等を防ぎきれない。結晶子が60nm
を超える粒子は製造するために700℃程度の高熱で処
理されなければならず、そうすると粒子同士のネッキン
グが進行するなどの弊害が生じ、製造が困難であるため
不適である。
The Pt powder whose crystallite is made of fine crystalline material having a size of 35 to 60 nm suppresses abnormal grain growth during sintering. If the crystallite is less than 35 nm, grain growth cannot be suppressed, and foaming and the like cannot be prevented. 60 nm crystallite
Particles must be treated at a high heat of about 700 ° C. in order to produce them, which causes adverse effects such as progression of necking between the particles, which is unsuitable because production is difficult.

【0016】本発明の微細結晶質性Pt粉末の製造方法
に関し、Pt粉末と不活性な環境でかつPt粉末同士が
焼結しないようにすることが肝要である。そこで、不活
性ガス中で、前記不活性ガスを流通循環させてPt粉末
を分散させて熱処理を行う。空気中で熱処理を行うと、
微細結晶性は獲得されるものの、Ptが酸化を受けるた
め該粉末を使用して作製したヒーター、電極等の焼結時
に構造欠陥をきたす。故に不活性ガスにはN、H
びArなどの希ガスが挙げられる。
With respect to the method for producing a fine crystalline Pt powder of the present invention, it is important to keep the Pt powder and the Pt powder from sintering in an inert environment. Therefore, heat treatment is performed by dispersing the Pt powder by circulating the inert gas in the inert gas. When heat treatment is performed in air,
Although fine crystallinity is obtained, Pt is oxidized, causing structural defects during sintering of heaters, electrodes, and the like manufactured using the powder. Therefore, the inert gas includes rare gases such as N 2 , H 2 and Ar.

【0017】前記条件を満足するものであれば、熱処理
方法は、ここに掲げたものに限定されない。
As long as the above conditions are satisfied, the heat treatment method is not limited to those listed here.

【0018】微細結晶質形成には熱処理温度が重要なフ
ァクターになっていると考えられる。熱処理温度は35
0℃以上650℃以下とし、好ましくは、500℃〜6
00℃である。350℃以下では結晶子が35nm未満
のPt粒子が多数存在し、結晶質形成が十分ではなく、
発泡等を防ぎきれない。一方、650℃より高温では、
粒子の結晶質化は60nmを超え十分に大きくなるが、
かえって粒子同士のネッキングが進行しペースト化には
適さなくなる。
It is considered that the heat treatment temperature is an important factor for the formation of fine crystals. Heat treatment temperature is 35
0 ° C. or higher and 650 ° C. or lower, preferably 500 ° C. to 6 ° C.
00 ° C. At 350 ° C. or lower, a large number of Pt particles having crystallites of less than 35 nm are present, and the crystal formation is not sufficient,
It cannot prevent foaming. On the other hand, above 650 ° C,
The crystallization of the particles is sufficiently large beyond 60 nm,
On the contrary, necking between particles progresses, and the particles are not suitable for pasting.

【0019】熱処理時間は熱処理温度に従い適宜調節さ
れるが、好ましくは1〜5時間程度である。例えば、具
体的なスケジュールを一つ挙げると、20〜30℃/m
inで昇温していき、500〜600℃になったら15
〜60分保持した後、3〜5℃/minで降温してい
く。
The heat treatment time is appropriately adjusted according to the heat treatment temperature, but is preferably about 1 to 5 hours. For example, one specific schedule is 20 to 30 ° C./m.
The temperature rises in, and when it reaches 500-600 ° C, 15
After holding for 6060 minutes, the temperature is lowered at 3 to 5 ° C./min.

【0020】本発明の微細結晶質性Pt粉末を用いて、
従来のPtペーストの製造方法と同様にして有機ビヒク
ル中に分散させれば、本発明の導体用Ptペーストが得
られる。本発明の導体用Ptペーストは、従来のものと
異なり、発泡やセラミックシートからの剥離、収縮等の
構造欠陥が生じない。
Using the fine crystalline Pt powder of the present invention,
The Pt paste for conductor of the present invention can be obtained by dispersing it in an organic vehicle in the same manner as in the conventional method for producing a Pt paste. Unlike the conventional Pt paste for conductors of the present invention, structural defects such as foaming, peeling from a ceramic sheet, and shrinkage do not occur.

【0021】ペースト中に配合される微細結晶質性Pt
粉末は、通常配合されている量でよく、好ましくは60
〜90重量%であり、更に好ましくは65〜80重量%
である。60重量%未満では、貴金属粉末が少なすぎる
ため導電性が悪く、逆に90重量%を超えると、ペース
トの流動性が失われ、印刷性、塗布性が悪化する。
Microcrystalline Pt blended in paste
The powder may be used in an amount usually blended, preferably 60
To 90% by weight, more preferably 65 to 80% by weight.
It is. If the content is less than 60% by weight, the conductivity is poor because the precious metal powder is too small. On the other hand, if the content is more than 90% by weight, the fluidity of the paste is lost, and the printability and applicability deteriorate.

【0022】有機ビヒクルについても、通常導体用ペー
ストに使用されているものを選択すれば良く、例えば、
バインダーにはエチルセルロースなど、溶剤にはB.
C.系などが挙げられる。また、本発明のペースト中に
は必要に応じてセラミック粉末等の添加剤を15重量%
程度まで含有させることができる。
The organic vehicle may be selected from those commonly used in conductive pastes.
Ethyl cellulose or the like for the binder and B.I.
C. And the like. In the paste of the present invention, an additive such as a ceramic powder may be added, if necessary, in an amount of 15% by weight.
It can be contained to the extent.

【0023】[0023]

【実施例】【Example】

【実施例1】各種の方法で得られたアモルファスPt粉
末を所定のセラミック容器に入れ、雰囲気置換できる電
気炉に入れ、真空脱気を行なった。真空度は10-1〜1
-3Torrが望ましい。その後、N2等の不活性ガス
を100〜500cc/minの流速で導入し雰囲気置
換を行なった。
Example 1 Amorphous Pt powders obtained by various methods were placed in a predetermined ceramic container, placed in an electric furnace capable of replacing the atmosphere, and subjected to vacuum degassing. The degree of vacuum is 10 -1 to 1
0 -3 Torr is desirable. Then, it was carried out the introduced atmosphere replaced with an inert gas such as N 2 at a flow rate of 100~500cc / min.

【0024】雰囲気置換後、ガス流通状態(100〜5
00cc/min)で所定の温度でPt粉末の熱処理を
行ない、それぞれ10、30、35、40、45、50
nmの結晶子を有する結晶質性Pt粉末を製造した。各
結晶子ごとに表1に記載の組成に従ってペースト材料を
調合し、セラミック三本ロールミルを用い混練を行ない
ペースト化した。
After replacing the atmosphere, the gas flow state (100 to 5)
(00 cc / min) and heat-treating the Pt powder at a predetermined temperature, respectively, at 10, 30, 35, 40, 45, and 50.
A crystalline Pt powder having nm crystallites was produced. A paste material was prepared for each crystallite according to the composition shown in Table 1, and kneaded using a ceramic three-roll mill to form a paste.

【0025】この導体用Ptペーストをアルミナない
し、ジルコニア等のセラミックグリーンシートにスクリ
ーン印刷し、プレスを行ない、電極及び回路を作製し
た。また、前記導体用Ptペーストを前記セラミックグ
リーンシートにスクリーン印刷し、これを積層してプレ
スを行ない、ヒーターを作製した。焼成は共に、155
0℃〜1590℃で2時間保持し、できあがった製品の
構造欠陥等を調べた。結果を表2に示す。
The Pt paste for a conductor was screen-printed on a ceramic green sheet such as alumina or zirconia and pressed to produce electrodes and circuits. Further, the Pt paste for a conductor was screen-printed on the ceramic green sheet, and this was laminated and pressed to produce a heater. Both firing are 155
The product was kept at 0 ° C. to 1590 ° C. for 2 hours, and the completed product was examined for structural defects and the like. Table 2 shows the results.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】結晶子が35〜60nmではいずれも発泡
による不良が認められず、電極の剥離も生じなかった。
しかし、結晶子が35nm未満(10、30nm)のも
のを用いた電極及びヒーターは発泡が認められ、剥離等
の不良が生じた。図1にPt粒子の結晶子と発泡率の関
係を示すが、30nmにおいて50%の発泡率を示した
が、35nm以上では0%を示した。
When the crystallite size was 35 to 60 nm, no defect due to foaming was observed, and no peeling of the electrode occurred.
However, foaming was observed in electrodes and heaters using crystallites having a crystallite size of less than 35 nm (10, 30 nm), and defects such as peeling occurred. FIG. 1 shows the relationship between the crystallites of the Pt particles and the foaming rate. The foaming rate was 50% at 30 nm, but was 0% at 35 nm or more.

【0029】10nmと35nmの結晶子のPtペース
トを用いて作製したヒーターの表面及び断面を走査型電
子顕微鏡により観察を行なった(図2及び図3)。表面
を比較すると、結晶子が10nmのPt粒子を配合した
ペーストを用いた場合には粒子の成長が大きく粒界も鮮
明であったが、結晶子が35nmのものの場合には粒子
の成長は小さく粒界が不鮮明であった。断面を比較する
と、前者の場合はポアが大きく多数存在するが、後者の
場合はポアは小さく、数も少なくなることがわかった。
The surface and cross section of the heater prepared using Pt pastes of 10 nm and 35 nm crystallites were observed with a scanning electron microscope (FIGS. 2 and 3). Comparing the surfaces, when a paste containing Pt particles with a crystallite of 10 nm was used, the growth of the particles was large and the grain boundaries were clear, but when the crystallite was 35 nm, the growth of the particles was small. Grain boundaries were unclear. Comparing the cross sections, it was found that in the former case, the pores were large and many, but in the latter case, the pores were small and the number was small.

【0030】[0030]

【発明の効果】本発明に基づき提供される微細結晶質性
Pt粉末は、粒子の異常成長が抑制された粉末で、ペー
スト化における印刷性も問題なく導体を形成し、100
0℃以上での高温焼成においても発泡、剥離、収縮等の
構造欠陥を抑制することができる。従って、従来のアモ
ルファスPt粉末では防止できなかった不良を解決した
画期的なものである。
The fine crystalline Pt powder provided according to the present invention is a powder in which abnormal growth of particles is suppressed, and forms a conductor without any problem in printability in pasting.
Even when firing at a high temperature of 0 ° C. or more, structural defects such as foaming, peeling, and shrinkage can be suppressed. Therefore, the present invention is an epoch-making one that solves a defect that cannot be prevented by the conventional amorphous Pt powder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Pt粒子の結晶子の大きさと発泡率との関係を
示すグラフである。
FIG. 1 is a graph showing the relationship between the crystallite size of Pt particles and the foaming ratio.

【図2】(a)35nmの結晶子を有する本発明のPt
粉末を配合した本発明の導体用Ptペーストを用いて作
製したヒーターの表面の電子顕微鏡写真であり、焼成後
のセラミック材料(導体用Ptペースト)の組織を表わ
したものである(倍率×1000)。(b)前記ヒーターの
断面の電子顕微鏡写真であり、焼成後のセラミック材料
(導体用Ptペースト)の組織を表わしたものである
(倍率×1000)。
FIG. 2 (a) Pt of the present invention having 35 nm crystallites
5 is an electron micrograph of the surface of a heater prepared using the Pt paste for a conductor of the present invention in which a powder is blended, and shows the structure of a fired ceramic material (Pt paste for a conductor) (magnification: 1000). . (B) An electron micrograph of a cross section of the heater, showing the structure of the fired ceramic material (Pt paste for conductor) (magnification × 1000).

【図3】(a)10nmの結晶子を有する比較品のPt
粉末を配合した比較品の導体用Ptペーストを用いて作
製したヒーターの表面の電子顕微鏡写真であり、焼成後
のセラミック材料(導体用Ptペースト)の組織を表わ
したものである(倍率×1000)。(b)前記ヒーターの
断面の電子顕微鏡写真であり、焼成後のセラミック材料
(導体用Ptペースト)の組織を表わしたものである
(倍率×1000)。
FIG. 3 (a) Pt of a comparative product having a crystallite of 10 nm
It is an electron micrograph of the surface of the heater produced using the Pt paste for conductor of the comparative product which mixed the powder, and shows the structure of the ceramic material (Pt paste for conductor) after calcination (magnification × 1000). . (B) An electron micrograph of a cross section of the heater, showing the structure of the fired ceramic material (Pt paste for conductor) (magnification × 1000).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長井 淳 愛知県名古屋市西区則武新町三丁目1番 36号 株式会社ノリタケカンパニーリミ テド内 (72)発明者 安藤 廣樹 愛知県名古屋市西区則武新町三丁目1番 36号 株式会社ノリタケカンパニーリミ テド内 (72)発明者 小島 孝夫 愛知県名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式会社内 (72)発明者 黒木 義昭 愛知県名古屋市瑞穂区高辻町14番18号 日本特殊陶業株式会社内 (56)参考文献 特開 平6−306401(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jun Nagai 3-36 Noritake Shinmachi, Nishi-ku, Nagoya City, Aichi Prefecture Inside Noritake Company Limited (72) Inventor Hiroki Ando 3-chome Noritake Shinmachi, Nishi-ku, Nagoya City, Aichi Prefecture No. 36 Noritake Co., Ltd. Limited (72) Inventor Takao Kojima 14-18 Takatsuji-cho, Mizuho-ku, Nagoya City, Aichi Prefecture Inside Japan Special Ceramics Co., Ltd. (72) Yoshiaki Kuroki Takatsuji, Mizuho-ku, Nagoya City, Aichi Prefecture No. 14-18, Nippon Special Ceramics Co., Ltd. (56) References JP-A-6-306401 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アモルファス状のPt粉末が不活性なガス
雰囲気中かつ該Pt粉末同士が焼結をおこさない条件で
加熱された粉末であって結晶子径が35〜60nmの微
細結晶質から成ることを特徴とする微細結晶質Pt粉
末。
An amorphous Pt powder is a powder which is heated in an inert gas atmosphere and under conditions that do not cause sintering of the Pt powders, and is made of fine crystalline material having a crystallite diameter of 35 to 60 nm. A fine crystalline Pt powder characterized by the above-mentioned.
【請求項2】不活性かつPt粉末同士が焼結をおこさな
い条件でアモルファス状のPt粉末を350〜650℃
で、結晶子が35〜60nmになるまで加熱して結晶化
させて微細結晶質にすることを特徴とする微細結晶質P
t粉末を製造する方法。
2. An amorphous Pt powder at a temperature of 350 to 650 ° C. under an inert and non-Pt powder sintering condition.
And heating the crystallites to a crystallite size of 35 to 60 nm to crystallize the crystallites into fine crystals.
Method for producing powder.
【請求項3】有機ビヒクルに、アモルファス状のPt粉
末が不活性なガス雰囲気中かつ該Pt粉末同士が焼結を
おこさない条件で加熱された粉末であって結晶子が35
〜60nmの微細結晶質Pt粉末を所定量分散させてな
ることを特徴とする厚膜導体用Ptペースト。
3. An organic vehicle in which amorphous Pt powder is heated in an inert gas atmosphere under conditions that do not cause sintering of the Pt powders, and having a crystallite size of 35%.
A Pt paste for a thick-film conductor, comprising a predetermined amount of fine crystalline Pt powder of about 60 nm dispersed therein.
【請求項4】前記微細結晶質Pt粉末が全重量の60〜
90重量%含有する請求項3記載の厚膜導体用Ptペー
スト。
4. The method according to claim 1, wherein the fine crystalline Pt powder has a total weight of 60 to
The Pt paste for a thick film conductor according to claim 3, which contains 90% by weight.
JP5257551A 1993-09-22 1993-09-22 Fine crystalline Pt powder, method for producing the same, and Pt paste for thick film conductor Expired - Lifetime JP2767538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5257551A JP2767538B2 (en) 1993-09-22 1993-09-22 Fine crystalline Pt powder, method for producing the same, and Pt paste for thick film conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5257551A JP2767538B2 (en) 1993-09-22 1993-09-22 Fine crystalline Pt powder, method for producing the same, and Pt paste for thick film conductor

Publications (2)

Publication Number Publication Date
JPH0794012A JPH0794012A (en) 1995-04-07
JP2767538B2 true JP2767538B2 (en) 1998-06-18

Family

ID=17307858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5257551A Expired - Lifetime JP2767538B2 (en) 1993-09-22 1993-09-22 Fine crystalline Pt powder, method for producing the same, and Pt paste for thick film conductor

Country Status (1)

Country Link
JP (1) JP2767538B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571009B2 (en) * 2005-04-25 2010-10-27 株式会社ノリタケカンパニーリミテド Platinum paste
JP2006299385A (en) * 2005-04-25 2006-11-02 Noritake Co Ltd Platinum powder, production method therefor and platinum paste for piezoelectric ceramic material
JP2008261054A (en) * 2008-05-22 2008-10-30 Murata Mfg Co Ltd Heat treating method for metal powder
JPWO2013137469A1 (en) 2012-03-16 2015-08-03 エム・テクニック株式会社 Solid gold-nickel alloy nanoparticles and method for producing the same
JP2014023997A (en) * 2012-07-26 2014-02-06 M Technique Co Ltd Method for manufacturing particulates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306401A (en) * 1993-04-15 1994-11-01 Noritake Co Ltd Production of nobel metal (alloy) powder for thick-film paste and its nobel metal (alloy) powder

Also Published As

Publication number Publication date
JPH0794012A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
KR102512682B1 (en) Ruthenium oxide powder, composition for thick film resistors, paste for thick film resistors and thick film resistors
DE69736205T2 (en) Aluminum nitride sintered body, embedded metal object, electronically functional material and electrostatic chuck
TW200536636A (en) Highly crystalline silver powder and method for production thereof
DE10085278B4 (en) A method of producing a polycrystalline aluminum nitride body
JP2767538B2 (en) Fine crystalline Pt powder, method for producing the same, and Pt paste for thick film conductor
JP2006299385A (en) Platinum powder, production method therefor and platinum paste for piezoelectric ceramic material
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
JP2010144215A (en) Noble metal powder for conductive paste and method for producing the same
JP2007056351A (en) Target for ion plating used for manufacturing of zinc oxide-based electroconductive film, its manufacturing method, and method for manufacturing zinc oxide-based electroconductive film
CN112514007B (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP4571009B2 (en) Platinum paste
JP2006248815A (en) Ru-Mn-O FINE POWDER, ITS MANUFACTURING METHOD AND THICK FILM RESISTOR COMPOSITION USING THE SAME
JP2005079330A (en) Aluminum foil for electrolytic capacitor electrode and its manufacturing method
WO2019059290A1 (en) Composition for thick film resistor, thick film resistance paste, and thick film resistor
JP4362601B2 (en) Method for producing copper powder
JP6179423B2 (en) Method for producing sulfur-containing nickel powder
KR101166709B1 (en) Manufacturing method of paste composite for resistor, thick film resistor and manufacturing method of the resistor
JP2841586B2 (en) Conductive paste
JPH05330919A (en) Silicon nitride-based sintered compact and its production
JP3334240B2 (en) Conductive paste composition
JP2553268B2 (en) Method for manufacturing aluminum nitride sintered body
JPH0995705A (en) Silver-palladium coprecipitated powder and its production
JPH0699143B2 (en) Nickel powder manufacturing method
JP2021193705A (en) Thick film resistor composition and thick film resistance paste including the same
JP2021193704A (en) Thick film resistor composition and thick film resistance paste including the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980303

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100410

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110410

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 16