JP2767280B2 - Manufacturing method of direct heat type cathode - Google Patents

Manufacturing method of direct heat type cathode

Info

Publication number
JP2767280B2
JP2767280B2 JP1115047A JP11504789A JP2767280B2 JP 2767280 B2 JP2767280 B2 JP 2767280B2 JP 1115047 A JP1115047 A JP 1115047A JP 11504789 A JP11504789 A JP 11504789A JP 2767280 B2 JP2767280 B2 JP 2767280B2
Authority
JP
Japan
Prior art keywords
electrodeposition
electrode
direct heat
heat type
type cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1115047A
Other languages
Japanese (ja)
Other versions
JPH02297834A (en
Inventor
斉 辻
義徳 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU NORITAKE KK
NORITAKE KANPANII RIMITEDO KK
Noritake Itron Corp
Original Assignee
KYUSHU NORITAKE KK
NORITAKE KANPANII RIMITEDO KK
Ise Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU NORITAKE KK, NORITAKE KANPANII RIMITEDO KK, Ise Electronics Corp filed Critical KYUSHU NORITAKE KK
Priority to JP1115047A priority Critical patent/JP2767280B2/en
Publication of JPH02297834A publication Critical patent/JPH02297834A/en
Application granted granted Critical
Publication of JP2767280B2 publication Critical patent/JP2767280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蛍光表示管等の直熱型線状カソードとして用
いられる直熱型カソードの製造方法に係わり、特にタン
グステン等の高融点金属芯線上にBaCO3,SrCO3,CaCO3
のアルカリ土類炭酸塩を電気泳動的にコーテイングする
電着方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method of manufacturing a direct heat type cathode used as a direct heat type linear cathode of a fluorescent display tube or the like, and particularly to a method for manufacturing a high melting point metal core wire such as tungsten. The present invention relates to an electrodeposition method for electrophoretically coating alkaline earth carbonates such as BaCO 3 , SrCO 3 , and CaCO 3 .

〔従来の技術〕[Conventional technology]

従来、この種の電着方法は、BaCO3,SrCO3,CaCO3等の
アルカリ土類炭酸塩もしくはこれらの混合物,固溶体等
を適当な大きさ、例えば通常径0.1〜2.0μm程度に粉砕
し、これと結合剤となる有機バインダを適当なる有機溶
剤に懸濁させて電着液を作製し、この電着液内に高融点
金属芯線として例えば直径5〜20μmのタングステン芯
線と対極となる電極とを浸漬し、10〜500V程度の直流電
圧を印加してタングステン芯線上にアルカリ土類炭酸塩
を電気泳動的にコーテイングするいわゆる電着を行な
う。この場合、第4図に示すように電着液1内におい
て、対向電極2として円筒電極または板状電極(図示し
ない)内にタングステン芯線3を挿通し、この対向電極
2を陽極とし、タングステン芯線3を陰極として電着を
行なう。なお、電着を有効に行なうために電解質,界面
活性剤等を加えることもある。
Conventionally, this type of electrodeposition method involves crushing an alkaline earth carbonate such as BaCO 3 , SrCO 3 , CaCO 3 or a mixture thereof, a solid solution or the like into a suitable size, for example, a diameter of about 0.1 to 2.0 μm, An electrodeposition solution is prepared by suspending this and an organic binder serving as a binder in an appropriate organic solvent, and in the electrodeposition solution, as a high melting point metal core wire, for example, a tungsten core wire having a diameter of 5 to 20 μm and an electrode serving as a counter electrode. Is soaked, and a DC voltage of about 10 to 500 V is applied to perform so-called electrodeposition in which alkaline earth carbonate is electrophoretically coated on the tungsten core wire. In this case, as shown in FIG. 4, a tungsten core wire 3 is inserted into a cylindrical electrode or a plate-like electrode (not shown) as an opposing electrode 2 in the electrodeposition liquid 1, and the opposing electrode 2 is used as an anode, Electrodeposition is performed using 3 as a cathode. Incidentally, an electrolyte, a surfactant and the like may be added in order to carry out the electrodeposition effectively.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、前述したような電着方法によると、対
向電極2として円筒電極または板状電極を用いているの
で、電着液1の対流が妨げられ、電着とともに電着液1
の濃度が薄くかつ不均一となり、この結果、電着時間の
経過とともに電着効率が低下し、かつコーテイングも不
均一となり、長時間の電着が不可能であつた。また、こ
のような問題を改善するためには電着液1の撹拌速度を
高めるとか対向電極2を一方側のみに配置するなどの工
夫がなされたが、前者の方法によると、電気泳動の流れ
が乱され、コーテイングが不均一となり、後者の方法で
は断面方法が均一な円形でなくなる等の問題があり、こ
の点での改善が望まれていた。
However, according to the electrodeposition method described above, since a cylindrical electrode or a plate-shaped electrode is used as the counter electrode 2, convection of the electrodeposition liquid 1 is prevented, and the electrodeposition liquid 1
Was thin and non-uniform, and as a result, the electrodeposition efficiency was reduced with the elapse of the electrodeposition time, and the coating was also non-uniform, so that long-time electrodeposition was impossible. In order to solve such a problem, various measures have been taken, such as increasing the stirring speed of the electrodeposition liquid 1 or disposing the counter electrode 2 only on one side. Are disturbed, and the coating becomes non-uniform, and the latter method has a problem that the cross-sectional method is not a uniform circular shape, and an improvement in this respect has been desired.

したがつて、本発明による直熱型カソードの製造方法
は、前述した従来の問題を解決するためになされたもの
であり、電着中の経時変化を極力少なくし、長時間にわ
たつて電着を行なつても電着効率の低下が少なく、均一
なコーテイングが確保される直熱型カソードの製造方法
を提供することを目的としている。
Therefore, the method for manufacturing a direct heat type cathode according to the present invention has been made in order to solve the above-mentioned conventional problems, and minimizes the change with time during electrodeposition as much as possible, and makes the electrodeposition for a long time. It is an object of the present invention to provide a method for manufacturing a direct heat type cathode in which a reduction in electrodeposition efficiency is small even when the method is carried out and a uniform coating is ensured.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の直熱型カソードの製造方法は、高融点金属芯
線に対する対向電極として最小穴径0.5mmφ以上の開口
部を面積比で開口率30%以上90%未満を有する穴あき状
電極を用いるものである。
The method for producing a direct heat cathode of the present invention uses a perforated electrode having an opening having a minimum hole diameter of 0.5 mmφ or more and an opening ratio of 30% or more and less than 90% in area ratio as a counter electrode for a high melting point metal core wire. It is.

〔作用〕[Action]

本発明においては、穴あき状電極を用いることによ
り、電着液の対流が促進されるとともに粒径0.1〜2.0μ
mφのアルカリ土類炭酸塩の粒子が開口部内を速やかに
流通され、濃度が均一化される。ここで、最小穴径を0.
5mmφ以上と限定したのは、これ以下では粒子の流通が
速やかでないからであり、開口部の面積比を30%以上90
%未満と限定したのは、30%未満では粒子の流通が速や
かでなく、90%を超えると電極の強度が不十分になるか
らである。
In the present invention, by using a perforated electrode, convection of the electrodeposition liquid is promoted and the particle diameter is 0.1 to 2.0 μm.
Alkaline earth carbonate particles of mφ are quickly circulated in the opening, and the concentration is made uniform. Here, set the minimum hole diameter to 0.
The reason for limiting the diameter to 5 mmφ or more is that the flow rate of the particles is not rapid below this, and the area ratio of the opening is 30% to 90%.
The reason for limiting the amount to less than 30% is that if the amount is less than 30%, the flow of particles is not rapid, and if the amount exceeds 90%, the strength of the electrode becomes insufficient.

〔実施例〕〔Example〕

以下、図面を用いて本発明の実施例を詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明による直熱型カソードの製造方法の一
実施例を説明するための電着装置の構成を示す断面図で
あり、前述の図と同一部分には同一符号を付してある。
同図において、4は電着液1を収容する電着槽、5は電
着液1内に配置されたタングステン芯線3の方向転換ス
プール、6はタングステン芯線3が巻き込まれている芯
線スプール、7はタングステン芯線3に陽極電圧を印加
する通電スプール、8は対向電極として第2図に示すよ
うに最小穴径0.5mmφ以上の開口部8aが面積比で30%以
上90%未満の割合で形成された穴あき状円筒電極であ
り、この穴あき状円筒電極8は、例えばパンチングメタ
ルを円筒状に成形して形成されている。9は穴あき状円
筒電極8内を挿通することによりタングステン芯線3上
にアルカリ土類炭酸塩粒子が電着された電着線、10は電
着線9を巻き取る巻き取りスプールである。
FIG. 1 is a sectional view showing a structure of an electrodeposition apparatus for explaining one embodiment of a method of manufacturing a direct heat type cathode according to the present invention, and the same parts as those in the above-mentioned figures are denoted by the same reference numerals. .
In the figure, reference numeral 4 denotes an electrodeposition tank for accommodating the electrodeposition liquid 1, 5 denotes a direction changing spool of the tungsten core 3 disposed in the electrodeposition liquid 1, 6 denotes a core spool in which the tungsten core 3 is wound, 7 Reference numeral 8 denotes an energizing spool for applying an anode voltage to the tungsten core wire 3, and reference numeral 8 denotes a counter electrode, in which an opening 8a having a minimum hole diameter of 0.5 mmφ or more is formed in an area ratio of 30% or more and less than 90% as shown in FIG. The perforated cylindrical electrode 8 is formed by, for example, forming a punched metal into a cylindrical shape. Reference numeral 9 denotes an electrodeposition wire in which alkaline earth carbonate particles are electrodeposited on the tungsten core wire 3 by passing through the perforated cylindrical electrode 8, and 10 denotes a take-up spool for winding the electrodeposition wire 9.

このような構成において、芯線スプール6に巻き込ま
れているタングステン芯線3は、巻き取りスプール10の
回動力により矢印A方向に一定の速度で引張られること
により供給され、通電スプール7と接触して陰極電圧が
印加されるとともに電着液1内に浸漬され、方向転換ス
プール5により方向転換されて陽極電圧が印加された穴
あき状円筒電極8内を挿通することによりこのタングス
テン芯線3上にアルカリ土類炭酸塩粒子が電気泳動的に
電着されて電着線9が形成され、巻き取りスプール10に
巻き取られて完成される。この場合、タングステン芯線
3が挿通する穴あき状円筒電極8には、第2図に示した
ように最小穴径0.5mmφ以上の開口部8aが面積比で30%
以上90%未満の割合で有しているので、電着液1の通常
の撹拌により対流が促進されるとともに粒径0.1〜2.0μ
mのアルカリ土類炭酸塩の粒子がそれらの開口部8a内を
速やかに流通するので、電着液1の濃度が均一化されて
膜厚の均一なコーテイングが効率良く実施される。
In such a configuration, the tungsten core wire 3 wound around the core spool 6 is supplied by being pulled at a constant speed in the direction of arrow A by the rotating power of the take-up spool 10, and is brought into contact with the current-carrying spool 7 to contact the cathode spool. A voltage is applied and the electrode is immersed in the electrodeposition liquid 1, turned in the direction by the direction changing spool 5, and inserted through the perforated cylindrical electrode 8 to which the anode voltage is applied. The carbonate-like particles are electrophoretically electrodeposited to form an electrodeposited wire 9 and wound up on a take-up spool 10 to be completed. In this case, in the perforated cylindrical electrode 8 through which the tungsten core wire 3 is inserted, as shown in FIG. 2, an opening 8a having a minimum hole diameter of 0.5 mmφ or more has an area ratio of 30%.
The convection is promoted by ordinary stirring of the electrodeposition liquid 1 and the particle diameter is 0.1 to 2.0 μm.
Since m alkaline earth carbonate particles quickly flow through the openings 8a, the concentration of the electrodeposition liquid 1 is made uniform, and coating with a uniform film thickness is efficiently performed.

第3図(a),(b)は本発明に係わる対向電極の他
の実施例を示したものであり、同図(a)は側面から見
た平面図、同図(b)は同図(a)のB−B′線断面図
である。同図において、この対向電極として最小穴径0.
5mm□以上の開口部8aが面積比で70%以上の割合で形成
された第1の平行平板電極8Aと第2の平行平板電極8Bと
を対向させて図示されないが電気的に接続して組み合わ
せた穴あき状平行平板電極8′を用いる。この穴あき状
平行平板電極8′は、例えばエキスパンドメタルを適当
な大きさに切断し、電気的に接続することにより容易に
形成される。
3 (a) and 3 (b) show another embodiment of the counter electrode according to the present invention. FIG. 3 (a) is a plan view from the side, and FIG. 3 (b) is the same figure. It is a BB 'line sectional view of (a). In the figure, the minimum hole diameter is 0.
A first parallel plate electrode 8A and a second parallel plate electrode 8B in which openings 8a of 5 mm square or more are formed at a ratio of 70% or more in area ratio are opposed to each other and are electrically connected, but not shown, and combined. A perforated parallel plate electrode 8 'is used. The perforated parallel plate electrode 8 'is easily formed, for example, by cutting an expanded metal into an appropriate size and electrically connecting the cut metal.

このように構成される穴あき状平行平板電極8′を用
いることにより、タングステン芯線3上に電着されるア
ルカリ土類炭酸塩層の断面を完全な円形状とするには第
2図の円筒電極8の構成が好ましいが、この平行平板電
極8′でもタングステン芯線3の線径に対して第1の平
行平板電極8Aおよび第2の平行平板電極8Bの対向面積を
大きくすれば、電場は十分に平行平板電極8A,8Bの存在
しない側にも回り込み、実用上支障のない断面の円形状
程度が得られる。
In order to make the cross section of the alkaline earth carbonate layer electrodeposited on the tungsten core wire 3 into a perfect circle by using the perforated parallel plate electrode 8 'constructed as described above, the cylinder shown in FIG. Although the configuration of the electrode 8 is preferable, the electric field of the parallel plate electrode 8 ′ can be sufficiently increased by increasing the facing area of the first parallel plate electrode 8 A and the second parallel plate electrode 8 B with respect to the diameter of the tungsten core wire 3. As a result, the cross-section also extends to the side where the parallel plate electrodes 8A and 8B are not present, and a circular section having practically no problem is obtained.

下記表1は、対向電極としての電極形状を円筒状また
は平板状に形成した場合における開口部のない従来例お
よび開口部を有する本実施例について実施した実験結果
を示したものである。
Table 1 below shows the results of experiments performed on the conventional example having no opening and the present example having the opening when the electrode shape as the counter electrode is formed in a cylindrical shape or a flat plate shape.

上記表1から明らかなように本実施例によれば、1回
の均一電着長さを従来例の2〜3倍程度まで延ばすこと
ができ、かつ電着状態も均一で良好なものが得られ、さ
らに電着効率も従来例の2〜3倍程度まで向上させるこ
とができる。
As is clear from Table 1 above, according to the present embodiment, the length of one uniform electrodeposition can be extended to about two to three times that of the conventional example, and the electrodeposition state is uniform and good. In addition, the electrodeposition efficiency can be improved to about two to three times the conventional example.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、高融点金属芯線にアル
カリ土類炭酸塩粒子を電着させる対向電極として最小穴
径0.5mmφ以上の開口部を面積比で開口率30%以上90%
未満の割合で有する穴あき状電極を用いることにより、
電着液の対流が促進されるとともに開口部内をアルカリ
土類炭酸塩の粒子が速やかに流通されるので、均一電着
長さが大幅に延長できるとともに均一で良好な電着状態
が維持でき、さらに電着効率も大幅に向上できる等の極
めて優れた効果が得られる。
As described above, the present invention provides an opening having a minimum hole diameter of 0.5 mmφ or more as an opposite electrode for electrodepositing alkaline earth carbonate particles on a high-melting metal core wire in an area ratio of 30% or more and 90% or more.
By using a perforated electrode having a ratio of less than
Since the convection of the electrodeposition liquid is promoted and the particles of the alkaline earth carbonate are quickly circulated through the opening, the uniform electrodeposition length can be greatly extended and a uniform and good electrodeposition state can be maintained. In addition, extremely excellent effects such as a significant improvement in electrodeposition efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による直熱型カソードの製造方法の一実
施例を説明するための電着装置の構成を示す断面図、第
2図(a),(b)は本発明に係わる対向電極の一実施
例を示す穴あき状円筒電極の側面から見た平面図,その
B−B′線断面図、第3図(a),(b)は本発明に係
わる対向電極の他の実施例を示す穴あき状平行平板電極
の側面から見た平面図,そのB−B′線断面図、第4図
(a),(b)は従来の対向電極の一例を示す側面から
見た平面図,そのB−B′線断面図である。 1……電着液、3……タングステン芯線、4……電着
槽、5……方向転換スプール、6……芯線スプール、7
……通電スプール、8……穴あき状円筒電極、8′……
穴あき状平行平板電極、8A……第1の平行平板電極、8B
……第2の平行平板電極、8a……開口部、9……電着
線、10……巻き取りスプール。
FIG. 1 is a sectional view showing a structure of an electrodeposition apparatus for explaining one embodiment of a method of manufacturing a direct heat type cathode according to the present invention, and FIGS. 2 (a) and 2 (b) show counter electrodes according to the present invention. FIG. 3A is a plan view of a perforated cylindrical electrode viewed from the side, FIG. 3B is a sectional view taken along the line BB ', and FIGS. 3A and 3B are other examples of the counter electrode according to the present invention. 4 (a) and 4 (b) are plan views as viewed from the side of a perforated parallel plate electrode, showing a cross section taken along the line BB 'of FIG. , BB 'line sectional view. DESCRIPTION OF SYMBOLS 1 ... Electrodeposition liquid, 3 ... Tungsten core wire, 4 ... Electrodeposition tank, 5 ... Direction change spool, 6 ... Core wire spool, 7
... energized spool, 8 ... perforated cylindrical electrode, 8 '...
Perforated parallel plate electrode, 8A ... first parallel plate electrode, 8B
... Second parallel plate electrode, 8a ... opening, 9 ... electrodeposition wire, 10 ... take-up spool.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東 義徳 福岡県朝倉郡夜須町大字三並字八ツ並 2160番地 九州ノリタケ株式会社内 (56)参考文献 特開 昭60−63848(JP,A) 特開 昭58−192247(JP,A) 特開 昭50−55885(JP,A) 実公 昭49−10521(JP,Y1) (58)調査した分野(Int.Cl.6,DB名) H01J 9/04 C25D 13/16────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshinori Higashi, 2160, Yatsunami, Yasu-cho, Asakura-gun, Fukuoka Prefecture 2160 Kyushu Noritake Co., Ltd. (56) References JP-A-60-63848 (JP, A) JP-A-58-192247 (JP, A) JP-A-50-55885 (JP, A) JP-A-49-10521 (JP, Y1) (58) Fields investigated (Int. Cl. 6 , DB name) H01J 9/04 C25D 13/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルカリ土類炭酸塩粒子を含有した電着液
内に高融点金属芯線を対向電極間に挿通させて浸漬し、
該高融点金属芯線と該対向電極との間に直流電圧を印加
することにより該高融点金属芯線上にアルカリ土類炭酸
塩粒子を電着させる直熱型カソードの製造方法におい
て、前記対向電極は最小穴径0.5mmφ以上の開口部が面
積比で開口率30%以上90%未満の割合で有する穴あき状
電極を用いることを特徴とした直熱型カソードの製造方
法。
1. A high-melting metal core wire is immersed in an electrodeposition solution containing alkaline earth carbonate particles by inserting it between opposed electrodes.
In a method for producing a direct heat type cathode in which alkaline earth carbonate particles are electrodeposited on the high melting point metal core by applying a DC voltage between the high melting point metal core and the counter electrode, the counter electrode is A method for manufacturing a direct heat type cathode, comprising using a perforated electrode having an opening having a minimum hole diameter of 0.5 mmφ or more in an area ratio of 30% or more and less than 90% in area ratio.
JP1115047A 1989-05-10 1989-05-10 Manufacturing method of direct heat type cathode Expired - Lifetime JP2767280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1115047A JP2767280B2 (en) 1989-05-10 1989-05-10 Manufacturing method of direct heat type cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1115047A JP2767280B2 (en) 1989-05-10 1989-05-10 Manufacturing method of direct heat type cathode

Publications (2)

Publication Number Publication Date
JPH02297834A JPH02297834A (en) 1990-12-10
JP2767280B2 true JP2767280B2 (en) 1998-06-18

Family

ID=14652870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1115047A Expired - Lifetime JP2767280B2 (en) 1989-05-10 1989-05-10 Manufacturing method of direct heat type cathode

Country Status (1)

Country Link
JP (1) JP2767280B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910521U (en) * 1972-04-26 1974-01-29
JPS5430109B2 (en) * 1973-09-17 1979-09-28
JPS6063848A (en) * 1983-09-17 1985-04-12 Futaba Corp Manufacture of oxide hot cathode

Also Published As

Publication number Publication date
JPH02297834A (en) 1990-12-10

Similar Documents

Publication Publication Date Title
KR100305986B1 (en) Electrochemical Removal of Over-Emitter Material in Electron-emitting Devices
DE69513235T2 (en) Fluorescent screen structure and field emission display device and method of manufacturing the same
US4969850A (en) Method of manufacturing a cold cathode, field emission device and a field emission device manufactured by the method
EP0780871B1 (en) Structured surface with pointed elements
KR20010030783A (en) Selective removal of material using self-initiated galvanic activity in electrolytic bath
US8004167B2 (en) Electron emitter and a display apparatus utilizing the same
JP2767280B2 (en) Manufacturing method of direct heat type cathode
US5240587A (en) Method of producing a filter material
DE4310604A1 (en) Mfg. field emission cathode for flat screen use - applying series of processes to form successive solid state layers and cathode tip
JP3341385B2 (en) Phosphor electrodeposition method for field emission display
JP4102882B2 (en) Electron emission electrode and display device
JP3101929B2 (en) Manufacturing method of direct heat type cathode
DE2928725C2 (en)
JPH04322033A (en) Manufacture of direct heating type cathode
JPH0682533B2 (en) Electroplating method
JP2957692B2 (en) Electrolytic polymerization method
JPH0682534B2 (en) Electroplating method
DE10247447A1 (en) Directly heated oxide cathode
JPH0580777B2 (en)
JPH05190083A (en) Manufacture of directly heated cathode
JPH02305991A (en) Plating method
DE2803212A1 (en) Anode made of prismatic alkali metal for primary cells - has mesh shaped substrate with adhering metallic layers on both faces
JPS61179034A (en) Manufacture of emitter chip for liquid metal ion source
Serbun et al. Sharp bare and gold-coated copper nanocones with improved field emission performance
DE2415784B2 (en) Electrode assembly for electrochemical cells