EP0780871B1 - Structured surface with pointed elements - Google Patents

Structured surface with pointed elements Download PDF

Info

Publication number
EP0780871B1
EP0780871B1 EP96810856A EP96810856A EP0780871B1 EP 0780871 B1 EP0780871 B1 EP 0780871B1 EP 96810856 A EP96810856 A EP 96810856A EP 96810856 A EP96810856 A EP 96810856A EP 0780871 B1 EP0780871 B1 EP 0780871B1
Authority
EP
European Patent Office
Prior art keywords
layer
structured surface
peak
structured
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810856A
Other languages
German (de)
French (fr)
Other versions
EP0780871A1 (en
Inventor
Kurt Sekinger
Harald Fuchs
Jean-François Paulet
Roman Fuchs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Lonza Services Ltd
Alusuisse Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Lonza Services Ltd, Alusuisse Technology and Management Ltd filed Critical Alusuisse Lonza Services Ltd
Publication of EP0780871A1 publication Critical patent/EP0780871A1/en
Application granted granted Critical
Publication of EP0780871B1 publication Critical patent/EP0780871B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes

Definitions

  • the present invention relates to a structured surface containing a carrier layer and with this electrically connected tip-shaped elements.
  • the invention relates further the use of this structured surface, and a method for its Manufacturing.
  • thermal cathodes which at temperatures of, for example 1000 ° C and higher are heated so that the electrons on the cathode surface like this get a lot of thermal energy that they have the potential barrier on the cathode surface can overcome.
  • the surfaces of thermal cathodes are chosen so that that to achieve high electron emission, the work function of the electrons becomes as deep as possible by choosing appropriate surface layers.
  • cathode surfaces Another possibility for the production of electron-emitting cathode surfaces consists in applying high electric field strengths to a cold, i.e. not specially heated, Cathode. Such cold electron emitting cathode surfaces are called field emission surfaces To achieve significant field emission flows very high electric field strengths on the cathode surface necessary. To the to the To keep the cathode applied operating voltage at the lowest possible level and still The cathode surfaces achieve locally high electrical field strengths expediently provided with finely structured tips. Such field emission surfaces are used, for example, for field emission screens (FED or field emission display) used.
  • FED field emission screens
  • LCD liquid crystal screens
  • Such LCD screens leave only a small amount with rapidly moving images Switching speed too and the color rendering generally does not meet that of conventional ones Tube screens required high quality.
  • FED field emission display technology
  • FED screens usually consist of a conventional but not curved one Phosphor screen with mask. At a distance of 0.2 mm, for example, is a plate-shaped Cathode arranged, which carries a matrix of fine and sharp tips. This Tips can be supplied with high voltage in groups or addressed, whereby they emit electrons due to the field effect, which are then accelerated and so activate the opposite phosphor dot on the phosphor screen.
  • a picture element of an FED screen expediently consists of three points, the are provided with red, green or blue emitting phosphor. Each of these points are on the cathode side assigned about a thousand microtips, which together form one such high yield of field effect electrons deliver that the FED screen compared to conventional tube screens with the same brightness a much smaller Shows power consumption.
  • the FED screen Compared to the LCD screens, the FED screen has the advantage of being inertial Control of every pixel. In addition, the image quality is from the viewing angle independently.
  • a known method for producing cold-emitting cathode surfaces consists in the microstructuring of the cathode surface by using photolithographic Techniques such as those used for the manufacture of semiconductor components for a long time are known.
  • a Photoresist mask with a field of rectangular or circular openings on the Generated cathode surface In a second step, this is not protected by the masks Substrate etched so that after the remaining photoresist mask has been removed pyramid or conical emitter tips are created.
  • Another possibility for producing field emission surfaces is anisotropic Etching a crystalline material, such as Si, with fine tips, which are coated, for example, with an electron-emitting material.
  • semiconductor surfaces, such as Si using photolithographic methods structured and for example subsequently coated with an electron-emitting material become.
  • US 459 17 17 describes a photoelectric detector based on a field emission surface, containing a photosensitive layer with a plurality of tips electrically conductive material.
  • the manufacture of the tips is done by anodic Oxidation of a substrate surface, wherein pores lying vertically to the substrate surface are created into which metal is deposited in such a way that metal tips are created, which protrude above the oxide layer.
  • EP 0 351 110 describes a method for producing cold cathode emitter surfaces, after which an alumina surface with a variety of elongated, essentially Pores lying orthogonal to the main surface of the aluminum oxide layer the pores are filled with an electron-emitting material, at least one Part of this aluminum oxide layer is removed, leaving a surface with exposed electron-emitting Peaks and the tips are inclined towards each other.
  • the object of the present invention is to produce a field emission surface at low cost to create the field emission surfaces known from the prior art has a higher number of electron-emitting peaks per unit area.
  • each point-shaped element a cylindrical or frustoconical trunk area lying against the support layer and at least two, preferably 2 to 4, molded onto the free end of the trunk area, has terminal tips.
  • the carrier layer surface of the structured surface can be a flat or curved one Surface, for example a plane, the surface of an ellipsoid, especially a sphere, one single or double-shell hyperboloids, a paraboloid or an elliptical, hyperbolic or parabolic cylinder.
  • the part of the carrier layer lying between the tip-shaped elements is expediently essentially flat, creating a well-defined surface structure point-like elements that clearly stand out from it.
  • the tip-shaped elements are according to the invention structured surface evenly distributed over the carrier layer.
  • the pointed elements of the structured surface preferably have at least in a part projecting from the support layer is orthogonal to the support layer Trunk area on.
  • Point-shaped elements, the whole of which are particularly preferred Trunk area is orthogonal to the surface of the base layer.
  • tip-shaped elements with a trunk area orthogonal to the surface of the carrier layer, whose terminal tips are such that their longitudinal axes coincide with those of their Free ends leading surface normals of the carrier layer, an acute angle, preferably enclose an angle of 5 to 40 ° (based on a full circle of 360 °).
  • the tip-shaped elements and / or the Carrier layer made of Ni, Al, Pd, Pt, W, Fe, Ta, Rh, Cd, Cu, Au, Ag, In, Co, Sn, Si, Ge, Te, Se, or a chemical compound containing at least one of these substances, such as Sn or InSn oxide, or an alloy of the aforementioned metals.
  • the tip-shaped elements and the carrier layer made of the same material.
  • the carrier layer has between the tip-shaped Elements on a mechanical support layer, which consists of an electrically insulating Material, preferably consists of an oxide and in particular of aluminum oxide.
  • the layer thickness of the mechanical support layer expediently measures less than that Average height of the trunk areas of all tip-shaped areas over the entire structured surface Elements.
  • the tip-shaped elements of which have an im have substantially uniform height, being below the height of a lacy Elementes the maximum dimension measured orthogonally to the surface of the carrier layer of the lacy element, i.e. the trunk area and the terminal tips, is understood.
  • the height of each point-shaped element very preferably does not vary by more than ⁇ 5% of the height averaged over all pointed elements.
  • the surfaces of the surfaces structured according to the invention are particularly suitable for Use as field emission surfaces for cold cathode emitter elements, in particular as cold cathode electron emission sources for super flat screens, for electron lithography or for scanning or transmission microscopy.
  • the terminal tips the tip-shaped elements serve as emitter tips.
  • the field emission surface preferably substantially flat, i.e. the one between the lacy ones Part of the field emission surface lying in the elements does not contribute to the field emission at. Due to the high number of. Required for the realization of field emission surfaces
  • Emitter tips are also field emission surfaces with curved support layers in between the area lying in the lacy elements is substantially flat.
  • the tip-shaped elements of the structured surface are further preferably designed such that when an operating voltage of less than 2000 V, suitably less than 1800 V, preferably less than 900 V and in particular less than 100 V is applied, an electric field strength is produced at the terminal tips of more than 10 9 V / m results.
  • the operating voltage here means the voltage applied by an external voltage source to the structured surface, for example its carrier layer.
  • the molded article necessary for the production of the structured surface according to the invention with an essentially mirror image of the desired structured surface The molded body surface expediently consists of a substrate body and a Shaped layer, the latter being essentially the desired structured surface contains mirror image surface structure.
  • the substrate body preferably represents part of a piece good, for example a profile, Bar or other form of pieces, plate, tape, sheet or one Aluminum foil, or an aluminum cover layer of a composite material, in particular as an aluminum cover layer of a composite panel, or relates to any one Material - for example electrolytically - applied aluminum layer, such as a clad aluminum layer.
  • the substrate body more preferably relates to Workpiece made of aluminum, which e.g. through a rolling, extrusion, forging or Extrusion process is made.
  • the substrate body can also be bent, deep drawn, Cold extrusion or the like may be formed.
  • the term includes Aluminum all rolled, kneading, casting, forging and pressing alloys made of aluminum.
  • the substrate body expediently consists of pure aluminum with a degree of purity of equal to or greater than 98.3% by weight or aluminum alloys with at least one of the Elements from the range of Si, Mg, Mn, Cu, Zn or Fe.
  • the substrate body made of pure aluminum can be made, for example, of aluminum with a purity of 98.3% by weight and higher, expediently 99.0% by weight and higher, preferably 99.9% by weight and higher and in particular 99.95 wt .-% and higher, and the rest are commercially available impurities.
  • the substrate body can also be made from an aluminum alloy consist of containing 0.25% by weight to 5% by weight, in particular 0.5 to 2% by weight, Magnesium or containing 0.2 to 2% by weight of manganese or containing 0.5 to 5% by weight Magnesium and 0.2 to 2% by weight of manganese, in particular e.g.
  • manganese or containing 0.1 to 12% by weight, preferably 0.1 to 5% by weight, of copper or containing 0.5 to 5% by weight of zinc and 0.5 to 5% by weight of magnesium or containing 0.5 to 5% by weight of zinc, 0.5 to 5% by weight of magnesium and 0.5 to 5% by weight of copper or containing 0.5 to 5% by weight iron and 0.2 to 2% by weight manganese, in particular e.g. 1.5 % By weight iron and 0.4% by weight manganese.
  • the molded layer preferably consists of aluminum oxide.
  • the production of one for the invention The required molding layer is preferably carried out by anodic oxidation the substrate body surface in an electrolyte under pore-forming conditions. It is essential to the invention that the pores are open towards the free surface. The pore distribution over the surface is advantageously uniform.
  • the layer thickness of the The molding layer is expediently 50 nm to 20 ⁇ m and preferably 0.5 to 3 ⁇ m.
  • the pores In their vertical extent, the pores have a trunk area directed against the surface of the molding layer and a branching area directed against the substrate body, i.e. each pore lying essentially vertically to the surface of the molding layer consists of an elongated pore which is open to the free surface of the molding layer and which is divided into at least two, preferably 2 to 4 wells or pore branches in the branching area.
  • the pores in the trunk area expediently have a diameter of 1 to 250 nm, preferably between 10 and 230 nm and in particular between 80 and 230 nm.
  • the number of pores ie the number of pores in the trunk area, is expediently 10 8 pores / cm 2 and higher, preferably 10 8 to 10 12 pores / cm 2 and in particular 10 9 to 10 11 pores / cm 2 .
  • the average density of the molded layer is preferably 2.1 to 2.7 g / cm 3 .
  • the molded layer more preferably has a dielectric constant between 5 and 7.5.
  • the molded layer is produced, for example, by anodic oxidation of the Substrate body surface in an electrolyte that redissolves the aluminum oxide.
  • the electrolyte temperature is expediently between - 5 and 85 ° C, preferably between 15 and 80 ° C and especially between 30 and 55 ° C.
  • To carry out the anodic Oxidation can be carried out by the substrate body or at least its surface layer or at least the part of the substrate body surface which is to be provided with a molding layer, placed in a corresponding electrolyte and switched as a positive electrode (anode) become.
  • Another electrode in the same electrolyte serves as the negative electrode (cathode)
  • Electrode made of, for example, stainless steel, lead, aluminum or graphite.
  • the substrate body surface is before the inventive method subjected to a pretreatment, for example the substrate body surface first degreased, then rinsed and finally pickled.
  • the pickling is done with a Sodium hydroxide solution with a concentration of 50 to 200 g / l at 40 to 60 ° C during one to ten minutes.
  • the surface can then be rinsed and washed with an acid, such as nitric acid, in particular a concentration of 25 to 35% by weight at room temperature, i.e. typically in the temperature range 20 - 25 ° C, during Neutralized for 20 to 60 s and rinsed again.
  • an oxide layer produced by means of anodic oxidation for example the pore density and the pore diameter largely depend on the anodizing conditions such as electrolyte composition, electrolyte temperature, Current density, anodizing voltage and anodizing time, as well as of the anodized base material from.
  • the anodic oxidation in acid electrolytes the A substantially pore-free base or barrier layer and a porous outer layer, which during the anodic oxidation on its free surface partly redissolved chemically by redissolving. This creates in the outer layer Pores that are essentially vertical to the substrate body surface and against the free surface of the oxide layer are open.
  • the thickness of the oxide layer reaches its Maximum value if growth and redissolution balance each other, for example the applied anodizing voltage, the electrolyte composition, the current density, the electrolyte temperature, anodizing time and the anodized base material.
  • Electrolytes which contain one or more inorganic and / or organic acids are preferably used to carry out the process according to the invention.
  • Anodizing voltages from 10 to 100 V and current densities from 100 to 3000 A / m 2 are further preferred.
  • the anodizing time is typically 1 to 300 s.
  • the anodic oxidation of the substrate body surface preferably takes place in such a way that the anodizing voltage for forming cylindrical or truncated-cone-shaped long pores is set to a first value (U 1 ), preferably between 12 and 80 V, and subsequently to form at least two pore branches on the opposite the aluminum layer-oriented end of each long pore is set to a second value (U 2 ), the second value being lower than the first value and preferably being between 10 and 20 V.
  • U 1 first value
  • U 2 second value
  • the anodizing voltage is applied, for example, by continuous increase the applied voltage up to the respective predetermined, constant value over time.
  • the Current density also increases as a function of the applied anodizing voltage one after reaching the respectively predetermined constant voltage Maximum value and then coincides with a lower value.
  • the layer thickness of the barrier layer is voltage-dependent and is, for example, in the range 8 to 16 angstroms / V and especially between 10 and 14 angstroms / V.
  • the pore diameter the porous outer layer is also voltage-dependent and is, for example between 8 and 13 angstroms / V and in particular 10 to 12 angstroms / V.
  • the electrolyte can contain, for example, a strong organic or inorganic acid or a mixture of strong organic and / or inorganic acids.
  • Typical examples of such acids are sulfuric acid (H 2 SO 4 ) or phosphoric acid (H 3 PO 4 ).
  • Other acids that can be used are, for example, chromic acid, oxalic acid, sulfamic acid, malonic acid, maleic acid or sulfosalycilic acid. Mixtures of the acids mentioned can also be used.
  • sulfuric acid is used in amounts of 40 to 350 g / l and preferably 150 to 200 g / l (sulfuric acid based on 100% acid).
  • Phosphoric acid can also be used as an electrolyte in an amount of 60 to 300 g / l and in particular 80 to 150 g / l, the amount of acid being based on 100% pure acid.
  • Another preferred electrolyte is sulfuric acid in a mixture with oxalic acid, an amount of 150 to 200 g / l sulfuric acid in particular being mixed with, for example, 5 to 25 g / l oxalic acid.
  • Electrolytes containing, for example, 250 to 300 g / l of maleic acid and for example 1 to 10 g / l of sulfuric acid are further preferred.
  • Another electrolyte contains, for example, 130 to 170 g / l sulfosalycilic acid mixed with 6 to 10 g / l sulfuric acid.
  • the surface of the molded layer can be subjected to further treatments, such as. chemical or electrolytic etching, plasma etching, rinsing or impregnation become.
  • the finished molded layer is coated over the entire surface in such a way that that in the surface layer of the molded body existing pore cavities completely with the coating material be filled in, and an electrically connecting the tip-shaped elements Backing layer is formed, and the backing layer is a coherent, mechanical represents the supporting layer.
  • the coating of the molded body surface can be, for example, chemical or electrolytic Methods, or by PVD (Physical Vapor Deposition) or CVD (Chemical Vapor Deposition).
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • a chemical and / or electrolytic is preferred Deposition of the coating material, expediently the pore cavities be chemically activated beforehand.
  • the tip-shaped elements especially their terminal tips, by completely or partially removing the Form layer exposed.
  • a part of the molded layer is etched away that on the support layer between the trunk areas of the lacy elements
  • the molding layer remains and forms a mechanical support layer. This happens, for example by chemically etching away the substrate body, the barrier layer and one Part of the porous layer.
  • the porous part of the molded layer must be removed in such a way that the terminal tips of the tip-shaped elements are completely exposed.
  • the exposed tip-shaped elements are subjected to a further etching process, for example by plasma etching, or by wet chemical or electrolytic etching.
  • a further etching process for example by plasma etching, or by wet chemical or electrolytic etching.
  • Post-treatment of the surface structured according to the invention is further preferred by deposition of an additional, thin metal layer, which the electron-emitting Properties of the lacy elements improved.
  • This extra thin metal layer consists preferably of a noble metal, in particular of Au, Pt, Rh or Pd, or an alloy containing at least one of these noble metals.
  • the deposition of this additional metal layer can, for example, by chemical or electrolytic methods, through PVD (Physical Vapor Deposition), such as sputtering or electron beam evaporation, or by CVD (Chemical Vapor Deposition).
  • An aluminum sheet made of 99.9% by weight Al with a glossy surface serves as the substrate body.
  • the aluminum sheet is cleaned in a mild alkaline degreasing solution, in Rinsed water, pickled in nitric acid, rinsed in water, briefly immersed in acetone and dried.
  • a suitable masking varnish is then applied to the back of the sheet and the substrate body pretreated in this way in a phosphoric acid electrolyte with a concentration of 150 g / l H 3 PO 4 at an electrolyte temperature of 35 ° C. with direct current with a current density of 100 A / m 2 anodized for 3 minutes, continuously increasing the anodizing voltage from 0 to 50 V.
  • the anodizing voltage is reduced in 5 to 6 steps to approx. 15 V, the voltage lowering steps being initially small and gradually increasing. After the anodizing voltage of approx. 15 V has been reached, this is maintained for approx. 40 seconds.
  • the resulting layer thickness of the aluminum oxide layer is typically 1 ⁇ m.
  • the molded layer now has pores, one against the free surface of the aluminum oxide layer protruding, upwardly open trunk area and one against the substrate body have directed branching area.
  • the molding in particular the free surface of the molding layer, is then rinsed with water and in an activation bath containing nickel salt (100 g / l NiSO 4 .7 H 2 O and 40 g / l boric acid, pH 4.0 to 5.0) with an applied AC voltage of 16 V treated for 5 seconds and then rinsed again with water.
  • nickel salt 100 g / l NiSO 4 .7 H 2 O and 40 g / l boric acid, pH 4.0 to 5.0
  • the pores of the shaped layer prepared in this way have nickel particles embedded on the pore base, which preferably serve as nuclei for a further selective nickel deposition.
  • the selective deposition of nickel ie the further deposition of nickel on the nickel particles already in the pores, is initially carried out chemically in a nickel bath at a temperature of 85 ° C and a pH of 5.0, which contains a sodium hypophosphite solution as a reducing agent .
  • the selective nickel deposition takes 1 hour, a layer of nickel-phosphorus with 10 to 12% by weight of phosphorus and a layer thickness of approximately 10 ⁇ m being produced.
  • the nickel-coated mold layer is then rinsed again with water and then the nickel layer is in a commercially available, galvanic nickel bath ("Watt" bath, which for example 300 g / l nickel sulfate, 60 g / l nickel chloride, 40 g / l boric acid and organic Contains additives such as wetting agents) with a current density of 400 A / m 2 measured at the cathode for 20 minutes.
  • the electrolyte temperature is 50 to 60 ° C, the electroplated nickel layer reaching a thickness of about 16 microns.
  • the covering lacquer becomes removed, for example, chemically or by plasma etching.
  • the molded body is now chemically dissolved in sodium hydroxide solution (50 g / l NaOH). At a NaOH bath temperature of At 20 ° C, this process takes several hours, for example 1 to 5 hours.
  • the desired structured nickel foil After the shaped body has been removed, the desired structured nickel foil remains tip-shaped elements, the tip-shaped elements attaching to the Ni carrier layer adjacent trunk area and as a vertical continuation a branching area, containing at least two terminal tips.
  • the structured nickel foil is rinsed again with water, in 5% citric acid at 20 ° C for 30 minutes, rinsed again with water, placed in ethanol and finally dried.
  • the tip-shaped elements represent a precise image of the one in the aluminum oxide layer existing pore cavity, since the aluminum oxide layer as a mask for its Ni exposure serves.
  • the structured nickel foil has many tips that are close together 1 ⁇ m in length, the largest diameter of which is typically less than 0.2 ⁇ m lies.
  • An aluminum sheet serving as a substrate body, as described in the first exemplary embodiment, is according to the method described in the first embodiment cleaned and anodized.
  • the shaped body surface thus formed is according to the first Embodiment activated.
  • the selective nickel deposition now takes place in a chemical nickel bath with a Temperature of 70 ° C and a pH of 6.0, using the nickel bath as a reducing agent Contains dimethylamine borane.
  • the selective nickel deposition takes 1 hour, with one Nickel-boron deposition with a layer thickness of approx. 5 ⁇ m and a boron content of less than 1% is formed.
  • the nickel layer grows due to the special activation method initially only on the pore base.
  • the Masking varnish removed, the molded body dissolved and thus a structured nickel foil exposed.
  • the tip-shaped elements of the structured nickel foil are then subjected to an electrolytic aftertreatment, the radius of curvature of the terminal tips being reduced, so that a field emission surface with better electron-emitting properties is produced.
  • the electrolyte used for this contains 638 ml / l 96% sulfuric acid and 9 g / l glycerin.
  • the electrolytic aftertreatment is carried out for 5 to 10 seconds at an electrolyte temperature of 20 ° C., with a cathode made of pure lead, a current density of 500 to 1000 A / m 2 and an electrolysis voltage of 6 V.
  • the structured nickel foil is again rinsed with water and dried.
  • a structured nickel foil produced according to the first or second exemplary embodiment is retrofitted for 60 seconds in a commercially available, electroless gold bath gold-plated, the gold bath having a gold concentration of 2 g / l, a bath temperature of 85 ° C and has a pH of 4.2 to 4.8.
  • a charge is exchanged Gold layer of approx. 0.05 ⁇ m was formed.
  • the gold-plated nickel foil is then with Rinsed water, treated with ethanol and dried.
  • Refining the structured nickel foil in this way significantly improves its properties as a field emission surface.
  • Figure 1 shows schematically a cross section through a not yet finished molded body 22, its pores lying vertically to the molded body surface 23 and open at the top only an elongated cavity 32 without pore branches, i.e. the trunk area 32 of the Pores.
  • the molded body shown in FIG. 1 consists on the one hand of the substrate body 24 and on the other hand from the molded layer 26, which in turn consists of a barrier layer 28 and a porous layer 30 is formed.
  • a body formed according to FIG. 1 is formed, for example, after anodic oxidation with a constant or continuously or gradually increasing anodizing voltage a substrate body 24 made of aluminum in an electrolyte that redissolves the aluminum oxide.
  • Figure 2 shows schematically a cross section of a usable for the inventive method Shaped body 22.
  • the shaped body 22 is made of the substrate body 24 and the Form layer 26 formed.
  • the cavity 36 of the pores contains a pore stem region 32 and a pore branching area 33, each pore cavity 36 in the branching area 33 has two pore branches 34.
  • a molded body 22 designed according to FIG. 2 is formed, for example, when - starting of a not yet finished shaped body 22 according to FIG. 1 - the anodic oxidation is continued with a lower anodizing voltage. This can be done using the anodizing voltage be lowered gradually or continuously. Because the during the anodic Oxidation-forming pore diameter, as well as the layer thickness of the barrier layer that forms 28 depend on the size of the anodizing voltage, decreases during one such a second stage of the process, the thickness of the barrier layer 28, the layer thickness of the porous oxide layer 30 continues to grow.
  • the pore diameter is dependent on the anodizing voltage and then forms on the pore trunk area 32 several pore branches 34 with one opposite the trunk area 32 smaller diameters.
  • Figure 3 shows schematically the cross section of an electron-emitting material coated molded body 22.
  • the molded body 22 consists of a substrate body 24 and a molding layer 26.
  • the molding layer 26 contains pores, the cavity 36 of which is a trunk area 32 and a branching area 33 with at least two pore branches 34 having.
  • the cavity 36 is completely filled with electron-emissive material, and the resulting tip-shaped elements 14 made of electron-emitting material are connected to one another in an electrically conductive manner by a carrier layer 12.
  • a shaped body designed according to FIG. 3 and coated with electron-emitting material 22 arises, for example, if - starting from a molded body 22 according to FIG. 2 - the molded body surface 23, at least in the pores, is chemically activated, the Pore cavities 36 using chemical and / or electrochemical methods with electron-emitting Material is applied, and on the resulting tip-shaped Elements 14, as well as on the molded body surface lying between the pore cavities 36 23 an electron-emitting layer 12 made of, for example, metal or semimetal is deposited.
  • FIG. 4 schematically shows the cross section of a surface structured according to the invention.
  • This consists of a carrier layer 12 with tip-shaped elements 14 connected to it in an electrically conductive manner, for example made of metal or semimetal, ie of electron-emitting material.
  • the tip-shaped elements have a trunk area 16 and a branching area 18, the tip-shaped elements 14 in the branching area 18 having two terminal tips 20, the longitudinal axes a 1 , a 2 of which form an acute angle ⁇ .
  • the trunk areas 16 of the tip-shaped elements 14 are mechanically supported by a support layer 15 lying between them, a portion of the trunk areas 16 and the terminal tips 20 being exposed.
  • a structured surface designed according to FIG. 4 arises, for example, if starting from a shaped body 22 coated with electron-emitting material 3 - the substrate body 24 and part of the molded layer 26 chemically etched away becomes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

Vorliegende Erfindung betrifft eine strukturierte Oberfläche, enthaltend eine Trägerschicht und mit dieser elektrisch leitend verbundene spitzenförmige Elemente. Die Erfindung betrifft weiter die Verwendung dieser strukturierten Oberfläche, sowie ein Verfahren zu deren Herstellung.The present invention relates to a structured surface containing a carrier layer and with this electrically connected tip-shaped elements. The invention relates further the use of this structured surface, and a method for its Manufacturing.

Jedes Bauelement der Vakuumelektronik, wie beispielsweise eine Bildschirmröhre, benötigt eine Kathode zur Emission von Elektronen ins Vakuum. Bislang werden zu diesem Zweck überwiegend thermische Kathoden eingesetzt, welche auf Temperaturen von beispielsweise 1000 °C und höher aufgeheizt werden, so dass die Elektronen an der Kathodenoberfläche so viel thermische Energie erhalten, dass sie die Potentialbarriere an der Kathodenoberfläche überwinden können. Die Oberflächen von thermischen Kathoden werden dahingehend gewählt, dass zur Erreichung einer hohen Elektronenemission die Austrittsarbeit der Elektronen durch Wahl entsprechender Oberflächenschichten möglichst tief wird.Every component of vacuum electronics, such as a display tube, is required a cathode for emitting electrons into a vacuum. So far, for this purpose predominantly thermal cathodes used, which at temperatures of, for example 1000 ° C and higher are heated so that the electrons on the cathode surface like this get a lot of thermal energy that they have the potential barrier on the cathode surface can overcome. The surfaces of thermal cathodes are chosen so that that to achieve high electron emission, the work function of the electrons becomes as deep as possible by choosing appropriate surface layers.

Eine weitere Möglichkeit zur Herstellung von elektronenemittierenden Kathodenoberflächen besteht im Anlegen hoher elektrischer Feldstärken an eine kalte, d.h. nicht speziell aufgeheizte, Kathode. Solche kalt-elektronenemittierende Kathodenoberflächen werden als Feldemissionsoberflächen bezeichnet Zur Erreichung nennenswerter Feldemissionsströme sind sehr hohe elektrische Feldstärken an der Kathodenoberfläche notwendig. Um die an die Kathode angelegte Betriebsspannung auf einem möglichst tiefen Niveau zu halten und trotzdem lokal hohe elektrische Feldstärken zu erreichen, werden die Kathodenoberflächen zweckmässigerweise mit feinstrukturierten Spitzen versehen. Solche Feldemissionsoberflächen werden beispielsweise für Feldemissionsbildschirme (FED oder field emission display) verwendet.Another possibility for the production of electron-emitting cathode surfaces consists in applying high electric field strengths to a cold, i.e. not specially heated, Cathode. Such cold electron emitting cathode surfaces are called field emission surfaces To achieve significant field emission flows very high electric field strengths on the cathode surface necessary. To the to the To keep the cathode applied operating voltage at the lowest possible level and still The cathode surfaces achieve locally high electrical field strengths expediently provided with finely structured tips. Such field emission surfaces are used, for example, for field emission screens (FED or field emission display) used.

Die heute beispielsweise in Laptop-Computern oder tragbaren Fernsehgeräten eingesetzten Flachbildschirme arbeiten üblicherweise als Flüssigkristallbildschirme (LCD oder liquid cristal display). Solche LCD-Bildschirme lassen jedoch bei rasch bewegten Bildern nur eine geringe Schaltgeschwindigkeit zu und die Farbwiedergabe erfüllt im allgemeinen nicht die bei konventionellen Röhrenbildschirmen geforderte hohe Qualität.Those used today, for example, in laptop computers or portable television sets Flat screens usually work as liquid crystal screens (LCD or liquid crystal display). Such LCD screens, however, leave only a small amount with rapidly moving images Switching speed too and the color rendering generally does not meet that of conventional ones Tube screens required high quality.

Die Technik der Feldemissionsbildschirme (FED oder field emission display) überwindet die bei LCD-Bildschirmen auftretenden Nachteile. The field emission display technology (FED) overcomes this Disadvantages that occur with LCD screens.

FED-Bildschirme bestehen üblicherweise aus einem konventionellen, aber nicht gewölbten Phosphorbildschirm mit Maske. In einem Abstand von beispielsweise 0.2 mm ist eine plattenförmige Kathode angeordnet, die eine Matrize von feinen und scharfen Spitzen trägt. Diese Spitzen können gruppenweise mit Hochspannung versehen bzw. adressiert werden, wodurch sie auf Grund des Feldeffekts Elektronen emittieren, welche dann beschleunigt werden und so den gegenüberliegenden Leuchtstoffpunkt auf dem Phosphorbildschirm aktivieren.FED screens usually consist of a conventional but not curved one Phosphor screen with mask. At a distance of 0.2 mm, for example, is a plate-shaped Cathode arranged, which carries a matrix of fine and sharp tips. This Tips can be supplied with high voltage in groups or addressed, whereby they emit electrons due to the field effect, which are then accelerated and so activate the opposite phosphor dot on the phosphor screen.

Ein Bildelement eines FED-Bildschirmes besteht zweckmässigerweise aus drei Punkten, die mit rot, grün oder blau emittierendem Leuchtstoff versehen sind. Jedem dieser Punkte sind auf der Kathodenseite etwa tausend Mikrospitzen zugeordnet, die zusammen eine derart hohe Ausbeute von Feldeffekt-Elektronen liefern, dass der FED-Bildschirm im Vergleich zu herkömmlichen Röhren-Bildschirmen bei gleicher Helligkeit einen wesentlich kleineren Stromverbrauch zeigt.A picture element of an FED screen expediently consists of three points, the are provided with red, green or blue emitting phosphor. Each of these points are on the cathode side assigned about a thousand microtips, which together form one such high yield of field effect electrons deliver that the FED screen compared to conventional tube screens with the same brightness a much smaller Shows power consumption.

Gegenüber den LCD-Bildschirmen bietet der FED-Bildschirm den Vorteil einer trägheitslosen Ansteuerung jedes Bildpunktes. Zudem ist die Bildqualität vom Betrachtungswinkel unabhängig.Compared to the LCD screens, the FED screen has the advantage of being inertial Control of every pixel. In addition, the image quality is from the viewing angle independently.

Ein bekanntes Verfahren zur Herstellung kalt-emittierender Kathodenoberflächen besteht in der Mikrostrukturierung der Kathodenoberfläche durch Anwendung photolithographischer Techniken, wie sie beispielsweise zur Herstellung von Halbleiterbauelementen seit langem bekannt sind. Dabei wird in einem ersten Verfahrensschritt mittels Photolithographie eine Photolackmaske mit einem Feld von rechteckigen oder kreisförmigen Öffnungen auf der Kathodenoberfläche erzeugt. In einem zweiten Schritt wird das nicht durch die Masken geschützte Substrat geätzt, so dass nach dem Ablösen der stehengebliebenen Photolackmaske pyramiden- oder kegelförmige Emitterspitzen entstehen.A known method for producing cold-emitting cathode surfaces consists in the microstructuring of the cathode surface by using photolithographic Techniques such as those used for the manufacture of semiconductor components for a long time are known. In a first process step, a Photoresist mask with a field of rectangular or circular openings on the Generated cathode surface. In a second step, this is not protected by the masks Substrate etched so that after the remaining photoresist mask has been removed pyramid or conical emitter tips are created.

Eine weitere Möglichkeit zur Herstellung von Feldemissionsoberflächen besteht im anisotropen Aetzen eines kristallinen Materials, wie beispielsweise Si, wobei feine Spitzen entstehen, die beispielsweise mit einem Elektronen-emittierenden Material beschichtet werden. Im weiteren können auch Halbleiteroberflächen, wie Si, mittels photolithographischer Methoden strukturiert und beispielsweise nachfolgend mit einem Elektronen-emittierenden Material beschichtet werden.Another possibility for producing field emission surfaces is anisotropic Etching a crystalline material, such as Si, with fine tips, which are coated, for example, with an electron-emitting material. In the further can also semiconductor surfaces, such as Si, using photolithographic methods structured and for example subsequently coated with an electron-emitting material become.

Die US 459 17 17 beschreibt einen photoelektrischen Detektor auf der Basis einer Feldemissionsoberfläche, enthaltend eine lichtempfindliche Schicht mit einer Vielzahl von Spitzen aus elektrisch leitendem Material. Die Herstellung der Spitzen geschieht dabei durch anodische Oxidation einer Substratoberfläche, wobei zur Substratoberfläche vertikal liegende Poren geschaffen werden, in die Metall in der Weise abgeschieden wird, dass Metallspitzen entstehen, welche die Oxidschicht überragen.US 459 17 17 describes a photoelectric detector based on a field emission surface, containing a photosensitive layer with a plurality of tips electrically conductive material. The manufacture of the tips is done by anodic Oxidation of a substrate surface, wherein pores lying vertically to the substrate surface are created into which metal is deposited in such a way that metal tips are created, which protrude above the oxide layer.

Die EP 0 351 110 beschreibt ein Verfahren zur Herstellung von Kaltkathoden-Emitteroberflächen, wonach eine Aluminiumoxidoberfläche mit einer Vielzahl von länglichen, im wesentlichen orthogonal zur Hauptoberfläche der Aluminiumoxidschicht liegenden Poren versehen wird, die Poren mit einem Elektronen-emittierenden Material gefüllt werden, wenigstens ein Teil dieser Aluminiumoxidschicht entfernt wird, wobei eine Oberfläche mit freigelegten Elektronen-emittierenden Spitzen ensteht und die Spitzen gegeneinander geneigt sind.EP 0 351 110 describes a method for producing cold cathode emitter surfaces, after which an alumina surface with a variety of elongated, essentially Pores lying orthogonal to the main surface of the aluminum oxide layer the pores are filled with an electron-emitting material, at least one Part of this aluminum oxide layer is removed, leaving a surface with exposed electron-emitting Peaks and the tips are inclined towards each other.

Die aus dem Stand der Technik bekannten Feldemissionsoberflächen, die durch Bildung einer Poren enthaltenden Oberflächenschicht, der Deposition von Elektronen-emittierendem Material auf die Oberflächenschicht und in die Porenkavitäten, und dem abschliessenden Entfernen der die Poren enthaltenden Schicht hergestellt werden, weisen immer maximal so viele Elektronen-emittierende Spitzen auf wie zu deren Herstellung Poren in der Oberflächenschicht vorhanden waren.The field emission surfaces known from the prior art, which by forming a Pore-containing surface layer, the deposition of electron-emitting material on the surface layer and in the pore cavities, and the final removal of the layer containing the pores are always produced with a maximum of as many electron-emitting ones Tips on how to make pores in the surface layer were present.

Aufgabe vorliegender Erfindung ist es eine kostengünstig herzustellende Feldemissionsoberfläche zu schaffen, die gegenüber den aus dem Stand der Technik bekannten Feldemissionsoberflächen eine höhere Zahl von Elektronen-emittierenden Spitzen pro Flächeneinheit aufweist.The object of the present invention is to produce a field emission surface at low cost to create the field emission surfaces known from the prior art has a higher number of electron-emitting peaks per unit area.

Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass jedes spitzenförmige Element einen an die Trägerschicht anliegenden, zylinder- oder kegelstumpfförmigen Stammbereich und wenigstens zwei, vorzugsweise 2 bis 4, an das freie Ende des Stammbereiches angeformte, endständige Spitzen aufweist.According to the invention, this object is achieved in that each point-shaped element a cylindrical or frustoconical trunk area lying against the support layer and at least two, preferably 2 to 4, molded onto the free end of the trunk area, has terminal tips.

Die Trägerschicht-Oberfläche der strukturierten Oberfläche kann eine ebene oder gekrümmte Fläche, beispielsweise eine Ebene, die Oberfläche eines Ellipsoids, speziell einer Kugel, eines ein- oder zweischaligen Hyperboloids, eines Paraboloids oder eines elliptischen, hyperbolischen oder parabolischen Zylinders darstellen.The carrier layer surface of the structured surface can be a flat or curved one Surface, for example a plane, the surface of an ellipsoid, especially a sphere, one single or double-shell hyperboloids, a paraboloid or an elliptical, hyperbolic or parabolic cylinder.

Zweckmässigerweise ist der zwischen den spitzenförmigen Elementen liegende Teil der Trägerschicht im wesentlichen eben, wodurch eine gut definierte Oberflächenstruktur mit sich deutlich davon abhebenden spitzenförmigen Elementen gebildet wird. The part of the carrier layer lying between the tip-shaped elements is expediently essentially flat, creating a well-defined surface structure point-like elements that clearly stand out from it.

In einer bevorzugten Ausführungsform sind die spitzenförmigen Elemente der erfindungsgemäss strukturierten Oberfläche gleichmässig über die Trägerschicht verteilt.In a preferred embodiment, the tip-shaped elements are according to the invention structured surface evenly distributed over the carrier layer.

Die spitzenförmigen Elemente der strukturierten Oberfläche weisen bevorzugt wenigstens in einem von der Trägerschicht abragenden Teil einen orthogonal zur Trägerschicht liegenden Stammbereich auf. Besonders bevorzugt werden spitzenförmige Elemente, deren ganzer Stammbereich orthogonal zur Trägerschicht-Oberfläche liegt. Ganz besonders bevorzugt sind spitzenförmige Elemente mit orthogonal zur Trägerschicht-Oberfläche liegendem Stammbereich, deren endständige Spitzen dergestalt sind, dass ihre Längsachsen mit der durch ihre freien Enden führenden Flächennormalen der Trägerschicht einen spitzen Winkel, bevorzugt einen Winkel von 5 bis 40° (bezogen auf einen Vollkreis von 360°), einschliessen.The pointed elements of the structured surface preferably have at least in a part projecting from the support layer is orthogonal to the support layer Trunk area on. Point-shaped elements, the whole of which are particularly preferred Trunk area is orthogonal to the surface of the base layer. Are very particularly preferred tip-shaped elements with a trunk area orthogonal to the surface of the carrier layer, whose terminal tips are such that their longitudinal axes coincide with those of their Free ends leading surface normals of the carrier layer, an acute angle, preferably enclose an angle of 5 to 40 ° (based on a full circle of 360 °).

In einer bevorzugten Ausführungsform bestehen die spitzenförmigen Elemente und/oder die Trägerschicht aus Ni, Al, Pd, Pt, W, Fe, Ta, Rh, Cd, Cu, Au, Ag, In, Co, Sn, Si, Ge, Te, Se, oder einer chemischen Verbindung enthaltend wenigstens einen dieser Stoffe, wie beispielsweise Sn- oder InSn-Oxid, oder einer Legierung der vorgenannten Metalle. Bevorzugt bestehen die spitzenförmigen Elemente und die Trägerschicht aus demselben Material.In a preferred embodiment, the tip-shaped elements and / or the Carrier layer made of Ni, Al, Pd, Pt, W, Fe, Ta, Rh, Cd, Cu, Au, Ag, In, Co, Sn, Si, Ge, Te, Se, or a chemical compound containing at least one of these substances, such as Sn or InSn oxide, or an alloy of the aforementioned metals. Preferably exist the tip-shaped elements and the carrier layer made of the same material.

Weiter bevorzugt sind erfindungsgemäss strukturierte Oberflächen, deren Oberfläche wenigstens teilweise mit einem der vorstehend genannten Materialien beschichtet ist.Surfaces structured according to the invention, the surface of which at least are preferred is partially coated with one of the above materials.

In einer weiteren bevorzugten Ausführungsform weist die Trägerschicht zwischen den spitzenförmigen Elementen eine mechanische Stützschicht auf, welche aus einem elektrisch isolierenden Material, bevorzugt aus einem Oxid und insbesondere aus Aluminiumoxid besteht. Zweckmässigerweise misst die Schichtdicke der mechanischen Stützschicht weniger als die über die ganze strukturierte Oberfläche gemittelte Höhe der Stammbereiche aller spitzenförmigen Elemente.In a further preferred embodiment, the carrier layer has between the tip-shaped Elements on a mechanical support layer, which consists of an electrically insulating Material, preferably consists of an oxide and in particular of aluminum oxide. The layer thickness of the mechanical support layer expediently measures less than that Average height of the trunk areas of all tip-shaped areas over the entire structured surface Elements.

Weiter bevorzugt werden strukturierte Oberflächen, deren spitzenförmige Elemente eine im wesentlichen gleichmässige Höhe aufweisen, wobei unter der Höhe eines spitzenförmigen Elementes die maximale, orthogonal zur Oberfläche der Trägerschicht gemessene Abmessung des spitzenförmigen Elementes, d.h. des Stammbereiches und der endständigen Spitzen, verstanden wird. Ganz bevorzugt variiert die Höhe jedes spitzenförmigen Elementes um nicht mehr als ± 5% der über alle spitzenförmigen Elemente gemittelten Höhe.Structured surfaces are further preferred, the tip-shaped elements of which have an im have substantially uniform height, being below the height of a lacy Elementes the maximum dimension measured orthogonally to the surface of the carrier layer of the lacy element, i.e. the trunk area and the terminal tips, is understood. The height of each point-shaped element very preferably does not vary by more than ± 5% of the height averaged over all pointed elements.

Weitere vorteilhafte Weiterbildungen der Erfindung finden sich in den Unteransprüchen. Further advantageous developments of the invention can be found in the subclaims.

Die Oberflächen der erfindungsgemäss strukturierten Oberflächen eignen sich besonders zur Verwendung als Feldemissionsoberflächen für Kaltkathoden-Emitterelemente, insbesondere als Kaltkathoden-Elektronenemissionsquellen für superflache Bildschirme, für die Elektronenlithographie oder für die Raster- oder Transmissionsmikroskopie. Die endständigen Spitzen der spitzenförmigen Elemente dienen dabei als Emitterspitzen. Um eine gut definierte Emitterstruktur zu erreichen, ist der zwischen den spitzenförmigen Elementen liegende Teil der Feldemissionsoberfläche bevorzugt im wesentlichen eben, d.h. der zwischen den spitzenförmigen Elementen liegende Teil der Feldemissionsoberfläche trägt nicht zur Feldemission bei. Durch die für die Realisierung von Feldemissionsoberflächen benötigte hohe Zahl von Emitterspitzen sind auch Feldemissionsoberflächen mit gekrümmten Trägerschichten im zwischen den spitzenförmigen Elementen liegenden Bereich im wesentlichen eben.The surfaces of the surfaces structured according to the invention are particularly suitable for Use as field emission surfaces for cold cathode emitter elements, in particular as cold cathode electron emission sources for super flat screens, for electron lithography or for scanning or transmission microscopy. The terminal tips the tip-shaped elements serve as emitter tips. To be a well defined one Reaching the emitter structure is the part lying between the pointed elements the field emission surface preferably substantially flat, i.e. the one between the lacy ones Part of the field emission surface lying in the elements does not contribute to the field emission at. Due to the high number of. Required for the realization of field emission surfaces Emitter tips are also field emission surfaces with curved support layers in between the area lying in the lacy elements is substantially flat.

Weiter bevorzugt sind die spitzenförmigen Elemente der strukturierten Oberfläche derart ausgebildet, dass bei Anlegen einer Betriebsspannung von weniger als 2000 V, zweckmässigerweise von weniger als 1800 V, bevorzugt von weniger als 900 V und insbesondere von weniger als 100 V an den endständigen Spitzen eine elektrische Feldstärke von mehr als 109 V/m resultiert. Die Betriebsspannung bedeutet dabei die von einer externen Spannungsquelle an die strukturierte Oberfläche, beispielsweise dessen Trägerschicht, angelegte Spannung.The tip-shaped elements of the structured surface are further preferably designed such that when an operating voltage of less than 2000 V, suitably less than 1800 V, preferably less than 900 V and in particular less than 100 V is applied, an electric field strength is produced at the terminal tips of more than 10 9 V / m results. The operating voltage here means the voltage applied by an external voltage source to the structured surface, for example its carrier layer.

Die auf das Verfahren gerichtete Aufgabe wird erfindungsgemäss dadurch gelöst, dass

  • a) in einem ersten Schritt ein Formkörper (22) mit einer zur gewünschten strukturierten Oberfläche spiegelbildlichen Formkörperoberfläche (23) dadurch geschaffen wird, dass ein Substratkörper (24) aus Aluminium anodisch in einem Aluminiumoxid rücklösenden Elektrolyten oxidiert wird, wobei die Anodisierspannung in einem ersten Anodisierschritt kontinuierlich oder schrittweise von 0 auf einen ersten Wert U1 erhöht wird, und in einem zweiten Anodisierschritt die Anodisierspannung kontinuierlich oder schrittweise auf einen zweiten, gegenüber U1 kleineren Wert U2 reduziert wird.
  • b) in einem zweiten Schritt die Formkörperoberfläche (23) ganzflächig derart beschichtet wird, dass die in der Oberflächenschicht (23) des Formkörpers (22) vorhandenen Poren-Kavitäten (36) vollständig mit dem Beschichtungsmaterial ausgefüllt werden, und eine die spitzenförmigen Elemente (14) elektrisch verbindende Trägerschicht (12) gebildet wird, und die Trägerschicht (12) eine zusammenhängende, mechanisch tragende Schicht darstellt;
  • c) und in einem dritten Schritt wenigstens ein Teil des Formkörpers (22) derart entfernt wird, dass die endständigen Spitzen (20) frei liegen.
  • According to the invention, the object directed to the method is achieved in that
  • a) in a first step, a shaped body (22) with a shaped body surface (23) that is mirror-image to the desired structured surface is created in that a substrate body (24) made of aluminum is oxidized anodically in an aluminum oxide-redissolving electrolyte, the anodizing voltage being applied in a first anodizing step is increased continuously or step by step from 0 to a first value U 1 , and in a second anodizing step the anodizing voltage is reduced continuously or step by step to a second value U 2 which is smaller than U 1 .
  • b) in a second step, the entire surface of the molded body (23) is coated in such a way that the pore cavities (36) present in the surface layer (23) of the molded body (22) are completely filled with the coating material, and one is the tip-shaped elements (14 ) electrically connecting carrier layer (12) is formed, and the carrier layer (12) is a coherent, mechanically supporting layer;
  • c) and in a third step at least part of the shaped body (22) is removed in such a way that the terminal tips (20) are exposed.
  • Der für die erfindungsgemässe Herstellung der strukturierten Oberfläche notwendige Formkörper mit einer zur gewünschten strukturierten Oberfläche im wesentlichen spiegelbildlichen Formkörperoberfläche besteht zweckmässigerweise aus einem Substratkörper und einer Formschicht, wobei letztere die zur gewünschten strukturierten Oberfläche im wesentlichen spiegelbildliche Oberflächenstruktur enthält.The molded article necessary for the production of the structured surface according to the invention with an essentially mirror image of the desired structured surface The molded body surface expediently consists of a substrate body and a Shaped layer, the latter being essentially the desired structured surface contains mirror image surface structure.

    Der Substratkörper stellt bevorzugt einen Teil eines Stückgutes, beispielsweise eines Profiles, Balkens oder eine andere Form von Stücken, einer Platte, eines Bandes, Bleches oder einer Folie aus Aluminium dar, oder eine Aluminium-Deckschicht eines Verbundwerkstoffes, insbesondere als Aluminiumdeckschicht einer Verbundplatte, oder betrifft eine auf einen beliebigen Werkstoff -- beispielsweise elektrolytisch -- aufgebrachte Aluminiumschicht, wie beispielsweise eine plattierte Aluminiumschicht. Weiter bevorzugt betrifft der Substratkörper ein Werkstück aus Aluminium, welches z.B. durch ein Walz-, Extrusions-, Schmiede- oder Fliesspressverfahren hergestellt wird. Der Substratkörper kann auch durch Biegen, Tiefziehen, Kaltfliesspressen oder dergleichen umgeformt sein.The substrate body preferably represents part of a piece good, for example a profile, Bar or other form of pieces, plate, tape, sheet or one Aluminum foil, or an aluminum cover layer of a composite material, in particular as an aluminum cover layer of a composite panel, or relates to any one Material - for example electrolytically - applied aluminum layer, such as a clad aluminum layer. The substrate body more preferably relates to Workpiece made of aluminum, which e.g. through a rolling, extrusion, forging or Extrusion process is made. The substrate body can also be bent, deep drawn, Cold extrusion or the like may be formed.

    Mit dem Werkstoff Aluminium sind in vorliegendem Text Aluminium aller Reinheitsgrade, sowie alle handelsüblichen Aluminiumlegierungen umfasst. Beispielsweise umfasst der Begriff Aluminium alle Walz-, Knet-, Guss-, Schmiede- und Presslegierungen aus Aluminium. Zweckmässigerweise besteht der Substratkörper aus Reinaluminium mit einem Reinheitsgrad von gleich oder grösser 98.3 Gew.-% oder Aluminiumlegierungen mit wenigstens einem der Elemente aus der Reihe von Si, Mg, Mn, Cu, Zn oder Fe. Der Substratkörper aus Reinaluminium kann beispielsweise aus Aluminium einer Reinheit von 98.3 Gew.-% und höher, zweckmässig 99.0 Gew.-% und höher, bevorzugt 99.9 Gew.-% und höher und insbesondere 99.95 Gew.-% und höher, und dem Rest handelsübliche Verunreinigungen bestehen.With the material aluminum in the present text aluminum of all purity levels, as well as all commercially available aluminum alloys. For example, the term includes Aluminum all rolled, kneading, casting, forging and pressing alloys made of aluminum. The substrate body expediently consists of pure aluminum with a degree of purity of equal to or greater than 98.3% by weight or aluminum alloys with at least one of the Elements from the range of Si, Mg, Mn, Cu, Zn or Fe. The substrate body made of pure aluminum can be made, for example, of aluminum with a purity of 98.3% by weight and higher, expediently 99.0% by weight and higher, preferably 99.9% by weight and higher and in particular 99.95 wt .-% and higher, and the rest are commercially available impurities.

    Neben Aluminium genannter Reinheiten kann der Substratkörper auch aus einer Aluminiumlegierung bestehen, enthaltend 0.25 Gew.-% bis 5 Gew.-%, insbesondere 0.5 bis 2 Gew.-%, Magnesium oder enthaltend 0.2 bis 2 Gew.-% Mangan oder enthaltend 0.5 bis 5 Gew.-% Magnesium und 0.2 bis 2 Gew.-% Mangan, insbesondere z.B. 1 Gew.-% Magnesium und 0.5 Gew.-% Mangan oder enthaltend 0.1 bis 12 Gew.-%, vorzugsweise 0.1 bis 5 Gew.-%, Kupfer oder enthaltend 0.5 bis 5 Gew.-% Zink und 0.5 bis 5 Gew.-% Magnesium oder enthaltend 0.5 bis 5 Gew.-% Zink, 0.5 bis 5 Gew.-% Magnesium und 0.5 bis 5 Gew.-% Kupfer oder enthaltend 0.5 bis 5 Gew.-% Eisen und 0.2 bis 2 Gew.-% Mangan, insbesondere z.B. 1.5 Gew.-% Eisen und 0.4 Gew.-% Mangan. In addition to aluminum, the substrate body can also be made from an aluminum alloy consist of containing 0.25% by weight to 5% by weight, in particular 0.5 to 2% by weight, Magnesium or containing 0.2 to 2% by weight of manganese or containing 0.5 to 5% by weight Magnesium and 0.2 to 2% by weight of manganese, in particular e.g. 1% by weight of magnesium and 0.5 % By weight of manganese or containing 0.1 to 12% by weight, preferably 0.1 to 5% by weight, of copper or containing 0.5 to 5% by weight of zinc and 0.5 to 5% by weight of magnesium or containing 0.5 to 5% by weight of zinc, 0.5 to 5% by weight of magnesium and 0.5 to 5% by weight of copper or containing 0.5 to 5% by weight iron and 0.2 to 2% by weight manganese, in particular e.g. 1.5 % By weight iron and 0.4% by weight manganese.

    Die Formschicht besteht bevorzugt aus Aluminiumoxid. Die Herstellung einer für das erfindungsgemässe Verfahren erforderlichen Formschicht erfolgt bevorzugt durch anodische Oxidation der Substratkörperoberfläche in einem Elektrolyten unter Poren bildenden Bedingungen. Erfindungswesentlich ist dabei, dass die Poren gegen die freie Oberfläche hin offen sind. Vorteilhaft ist die Porenverteilung über die Oberfläche gleichmässig. Die Schichtdicke der Formschicht beträgt zweckmässigerweise 50 nm bis 20 µm und bevorzugt 0.5 bis 3 µm.The molded layer preferably consists of aluminum oxide. The production of one for the invention The required molding layer is preferably carried out by anodic oxidation the substrate body surface in an electrolyte under pore-forming conditions. It is essential to the invention that the pores are open towards the free surface. The pore distribution over the surface is advantageously uniform. The layer thickness of the The molding layer is expediently 50 nm to 20 μm and preferably 0.5 to 3 μm.

    Die Poren weisen in ihrer vertikalen Ausdehnung einen gegen die Oberfläche der Formschicht gerichteten Stammbereich und einen gegen den Substratkörper gerichteten Verzweigungsbereich auf, d.h. jede im wesentlichen vertikal zur Oberfläche der Formschicht liegende Pore besteht aus einer länglichen, gegen die freie Oberfläche der Formschicht offenen Pore, die sich im Verzweigungsbereich in wenigstens zwei, vorzugsweise 2 bis 4 Vertiefungen oder Porenverzweigungen aufteilt. Zweckmässigerweise weisen die Poren im Stammbereich einen Durchmesser von 1 bis 250 nm, bevorzugt zwischen 10 und 230 nm und insbesondere zwischen 80 und 230 nm auf. Die Porenzahl, d.h. die Zahl der Poren im Stammbereich, beträgt zweckmässigerweise 108 Poren/cm2 und höher, bevorzugt 108 bis 1012 Poren/cm2 und insbesondere 109 bis 1011 Poren/cm2. Die mittlere Dichte der Formschicht beträgt bevorzugt 2.1 bis 2.7 g/cm3. Weiter bevorzugt weist die Formschicht eine Dielektrizitätskonstante zwischen 5 und 7.5 auf.In their vertical extent, the pores have a trunk area directed against the surface of the molding layer and a branching area directed against the substrate body, i.e. each pore lying essentially vertically to the surface of the molding layer consists of an elongated pore which is open to the free surface of the molding layer and which is divided into at least two, preferably 2 to 4 wells or pore branches in the branching area. The pores in the trunk area expediently have a diameter of 1 to 250 nm, preferably between 10 and 230 nm and in particular between 80 and 230 nm. The number of pores, ie the number of pores in the trunk area, is expediently 10 8 pores / cm 2 and higher, preferably 10 8 to 10 12 pores / cm 2 and in particular 10 9 to 10 11 pores / cm 2 . The average density of the molded layer is preferably 2.1 to 2.7 g / cm 3 . The molded layer more preferably has a dielectric constant between 5 and 7.5.

    Die Herstellung der Formschicht geschieht beispielsweise durch anodische Oxidation der Substratkörperoberfläche in einem das Aluminiumoxid rücklösenden Elektrolyten. Die Elektrolyttemperatur beträgt zweckmässigerweise zwischen - 5 und 85 °C, bevorzugt zwischen 15 und 80 °C und insbesondere zwischen 30 und 55 °C. Zur Durchführung der anodischen Oxidation kann der Substratkörper oder wenigstens dessen Oberflächenschicht oder zumindest der Teil der Substratkörperoberfläche, der mit einer Formschicht versehen werden soll, in einen entsprechenden Elektrolyten gegeben und als positive Elektrode (Anode) geschaltet werden. Als negative Elektrode (Kathode) dient eine weitere in denselben Elektrolyten gegebene Elektrode aus beispielsweise rostfreiem Stahl, Blei, Aluminium oder Graphit.The molded layer is produced, for example, by anodic oxidation of the Substrate body surface in an electrolyte that redissolves the aluminum oxide. The electrolyte temperature is expediently between - 5 and 85 ° C, preferably between 15 and 80 ° C and especially between 30 and 55 ° C. To carry out the anodic Oxidation can be carried out by the substrate body or at least its surface layer or at least the part of the substrate body surface which is to be provided with a molding layer, placed in a corresponding electrolyte and switched as a positive electrode (anode) become. Another electrode in the same electrolyte serves as the negative electrode (cathode) Electrode made of, for example, stainless steel, lead, aluminum or graphite.

    Üblicherweise wird die Substratkörperoberfläche vor dem erfindungsgemässen Verfahren einer Vorbehandlung unterzogen, wobei beispielsweise die Substratkörperoberfläche zuerst entfettet, dann gespült und schliesslich gebeizt wird. Das Beizen wird beispielsweise mit einer Natriumhydroxidlösung mit einer Konzentration von 50 bis 200 g/l bei 40 bis 60 °C während einer bis zehn Minuten durchgeführt. Anschliessend kann die Oberfläche gespült und mit einer Säure, wie beispielsweise Salpetersäure, insbesondere einer Konzentration von 25 bis 35 Gew.-% bei Raumtemperatur, d.h. typischerweise im Temperaturbereich 20 - 25 °C, während 20 bis 60 s neutralisiert und erneut gespült werden.Usually, the substrate body surface is before the inventive method subjected to a pretreatment, for example the substrate body surface first degreased, then rinsed and finally pickled. The pickling is done with a Sodium hydroxide solution with a concentration of 50 to 200 g / l at 40 to 60 ° C during one to ten minutes. The surface can then be rinsed and washed with an acid, such as nitric acid, in particular a concentration of 25 to 35% by weight at room temperature, i.e. typically in the temperature range 20 - 25 ° C, during Neutralized for 20 to 60 s and rinsed again.

    Die Eigenschaften einer mittels anodischer Oxidation hergestellten Oxidschicht, wie beispielsweise die Porendichte und der Porendurchmesser, hängen weitgehend von den Anodisierbedingungen wie beispielsweise Elektrolytzusammensetzung, Elektrolyttemperatur, Stromdichte, Anodisierspannung und Anodisierdauer, sowie vom anodisierten Grundwerkstoff ab. Während der anodischen Oxidation in sauren Elektrolyten bildet sich an der Substratkörperoberfläche eine im wesentlichen porenfreie Grund- oder Sperrschicht und eine poröse Aussenschicht, die während der anodischen Oxidation an ihrer freien Oberfläche durch Rücklösung zum Teil chemisch wieder aufgelöst wird. Dadurch entstehen in der Aussenschicht Poren, die im wesentlichen vertikal zur Substratkörperoberfläche liegen und gegen die freie Oberfläche der Oxidschicht hin offen sind. Die Dicke der Oxidschicht erreicht ihren Maximalwert, wenn sich Wachstum und Rücklösung die Waage halten, was beispielsweise von der angelegten Anodisierspannung, der Elektrolytzusammensetzung, der Stromdichte, der Elektrolyttemperatur, Anodisierdauer, sowie vom anodisierten Grundwerkstoff abhängt.The properties of an oxide layer produced by means of anodic oxidation, for example the pore density and the pore diameter largely depend on the anodizing conditions such as electrolyte composition, electrolyte temperature, Current density, anodizing voltage and anodizing time, as well as of the anodized base material from. During the anodic oxidation in acid electrolytes, the A substantially pore-free base or barrier layer and a porous outer layer, which during the anodic oxidation on its free surface partly redissolved chemically by redissolving. This creates in the outer layer Pores that are essentially vertical to the substrate body surface and against the free surface of the oxide layer are open. The thickness of the oxide layer reaches its Maximum value if growth and redissolution balance each other, for example the applied anodizing voltage, the electrolyte composition, the current density, the electrolyte temperature, anodizing time and the anodized base material.

    Für die Durchführung des erfindungsgemässen Verfahrens werden bevorzugt Elektrolyte verwendet, welche eine oder mehrere anorganische und/oder organische Säuren enthalten. Weiter bevorzugt werden Anodisierspannungen von 10 bis 100 V und Stromdichten von 100 bis 3000 A/m2. Die Anodisierdauer beträgt typischerweise 1 bis 300 s.Electrolytes which contain one or more inorganic and / or organic acids are preferably used to carry out the process according to the invention. Anodizing voltages from 10 to 100 V and current densities from 100 to 3000 A / m 2 are further preferred. The anodizing time is typically 1 to 300 s.

    Bevorzugt geschieht die anodische Oxidation der Substratkörperoberfläche in der Weise, dass die Anodisierspannung zur Bildung von zylinder- oder kegelstumpfförmigen, langen Poren auf einen ersten Wert (U1), bevorzugt zwischen 12 und 80 V, eingestellt und nachfolgend zur Bildung wenigstens zweier Porenverzweigungen am gegen die Aluminiumschicht gerichteten Ende jeder langen Pore auf einen zweiten Wert (U2) eingestellt wird, wobei der zweite Wert gegenüber dem ersten Wert tiefer liegt und bevorzugt zwischen 10 und 20 V beträgt.The anodic oxidation of the substrate body surface preferably takes place in such a way that the anodizing voltage for forming cylindrical or truncated-cone-shaped long pores is set to a first value (U 1 ), preferably between 12 and 80 V, and subsequently to form at least two pore branches on the opposite the aluminum layer-oriented end of each long pore is set to a second value (U 2 ), the second value being lower than the first value and preferably being between 10 and 20 V.

    Das Anlegen der Anodisierspannung geschieht beispielsweise durch kontinuierliche Erhöhung der angelegten Spannung bis zum jeweiligen vorbestimmten, zeitlich konstanten Wert. Die Stromdichte erhöht sich dabei ebenfalls in Funktion der angelegten Anodisierspannung, erreicht zeitlich nach dem Erreichen der jeweils vorbestimmten konstanten Spannung einen Maximalwert und fällt dann auf einen geringeren Wert zusammen. The anodizing voltage is applied, for example, by continuous increase the applied voltage up to the respective predetermined, constant value over time. The Current density also increases as a function of the applied anodizing voltage one after reaching the respectively predetermined constant voltage Maximum value and then coincides with a lower value.

    Die Schichtdicke der Sperrschicht ist spannungsabhängig und liegt beispielsweise im Bereich 8 bis 16 Angström/V und insbesondere zwischen 10 und 14 Angström/V. Der Porendurchmesser der porösen Aussenschicht ist ebenfalls spannungsabhängig und beträgt beispielsweise zwischen 8 und 13 Angström/V und insbesondere 10 bis 12 Angström/V.The layer thickness of the barrier layer is voltage-dependent and is, for example, in the range 8 to 16 angstroms / V and especially between 10 and 14 angstroms / V. The pore diameter the porous outer layer is also voltage-dependent and is, for example between 8 and 13 angstroms / V and in particular 10 to 12 angstroms / V.

    Der Elektrolyt kann beispielsweise eine starke organische oder anorganische Säure oder ein Gemisch starker organischer und/oder anorganischer Säuren enthalten. Typische Beispiele solcher Säuren sind Schwefelsäure (H2SO4), oder Phosphorsäure (H3PO4). Weitere Säuren, die angewendet werden können sind beispielsweise Chromsäure, Oxalsäure, Sulfaminsäure, Malonsäure, Maleinsäure oder Sulfosalycilsäure. Auch Gemische genannter Säuren können verwendet werden. Für das erfindungsgemässe Verfahren werden beispielsweise Schwefelsäure in Mengen von 40 bis 350 g/l und bevorzugt 150 bis 200 g/l eingesetzt (Schwefelsäure bezogen auf 100% Säure). Es kann als Elektrolyt auch Phosphorsäure in einer Menge von 60 bis 300 g/l und insbesondere 80 bis 150 g/l angewendet werden, wobei die Säuremenge auf 100 % reine Säure bezogen ist. Ein anderer bevorzugter Elektrolyt ist Schwefelsäure in Mischung mit Oxalsäure, wobei insbesondere eine Menge von 150 bis 200 g/l Schwefelsäure mit beispielsweise 5 bis 25 g/l Oxalsäure gemischt wird. Weiter bevorzugt werden Elektrolyte enthaltend beispielsweise 250 bis 300 g/l Maleinsäure und beispielsweise 1 bis 10 g/l Schwefelsäure. Ein weiterer Elektrolyt enthält beispielsweise 130 bis 170 g/l Sulfosalycilsäure in Mischung mit 6 bis 10 g/l Schwefelsäure.The electrolyte can contain, for example, a strong organic or inorganic acid or a mixture of strong organic and / or inorganic acids. Typical examples of such acids are sulfuric acid (H 2 SO 4 ) or phosphoric acid (H 3 PO 4 ). Other acids that can be used are, for example, chromic acid, oxalic acid, sulfamic acid, malonic acid, maleic acid or sulfosalycilic acid. Mixtures of the acids mentioned can also be used. For the process according to the invention, for example, sulfuric acid is used in amounts of 40 to 350 g / l and preferably 150 to 200 g / l (sulfuric acid based on 100% acid). Phosphoric acid can also be used as an electrolyte in an amount of 60 to 300 g / l and in particular 80 to 150 g / l, the amount of acid being based on 100% pure acid. Another preferred electrolyte is sulfuric acid in a mixture with oxalic acid, an amount of 150 to 200 g / l sulfuric acid in particular being mixed with, for example, 5 to 25 g / l oxalic acid. Electrolytes containing, for example, 250 to 300 g / l of maleic acid and for example 1 to 10 g / l of sulfuric acid are further preferred. Another electrolyte contains, for example, 130 to 170 g / l sulfosalycilic acid mixed with 6 to 10 g / l sulfuric acid.

    Nach dem Anodisierverfahren kann die Oberfläche der Formschicht weiteren Behandlungen, wie z.B. chemisch oder elektrolytisch Ätzen, Plasmaätzen, Spülen oder Imprägnieren, zugeführt werden.After the anodizing process, the surface of the molded layer can be subjected to further treatments, such as. chemical or electrolytic etching, plasma etching, rinsing or impregnation become.

    Die fertiggestellte Formschicht wird ganzflächig derart beschichtet, dass die in der Oberflächenschicht des Formkörpers vorhandenen Poren-Kavitäten vollständig mit dem Beschichtungsmaterial ausgefüllt werden, und eine die spitzenförmigen Elemente elektrisch verbindende Trägerschicht gebildet wird, und die Trägerschicht eine zusammenhängende, mechanisch tragende Schicht darstellt.The finished molded layer is coated over the entire surface in such a way that that in the surface layer of the molded body existing pore cavities completely with the coating material be filled in, and an electrically connecting the tip-shaped elements Backing layer is formed, and the backing layer is a coherent, mechanical represents the supporting layer.

    Für die Beschichtung der Formkörperoberfläche werden bevorzugt Ni, Al, Pd, Pt, W, Fe, Ta, Rh, Cd, Cu, Au, Ag, In, Co, Sn, Si, Ge, Se, Te, oder eine chemische Verbindung enthaltend wenigstens eines dieser Elemente, oder eine Legierung vorstehend aufgeführter Metalle verwendet. Ni, Al, Pd, Pt, W, Fe, Ta, Rh, Cd, Cu, Au, Ag, In, Co, Sn, Si, Ge, Se, Te, or containing a chemical compound at least one of these elements, or an alloy of the metals listed above is used.

    Die Beschichtung der Formkörperoberfläche kann beispielsweise durch chemische oder elektrolytische Methoden, oder durch PVD (Physical Vapour Deposition) oder CVD (Chemical Vapour Deposition) geschehen. Bevorzugt wird eine chemische und/oder elektrolytische Abscheidung des Beschichtungsmaterials, wobei zweckmässigerweise die Porenkavitäten zuvor chemisch aktiviert werden.The coating of the molded body surface can be, for example, chemical or electrolytic Methods, or by PVD (Physical Vapor Deposition) or CVD (Chemical Vapor Deposition). A chemical and / or electrolytic is preferred Deposition of the coating material, expediently the pore cavities be chemically activated beforehand.

    Als letzten erfindungswesentlichen Verfahrensschritt werden die spitzenförmigen Elemente, insbesondere deren endständige Spitzen, durch vollständiges oder teilweises Entfernen der Formschicht freigelegt.As the last step of the method essential to the invention, the tip-shaped elements, especially their terminal tips, by completely or partially removing the Form layer exposed.

    Das vollständige Freilegen der spitzenförmigen Elemente, d.h. das Trennen der strukturierten Oberflächenschicht vom Formkörper, kann beispielsweise durch vollständiges Wegätzen des Formkörpers geschehen. In einer bevorzugten Ausführung wird jedoch nur die Formschicht chemisch weggeätzt, so dass die strukturierte Oberflächenschicht vom Formkörper vollständig getrennt wird und damit in Form einer strukturierten Oberfläche vorliegt.The full exposure of the lacy elements, i.e. separating the structured Surface layer of the molded body, for example, by completely etching away the Shaped body happen. In a preferred embodiment, however, only the molding layer chemically etched away so that the structured surface layer is completely removed from the molded body is separated and is thus in the form of a structured surface.

    In einer weiteren bevorzugten Ausführung wird nur ein Teil der Formschicht weggeätzt, so dass auf der Trägerschicht zwischen den Stammbereichen der spitzenförmigen Elemente die Formschicht stehen bleibt und eine mechanische Stützschicht bildet. Dies geschieht beispielsweise durch chemisches Wegätzen des Substratkörpers, der Sperrschicht und eines Teils der porösen Schicht. Der poröse Teil der Formschicht muss jedoch derart entfernt werden, dass die endständigen Spitzen der spitzenförmigen Elemente vollständig freiliegen.In a further preferred embodiment, only a part of the molded layer is etched away that on the support layer between the trunk areas of the lacy elements The molding layer remains and forms a mechanical support layer. This happens, for example by chemically etching away the substrate body, the barrier layer and one Part of the porous layer. However, the porous part of the molded layer must be removed in such a way that the terminal tips of the tip-shaped elements are completely exposed.

    In einer weiteren bevorzugten Ausführungsform des erfindungsgemässen Verfahrens werden die freigelegten spitzenförmigen Elemente einem weiteren Ätzprozess unterworfen, beispielsweise durch Plasmaätzen, oder durch nass-chemisches oder elektrolytisches Ätzen. Damit kann beispielsweise die Form der endständigen Spitzen hinsichtlich deren Verwendung als Elektronenemissionsspitzen optimiert werden.In a further preferred embodiment of the method according to the invention the exposed tip-shaped elements are subjected to a further etching process, for example by plasma etching, or by wet chemical or electrolytic etching. This allows, for example, the shape of the terminal tips with regard to their use can be optimized as electron emission peaks.

    Weiter bevorzugt wird eine Nachbehandlung der erfindungsgemäss strukturierten Oberfläche durch Deposition einer zusätzlichen, dünnen Metallschicht, welche die elektronenemittierenden Eigenschaften der spitzenförmigen Elemente verbessert. Diese zusätzliche, dünne Metallschicht besteht bevorzugt aus einem Edelmetall, insbesondere aus Au, Pt, Rh oder Pd, oder einer wenigstens eines dieser Edelmetalle enthaltenden Legierung. Die Deposition dieser zusätzlichen Metallschicht kann beispielsweise durch chemische oder elektrolytische Methoden, durch PVD (Physical Vapour Deposition), wie beispielsweise Sputtern oder Elektronenstrahlverdampfen, oder durch CVD (Chemical Vapour Deposition) geschehen. Post-treatment of the surface structured according to the invention is further preferred by deposition of an additional, thin metal layer, which the electron-emitting Properties of the lacy elements improved. This extra thin metal layer consists preferably of a noble metal, in particular of Au, Pt, Rh or Pd, or an alloy containing at least one of these noble metals. The deposition of this additional metal layer can, for example, by chemical or electrolytic methods, through PVD (Physical Vapor Deposition), such as sputtering or electron beam evaporation, or by CVD (Chemical Vapor Deposition).

    Nachfolgend werden Ausführungsbeispiele für die Herstellung der erfindungsgemäss strukturierten Oberfläche beschrieben. Alle Angaben in Teilen oder Prozenten beziehen sich auf das Gewicht, sofern nichts anderes angegeben.Exemplary embodiments for the production of the structures structured according to the invention are described below Surface described. All details in parts or percentages relate to the weight unless otherwise stated.

    Erstes AusführungsbeispielFirst embodiment

    Als Substratkörper dient ein Aluminiumblech aus 99.9 Gew.-% Al mit glänzender Oberfläche. Das Aluminiumblech wird in einer milden alkalischen Entfettungslösung gereinigt, in Wasser gespült, in Salpetersäure dekapiert, in Wasser gespült, kurz in Aceton getaucht und getrocknet.An aluminum sheet made of 99.9% by weight Al with a glossy surface serves as the substrate body. The aluminum sheet is cleaned in a mild alkaline degreasing solution, in Rinsed water, pickled in nitric acid, rinsed in water, briefly immersed in acetone and dried.

    Anschliessend wird auf der Rückseite des Bleches ein geeigneter Abdecklack aufgebracht und der derart vorbehandelte Substratkörper in einem Phosphorsäure-Elektrolyten mit einer Konzentration von 150 g/l H3PO4 bei einer Elektrolyttemperatur von 35 °C mit Gleichstrom einer Stromdichte von 100 A/m2 während 3 Minuten anodisiert, wobei die Anodisierspannung kontinuierlich von 0 auf 50 V erhöht wird. Direkt anschliessend wird die Anodisierspannung in 5 bis 6 Stufen auf ca. 15 V gesenkt, wobei die Spannungs-Absenkstufen anfänglich klein sind und allmählich vergrössert werden. Nach Erreichen der Anodisierspannung von ca. 15 V wird diese während ca. 40 Sekunden aufrechterhalten. Die resultierende Schichtdicke der Aluminiumoxidschicht beträgt typischerweise 1 µm.A suitable masking varnish is then applied to the back of the sheet and the substrate body pretreated in this way in a phosphoric acid electrolyte with a concentration of 150 g / l H 3 PO 4 at an electrolyte temperature of 35 ° C. with direct current with a current density of 100 A / m 2 anodized for 3 minutes, continuously increasing the anodizing voltage from 0 to 50 V. Immediately afterwards, the anodizing voltage is reduced in 5 to 6 steps to approx. 15 V, the voltage lowering steps being initially small and gradually increasing. After the anodizing voltage of approx. 15 V has been reached, this is maintained for approx. 40 seconds. The resulting layer thickness of the aluminum oxide layer is typically 1 μm.

    Die Formschicht weist nun Poren auf, die einen gegen die freie Oberfläche der Aluminiumoxidschicht ragenden, nach oben offenen Stammbereich und einen gegen den Substratkörper gerichteten Verzweigungsbereich aufweisen.The molded layer now has pores, one against the free surface of the aluminum oxide layer protruding, upwardly open trunk area and one against the substrate body have directed branching area.

    Der Formkörper, d.h. insbesondere die freie Oberfläche der Formschicht, wird nun mit Wasser gespült und in einem nickelsalzhaltigen Aktivierungsbad (100 g/l NiSO4.7 H2O und 40 g/l Borsäure, pH 4.0 bis 5.0) mit einer angelegten Wechselspannung von 16 V während 5 Sekunden behandelt und danach erneut mit Wasser gespült.The molding, in particular the free surface of the molding layer, is then rinsed with water and in an activation bath containing nickel salt (100 g / l NiSO 4 .7 H 2 O and 40 g / l boric acid, pH 4.0 to 5.0) with an applied AC voltage of 16 V treated for 5 seconds and then rinsed again with water.

    Die Poren der derart vorbereitete Formschicht weisen am Porengrund eingelagerte Nickelpartikel auf, welche bevorzugt als Keime für eine weitere selektive Nickelabscheidung dienen. Die selektive Nickelabscheidung, d.h. die weitere Ablagerung von Nickel an die bereits in den Poren befindlichen Nickelpartikel, geschieht vorerst auf chemischem Weg in einem Nickelbad mit einer Temperatur von 85 °C und einem pH-Wert von 5.0, das als Reduktionsmittel eine Natriumhypophosphit-Lösung enthält. Die selektive Nickel-Abscheidung dauert 1 Stunde, wobei eine Schicht aus Nickel-Phosphor mit 10 bis 12 Gew.-% Phosphor und einer Schichtdicke von ca. 10 um erzeugt wird. Die mit Nickel beaufschlagte Formschicht wird nun wieder mit Wasser gespült und anschliessend wird die Nickelschicht in einem handelsüblichen, galvanischen Nickelbad ("Watt"-Bad, welches beispielsweise 300 g/l Nickelsulfat, 60 g/l Nickelchlorid, 40 g/l Borsäure und organische Zusätze, wie beispielsweise Netzmittel, enthält) mit einer an der Kathode gemessenen Stromdichte von 400 A/m2 während 20 Minuten verstärkt. Die Elektrolyttemperatur beträgt dabei 50 bis 60 °C, wobei die galvanisch erzeugte Nickelschicht eine Dicke von ca. 16 µm erreicht.The pores of the shaped layer prepared in this way have nickel particles embedded on the pore base, which preferably serve as nuclei for a further selective nickel deposition. The selective deposition of nickel, ie the further deposition of nickel on the nickel particles already in the pores, is initially carried out chemically in a nickel bath at a temperature of 85 ° C and a pH of 5.0, which contains a sodium hypophosphite solution as a reducing agent . The selective nickel deposition takes 1 hour, a layer of nickel-phosphorus with 10 to 12% by weight of phosphorus and a layer thickness of approximately 10 μm being produced. The nickel-coated mold layer is then rinsed again with water and then the nickel layer is in a commercially available, galvanic nickel bath ("Watt" bath, which for example 300 g / l nickel sulfate, 60 g / l nickel chloride, 40 g / l boric acid and organic Contains additives such as wetting agents) with a current density of 400 A / m 2 measured at the cathode for 20 minutes. The electrolyte temperature is 50 to 60 ° C, the electroplated nickel layer reaching a thickness of about 16 microns.

    Nach erneutem Spülen des mit Nickel beschichteten Formkörpers mit Wasser wird der Abdecklack beispielsweise chemisch oder durch Plasmaätzen entfernt. Der Formkörper wird nun chemisch in Natronlauge (50 g/l NaOH) aufgelöst. Bei einer NaOH-Badtemperatur von 20 °C dauert dieser Vorgang mehrere Stunden, beispielsweise 1 bis 5 Stunden.After the nickel-coated molded article has been rinsed again with water, the covering lacquer becomes removed, for example, chemically or by plasma etching. The molded body is now chemically dissolved in sodium hydroxide solution (50 g / l NaOH). At a NaOH bath temperature of At 20 ° C, this process takes several hours, for example 1 to 5 hours.

    Nach dem Entfernen des Formkörpers verbleibt die gewünschte strukturierte Nickelfolie mit spitzenförmigen Elementen, wobei die spitzenförmigen Elemente einen an die Ni-Trägerschicht anliegenden Stammbereich und als vertikale Fortsetzung einen Verästelungsbereich, enthaltend wenigstens zwei endständige Spitzen, aufweist.After the shaped body has been removed, the desired structured nickel foil remains tip-shaped elements, the tip-shaped elements attaching to the Ni carrier layer adjacent trunk area and as a vertical continuation a branching area, containing at least two terminal tips.

    Die strukturierte Nickelfolie wird erneut mit Wasser gespült, in 5 %-ige Citronensäure bei 20 °C während 30 Minuten dekapiert, wieder mit Wasser gespült, in Ethanol gegeben und schlussendlich getrocknet.The structured nickel foil is rinsed again with water, in 5% citric acid at 20 ° C for 30 minutes, rinsed again with water, placed in ethanol and finally dried.

    Die spitzenförmigen Elemente stellen ein genaues Abbild der in der Aluminiumoxidschicht vorhandenen Porenkavität dar, da die Aluminiumoxidschicht als Maske für dessen Ni-Beaufschlagung dient. Die strukturierte Nickelfolie weist viele nahe beieinanderliegende Spitzen einer Länge von ca. 1 um auf, dessen grösster Durchmesser typischerweise unter 0.2 µm liegt.The tip-shaped elements represent a precise image of the one in the aluminum oxide layer existing pore cavity, since the aluminum oxide layer as a mask for its Ni exposure serves. The structured nickel foil has many tips that are close together 1 µm in length, the largest diameter of which is typically less than 0.2 µm lies.

    Zweites AusführungsbeispielSecond embodiment

    Ein als Substratkörper dienendes Aluminiumblech, wie im ersten Ausführungsbeispiel beschrieben, wird entsprechend dem im ersten Ausführungsbeispiel beschriebenen Verfahren gereinigt und anodisiert. Die derart gebildete Formkörperoberfläche wird gemäss dem ersten Ausführungsbeispiel aktiviert. An aluminum sheet serving as a substrate body, as described in the first exemplary embodiment, is according to the method described in the first embodiment cleaned and anodized. The shaped body surface thus formed is according to the first Embodiment activated.

    Die selektive Nickelabscheidung geschieht nun in einem chemischen Nickelbad mit einer Temperatur von 70 °C und einem pH-Wert von 6.0, wobei das Nickelbad als Reduktionsmittel Dimethylaminboran enthält. Die selektive Nickelabscheidung dauert 1 Stunde, wobei eine Nickel-Bor Deposition einer Schichtdicke von ca. 5 um und einem Borgehalt von unter 1 % gebildet wird. Entsprechend dem ersten Ausführungsbeispiel wächst die Nickelschicht aufgrund der speziellen Aktivierungsmethode vorerst nur am Porengrund.The selective nickel deposition now takes place in a chemical nickel bath with a Temperature of 70 ° C and a pH of 6.0, using the nickel bath as a reducing agent Contains dimethylamine borane. The selective nickel deposition takes 1 hour, with one Nickel-boron deposition with a layer thickness of approx. 5 µm and a boron content of less than 1% is formed. According to the first embodiment, the nickel layer grows due to the special activation method initially only on the pore base.

    Nach einem Spülvorgang mit Wasser wird entsprechend dem ersten Ausführungsbeispiel der Abdecklack entfernt, der Formkörper aufgelöst und somit eine strukturierte Nickelfolie freigelegt.After a rinsing process with water according to the first embodiment, the Masking varnish removed, the molded body dissolved and thus a structured nickel foil exposed.

    Die spitzenförmigen Elemente der strukturierten Nickelfolie werden nun einer elektrolytischen Nachbehandlung unterzogen, wobei der Krümmungsradius der endständigen Spitzen verkleinert wird, so dass eine Feldemissionsoberfläche mit besseren Elektronen-emittierenden Eigenschaften entsteht. Der dazu verwendete Elektrolyt enthält 638 ml/l 96%-ige Schwefelsäure und 9 g/l Glycerin. Die elektrolytische Nachbehandlung erfolgt während 5 bis 10 Sekunden bei einer Elektrolyttemperatur von 20 °C, mit einer Kathode aus reinem Blei, einer Stromdichte von 500 bis 1000 A/m2 und einer Elektrolysespannung von 6 V. Danach wird die strukturierte Nickelfolie wiederum mit Wasser gespült und getrocknet.The tip-shaped elements of the structured nickel foil are then subjected to an electrolytic aftertreatment, the radius of curvature of the terminal tips being reduced, so that a field emission surface with better electron-emitting properties is produced. The electrolyte used for this contains 638 ml / l 96% sulfuric acid and 9 g / l glycerin. The electrolytic aftertreatment is carried out for 5 to 10 seconds at an electrolyte temperature of 20 ° C., with a cathode made of pure lead, a current density of 500 to 1000 A / m 2 and an electrolysis voltage of 6 V. Then the structured nickel foil is again rinsed with water and dried.

    Drittes AusführungsbeispielThird embodiment

    Eine gemäss dem ersten oder zweiten Ausführungsbeispiel hergestellte strukturierte Nickelfolie wird nachträglich während 60 Sekunden in einem handelsüblichen, stromlosen Goldbad vergoldet, wobei das Goldbad eine Goldkonzentration von 2 g/l, eine Badtemperatur von 85 °C und einen pH-Wert von 4.2 bis 4.8 aufweist. Dabei wird durch Ladungsaustausch eine Goldschicht von ca. 0.05 µm gebildet. Die vergoldete Nickelfolie wird anschliessend mit Wasser gespült, mit Ethanol behandelt und getrocknet.A structured nickel foil produced according to the first or second exemplary embodiment is retrofitted for 60 seconds in a commercially available, electroless gold bath gold-plated, the gold bath having a gold concentration of 2 g / l, a bath temperature of 85 ° C and has a pH of 4.2 to 4.8. Here, a charge is exchanged Gold layer of approx. 0.05 µm was formed. The gold-plated nickel foil is then with Rinsed water, treated with ethanol and dried.

    Eine derartige Veredelung der strukturierten Nickelfolie verbessert wesentlich deren Eigenschaften als Feldemissionsoberfläche.Refining the structured nickel foil in this way significantly improves its properties as a field emission surface.

    Vorliegende Erfindung wird beispielhaft anhand der Figuren 1 bis 4 weiter erläutert.The present invention is further explained by way of example with reference to FIGS. 1 to 4.

    Figur 1 zeigt schematisch einen Querschnitt durch einen noch nicht fertiggestellten Formkörper 22, dessen vertikal zur Formkörperoberfläche 23 liegenden und nach oben offenen Poren erst eine längliche Kavität 32 ohne Porenverzweigungen, d.h. den Stammbereich 32 der Poren, enthalten. Der in Fig. 1 dargestellte Formkörper besteht einerseits aus dem Substratkörper 24 und andererseits aus der Formschicht 26, die ihrerseits aus einer Sperrschicht 28 und einer porösen Schicht 30 gebildet wird.Figure 1 shows schematically a cross section through a not yet finished molded body 22, its pores lying vertically to the molded body surface 23 and open at the top only an elongated cavity 32 without pore branches, i.e. the trunk area 32 of the Pores. The molded body shown in FIG. 1 consists on the one hand of the substrate body 24 and on the other hand from the molded layer 26, which in turn consists of a barrier layer 28 and a porous layer 30 is formed.

    Ein gemäss Fig. 1 gebildeter Körper entsteht beispielsweise nach einer anodischen Oxidation mit einer konstanten oder kontinuierlich oder stufenweise steigenden Anodisierspannung eines Substratkörpers 24 aus Aluminium in einem das Aluminiumoxid rücklösenden Elektrolyten.A body formed according to FIG. 1 is formed, for example, after anodic oxidation with a constant or continuously or gradually increasing anodizing voltage a substrate body 24 made of aluminum in an electrolyte that redissolves the aluminum oxide.

    Figur 2 zeigt schematisch einen Querschnitt eines für das erfindungsgemässe Verfahren verwendbaren Formkörpers 22. Der Formkörper 22 wird aus dem Substratkörper 24 und der Formschicht 26 gebildet. Die Kavität 36 der Poren enthält einen Poren-Stammbereich 32 und einen Poren-Verzweigungsbereich 33, wobei jede Poren-Kavität 36 im Verzweigungsbereich 33 zwei Porenverzweigungen 34 aufweist.Figure 2 shows schematically a cross section of a usable for the inventive method Shaped body 22. The shaped body 22 is made of the substrate body 24 and the Form layer 26 formed. The cavity 36 of the pores contains a pore stem region 32 and a pore branching area 33, each pore cavity 36 in the branching area 33 has two pore branches 34.

    Ein gemäss Fig. 2 ausgebildeter Formkörper 22 entsteht beispielsweise, wenn -- ausgehend von einem noch nicht fertiggestellten Formkörper 22 gemäss Fig. 1 -- die anodische Oxidation mit einer tieferen Anodisierspannung weitergeführt wird. Dazu kann die Anodisierspannung stufenweise oder kontinuierlich abgesenkt werden. Da der sich während der anodischen Oxidation bildende Porendurchmesser, sowie die sich ausbildende Schichtdicke der Sperrschicht 28 von der Grösse der Anodisierspannung abhängen, verringert sich während einer solchen zweiten Verfahrensstufe die Dicke der Sperrschicht 28, wobei die Schichtdicke der porösen Oxidschicht 30 weiter wächst. Da die Bildung der Oxidschicht 28, 30 an der Grenzschicht zwischen Aluminium-Substratkörper 24 und Sperrschicht 28 stattfindet, und der Porendurchmesser Anodisierspannungs-abhängig ist, bilden sich anschliessend an den Poren-Stammbereich 32 mehrere Porenverzweigungen 34 mit einem gegenüber dem Stammbereich 32 kleineren Durchmesser.A molded body 22 designed according to FIG. 2 is formed, for example, when - starting of a not yet finished shaped body 22 according to FIG. 1 - the anodic oxidation is continued with a lower anodizing voltage. This can be done using the anodizing voltage be lowered gradually or continuously. Because the during the anodic Oxidation-forming pore diameter, as well as the layer thickness of the barrier layer that forms 28 depend on the size of the anodizing voltage, decreases during one such a second stage of the process, the thickness of the barrier layer 28, the layer thickness of the porous oxide layer 30 continues to grow. Because the formation of oxide layer 28, 30 at the interface between aluminum substrate body 24 and barrier layer 28 takes place, and the The pore diameter is dependent on the anodizing voltage and then forms on the pore trunk area 32 several pore branches 34 with one opposite the trunk area 32 smaller diameters.

    Figur 3 zeigt schematisch den Querschnitt eines mit elektronenemittierendem Material beschichteten Formkörpers 22. Der Formkörper 22 besteht aus einem Substratkörper 24 und einer Formschicht 26. Die Formschicht 26 enthält Poren, deren Kavität 36 einen Stammbereich 32 und einen Verzweigungsbereich 33 mit wenigstens zwei Porenverzweigungen 34 aufweist. Die Kavität 36 ist vollständig mit elektronenemittierendem Material ausgefüllt, und die dadurch geschaffenen spitzenförmigen Elemente 14 aus elektronenemittierendem Material sind durch eine Trägerschicht 12 miteinander elektrisch leitend verbunden. Figure 3 shows schematically the cross section of an electron-emitting material coated molded body 22. The molded body 22 consists of a substrate body 24 and a molding layer 26. The molding layer 26 contains pores, the cavity 36 of which is a trunk area 32 and a branching area 33 with at least two pore branches 34 having. The cavity 36 is completely filled with electron-emissive material, and the resulting tip-shaped elements 14 made of electron-emitting material are connected to one another in an electrically conductive manner by a carrier layer 12.

    Ein gemäss Fig. 3 ausgebildeter, mit elektronenemittierendem Material beschichteter Formkörper 22 entsteht beispielsweise, wenn -- ausgehend von einem Formkörper 22 gemäss Fig. 2 -- die Formkörperoberfläche 23, wenigstens in den Poren, chemisch aktiviert wird, die Porenkavitäten 36 mit chemischen und/oder elektrochemischen Verfahren mit elektronenemittierendem Material beaufschlagt werden, und auf die dadurch entstandenen spitzenförmigen Elemente 14, sowie auf die zwischen den Porenkavitäten 36 liegende Formkörperoberfläche 23 eine elektronenemittierende Schicht 12 aus beispielsweise Metall- oder Halbmetall deponiert wird.A shaped body designed according to FIG. 3 and coated with electron-emitting material 22 arises, for example, if - starting from a molded body 22 according to FIG. 2 - the molded body surface 23, at least in the pores, is chemically activated, the Pore cavities 36 using chemical and / or electrochemical methods with electron-emitting Material is applied, and on the resulting tip-shaped Elements 14, as well as on the molded body surface lying between the pore cavities 36 23 an electron-emitting layer 12 made of, for example, metal or semimetal is deposited.

    Figur 4 zeigt schematisch den Querschnitt einer erfindungsgemäss strukturierten Oberfläche. Diese besteht aus einer Trägerschicht 12 mit damit elektrisch leitend verbundenen, spitzenförmigen Elementen 14 aus beispielsweise Metall- oder Halbmetall, d.h. aus elektronenemittierendem Material. Die spitzenförmigen Elemente weisen einen Stammbereich 16 und einen Verästelungsbereich 18 auf, wobei die spitzenförmigen Elemente 14 im Verästelungsbereich 18 zwei endständige Spitzen 20 aufweisen, deren Längsachsen a1, a2 einen spitzen Winkel α einschliessen. Die Stammbereiche 16 der spitzenförmigen Elemente 14 werden von einer zwischen diesen liegenden Stützschicht 15 mechanisch gestützt, wobei ein Teil der Stammbereiche 16 und die endständigen Spitzen 20 freiliegen.FIG. 4 schematically shows the cross section of a surface structured according to the invention. This consists of a carrier layer 12 with tip-shaped elements 14 connected to it in an electrically conductive manner, for example made of metal or semimetal, ie of electron-emitting material. The tip-shaped elements have a trunk area 16 and a branching area 18, the tip-shaped elements 14 in the branching area 18 having two terminal tips 20, the longitudinal axes a 1 , a 2 of which form an acute angle α. The trunk areas 16 of the tip-shaped elements 14 are mechanically supported by a support layer 15 lying between them, a portion of the trunk areas 16 and the terminal tips 20 being exposed.

    Eine gemäss Fig. 4 ausgebildete strukturierte Oberfläche entsteht beispielsweise, wenn -- ausgehend von einem mit elektronenemittierendem Material beschichteten Formkörper 22 gemäss Fig. 3 -- der Substratkörper 24 und ein Teil der Formschicht 26 chemisch weggeätzt wird.A structured surface designed according to FIG. 4 arises, for example, if starting from a shaped body 22 coated with electron-emitting material 3 - the substrate body 24 and part of the molded layer 26 chemically etched away becomes.

    Claims (15)

    1. Structured surface, having a support layer (12) and, connected electrically to it, peak-shaped elements (14),
      characterised in that
      each peak-shaped element (14) exhibits adjacent to the support layer (12) a cylindrical or blunted cone-shaped stem region (16) and at least two, preferably 2 to 4 end peaks (20) at the free end of the stem region (16).
    2. Structured surface according to claim 1, characterised in that the peak-shaped elements (14) and/or the substrate layer (12) are of Ni, Al, Pd, Pt, W, Fe, Ta, Rh, Cd, Cu, Au, Ag, In, Co, Sn, Si, Ge, Se, Te or a chemical compound containing at least one of these substances or an alloy of the above mentioned metals.
    3. Structured surface according to claim 1 or 2, characterised in that provided on the substrate layer (12) between the peak-shaped elements (14) is a mechanical support layer (15) made of an electrically insulating material, preferably an oxide, in particular aluminium oxide.
    4. Structured surface according to one of the claims 1 to 3, characterised in that the longitudinal axes (a1, a2) of the end peaks (20) enclose an acute angle α of 10 to 80°, in particular from 20 to 60°, referred to a circle of 360°.
    5. Structured surface according to one of the claims 1 to 4, characterised in that the density of end peaks is 108/cm2 and greater.
    6. Structured surface according to one of the claims 1 to 5, characterised in that the largest cross-sectional diameter of each peak-shaped element (14) is 250 nm or less, preferably 10 to 230 nm, especially 80 to 230 nm.
    7. Structured surface according to one of the claims 1 to 6, characterised in that the peak-shaped elements(14) exhibit a height of 50 nm to 20 µm, preferably 0.5 to 3µm.
    8. Structured surface according to one of the claims 1 to 7, characterised in that the free ends of the end peaks (20) exhibit a radius of curvature of 200 nm or less, preferably 50 to 100 nm.
    9. Use of the structured surface according to one of the claims 1 to 8 as a field emission surface of cold cathode emitter elements, especially as electron emission source for ultra-flat imaging screens, for electron lithography or for scanning or transmission microscopy.
    10. Process for manufacturing structured surfaces according to one of the claims 1 to 8, characterised in that,
      a) in a first step a mould body (22) with a surface (23) that is a mirror-image of the desired structured surface is created, whereby a substrate (24) of aluminium is oxidised anodically in an electrolyte that dissolves aluminium oxide, whereby the anodising voltage in a first anodising step is increased continuously or in steps from 0 to a first value U1, and in a second anodising step the anodising voltage is reduced continuously or in steps to a second value U2 that is smaller than U1;
      b) in a second step the surface (23) of the mould body (22) is coated over the whole surface area such that the pore cavities (36) present in the surface layer (23) of the mould body (22) are completely filled with the coating material and, a support layer (12) is formed connecting the peak-shaped elements (14) electrically, and that the support layer (12) represents a continuous, mechanically supporting layer;
      c) and in a third step at least a part of the mould body (22) is removed such that the end peaks (20) are exposed.
    11. Process according to claim 10, characterised in that the first value U1 of the anodising voltage for forming cylindrical, or blunted cone-shaped, long pores lies between 12 and 80 V and, in order to form at least two pore branches at the end of each long pore facing the aluminium layer, the second value U2 lies between 10 and 20 V.
    12. Process according to claim 10 or 11, characterised in that the materials used for coating the mould body surface (23) are preferably Ni, Al, Pd, Pt, W, Fe, Ta, Rh, Cd, Cu, Au, Ag, In, Co, Sn, Si, Ge, Se, Te, or a chemical compound containing at least one of these elements, or an alloy of the above mentioned metals.
    13. Process according to one of the claims 10 to 12, characterised in that the coating on the mould body surface (23) is performed by chemical and/or electrolytic methods.
    14. Process according to one of the claims 10 to 13, characterised in that the removal of at least part of the mould body (22) is performed by etching away chemically the substrate body (24) and at least a part of the mould layer (26).
    15. Process according to one of the claims 10 to 14, characterised in that the peak-shaped elements (14), which are at least partially exposed, are subjected to a chemical or electrolytic etching process.
    EP96810856A 1995-12-22 1996-12-09 Structured surface with pointed elements Expired - Lifetime EP0780871B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    CH03651/95A CH690144A5 (en) 1995-12-22 1995-12-22 Textured surface with peak-shaped elements.
    CH3651/95 1995-12-22
    CH365195 1995-12-22

    Publications (2)

    Publication Number Publication Date
    EP0780871A1 EP0780871A1 (en) 1997-06-25
    EP0780871B1 true EP0780871B1 (en) 1999-10-27

    Family

    ID=4260592

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96810856A Expired - Lifetime EP0780871B1 (en) 1995-12-22 1996-12-09 Structured surface with pointed elements

    Country Status (5)

    Country Link
    US (2) US5811917A (en)
    EP (1) EP0780871B1 (en)
    JP (1) JP3267883B2 (en)
    CH (1) CH690144A5 (en)
    DE (1) DE59603481D1 (en)

    Families Citing this family (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ES2248837T5 (en) * 1997-07-17 2009-04-16 ALCAN TECHNOLOGY & MANAGEMENT AG USE OF A LAMINATED METAL PRODUCT WITH SURFACE STRUCTURE FOR THE PROPAGATION OF LIGHT.
    JP3902883B2 (en) * 1998-03-27 2007-04-11 キヤノン株式会社 Nanostructure and manufacturing method thereof
    US6810575B1 (en) * 1998-04-30 2004-11-02 Asahi Kasai Chemicals Corporation Functional element for electric, electronic or optical device and method for manufacturing the same
    US20040023046A1 (en) * 1998-08-04 2004-02-05 Falko Schlottig Carrier substrate for Raman spectrometric analysis
    US6056864A (en) * 1998-10-13 2000-05-02 Advanced Micro Devices, Inc. Electropolishing copper film to enhance CMP throughput
    US7018521B2 (en) * 2001-09-27 2006-03-28 General Motors Corporation Method of producing bright anodized finishes for high magnesium, aluminum alloys
    US6908355B2 (en) * 2001-11-13 2005-06-21 Burle Technologies, Inc. Photocathode
    JP2006510229A (en) * 2002-08-28 2006-03-23 ユニバーシティー オブ ピッツバーグ Self-organized nanopore arrays with controlled symmetry and order
    US7713849B2 (en) * 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
    JP2008544529A (en) * 2005-06-17 2008-12-04 イルミネックス コーポレーション Photovoltaic wire
    US20090050204A1 (en) * 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material
    US20100193768A1 (en) * 2005-06-20 2010-08-05 Illuminex Corporation Semiconducting nanowire arrays for photovoltaic applications
    KR100856746B1 (en) 2007-03-20 2008-09-04 명지대학교 산학협력단 Fabricating method of titania thin film
    US8008213B2 (en) * 2008-09-30 2011-08-30 Sandisk 3D Llc Self-assembly process for memory array
    US8703546B2 (en) * 2010-05-20 2014-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Activation treatments in plating processes
    CN103030106B (en) 2011-10-06 2015-04-01 清华大学 Three-dimensional nanometer structure array
    RU2658304C2 (en) * 2016-10-10 2018-06-20 Акционерное общество "Научно-производственное предприятие "Алмаз" (АО "НПП "Алмаз") Method of manufacturing of autoemissional cathode from carbon material
    KR20180040743A (en) * 2016-10-12 2018-04-23 주식회사 넥스트이앤엠 Ionic diode membrane comprising branched nanopore and method for preparing thereof
    US10782014B2 (en) 2016-11-11 2020-09-22 Habib Technologies LLC Plasmonic energy conversion device for vapor generation
    JP6474878B1 (en) * 2017-11-28 2019-02-27 株式会社Uacj Aluminum member and manufacturing method thereof

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3783325A (en) * 1971-10-21 1974-01-01 Us Army Field effect electron gun having at least a million emitting fibers per square centimeter
    US3921022A (en) * 1974-09-03 1975-11-18 Rca Corp Field emitting device and method of making same
    DE3007452C2 (en) * 1980-02-28 1984-09-20 Kleinewefers Gmbh, 4150 Krefeld Process for regulating the pressure exerted in a calender and calender for carrying out this process
    DE3316027C2 (en) * 1983-05-03 1987-01-22 Dornier System Gmbh, 7990 Friedrichshafen Photodetector and method for its manufacture
    GB8816689D0 (en) * 1988-07-13 1988-08-17 Emi Plc Thorn Method of manufacturing cold cathode field emission device & field emission device manufactured by method
    US5203731A (en) * 1990-07-18 1993-04-20 International Business Machines Corporation Process and structure of an integrated vacuum microelectronic device
    US5211707A (en) * 1991-07-11 1993-05-18 Gte Laboratories Incorporated Semiconductor metal composite field emission cathodes
    US5499938A (en) * 1992-07-14 1996-03-19 Kabushiki Kaisha Toshiba Field emission cathode structure, method for production thereof, and flat panel display device using same
    US5608283A (en) * 1994-06-29 1997-03-04 Candescent Technologies Corporation Electron-emitting devices utilizing electron-emissive particles which typically contain carbon

    Also Published As

    Publication number Publication date
    JPH09180626A (en) 1997-07-11
    JP3267883B2 (en) 2002-03-25
    US5975976A (en) 1999-11-02
    CH690144A5 (en) 2000-05-15
    DE59603481D1 (en) 1999-12-02
    US5811917A (en) 1998-09-22
    EP0780871A1 (en) 1997-06-25

    Similar Documents

    Publication Publication Date Title
    EP0780871B1 (en) Structured surface with pointed elements
    DE69301939T2 (en) Electrode film for electrolytic capacitor and manufacturing process
    DE3421442C2 (en)
    DE2951287C2 (en) Process for producing surfaces with a multitude of very fine points
    DE3106368A1 (en) PLASMA DISPLAY
    WO2009006988A1 (en) Contact structure for a semiconductor component and a method for production thereof
    DE2422918A1 (en) ELECTRO-PLATED OR GALVANIZED, ANODISED ALUMINUM OBJECTS AND METHODS AND DEVICE FOR THEIR PRODUCTION
    DE3029171A1 (en) METHOD FOR PRODUCING POROUS METAL FILMS
    DE2507102A1 (en) MATRIX FOR MAKING MULTIPLE COPIES
    DE68926485T2 (en) An anodizing component containing aluminum plating
    WO2000008445A1 (en) Carrier substrate for raman-spectroscopy analyses
    DE2438870C3 (en) Electrolyte capacitor
    EP1240365A1 (en) Method for producing an electrolytically coated cold rolled strip, preferably for use in the production of battery sheaths, and battery sheath produced according to said method
    EP0523331A1 (en) Process for the manufacture of a filter material
    DE3022751A1 (en) LOW OVERVOLTAGE ELECTRODE AND METHOD FOR PRODUCING THE SAME
    EP1323463B1 (en) Method and device for the production of a metal membrane
    DE483948C (en) Process for the production of oxide cathodes for glow cathode tubes
    EP0350648A2 (en) Process for the production of highly temperature-resistant copper coatings on inorganic dielectrics
    DE19942849A1 (en) Process for the continuous manufacture of a metallic strip involves removing the strip from the cathode in a first electrolytic bath when it is inherently stable
    DE69206574T2 (en) Bipolar electrodes for lead accumulator.
    DE2243682C2 (en) Method of making a conductive electrode pattern
    DE10217277B4 (en) Process for the metallic inner coating of hollow bodies, in particular of jet pipe elements
    WO2021219606A1 (en) Method for producing micro- and nanostructures
    DE2356958A1 (en) METHOD OF MANUFACTURING A FILM COMPOSED OF A TUNGSTEN-THORIUM ALLOY
    DE3125150C2 (en) Process for producing a foil with a porous metal layer

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): CH DE FR GB IT LI

    17P Request for examination filed

    Effective date: 19971229

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19990210

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE FR GB IT LI

    ITF It: translation for a ep patent filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19991028

    REF Corresponds to:

    Ref document number: 59603481

    Country of ref document: DE

    Date of ref document: 19991202

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20031219

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041231

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041231

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20081223

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20090202

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20081229

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20081217

    Year of fee payment: 13

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20091209

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100701

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091209

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091209