JP2766958B2 - Superconducting generator rotor - Google Patents

Superconducting generator rotor

Info

Publication number
JP2766958B2
JP2766958B2 JP2099646A JP9964690A JP2766958B2 JP 2766958 B2 JP2766958 B2 JP 2766958B2 JP 2099646 A JP2099646 A JP 2099646A JP 9964690 A JP9964690 A JP 9964690A JP 2766958 B2 JP2766958 B2 JP 2766958B2
Authority
JP
Japan
Prior art keywords
laminated conductor
wedge
tapered
groove
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2099646A
Other languages
Japanese (ja)
Other versions
JPH04257A (en
Inventor
信久 鈴木
俊明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2099646A priority Critical patent/JP2766958B2/en
Publication of JPH04257A publication Critical patent/JPH04257A/en
Application granted granted Critical
Publication of JP2766958B2 publication Critical patent/JP2766958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、超電導発電機の回転子に係り、特に巻線取
付軸の側面に形成された溝に収納される積層導体を上か
ら圧縮するくさびを有する回転子に関する。
The present invention relates to a rotor of a superconducting generator, and more particularly to a laminated conductor housed in a groove formed on a side surface of a winding mounting shaft. And a rotor having a wedge for compressing from above.

(従来の技術) 第5図は従来の代表的な超電導発電機の回転子の構成
を示す縦断面図である。第5図のVI-VI断面図を第6図
に示す。第6図のVII部拡大図を第7図に示す。第7図
のVIII-VIII断面図を第8図に示す。
(Prior Art) FIG. 5 is a longitudinal sectional view showing a configuration of a rotor of a typical conventional superconducting generator. FIG. 6 is a sectional view taken along the line VI-VI of FIG. FIG. 7 is an enlarged view of a part VII in FIG. FIG. 8 is a sectional view taken along line VIII-VIII of FIG.

図において積層導体(または磁界巻線ともいう)2
は、巻線取付軸4の円周側面に形成されたスロット溝6
に収納されて保持される。くさび8は、積層導体2に働
く遠心力に対し、上から圧縮して保持をおこなう機能を
有する。保持環10は液体ヘリウムが外部へ漏れるのを防
いでいる。保持環10の外側にはラジューションシールド
12が設けられ、前記巻線取付軸4を液体ヘリウム温度に
保つ機能を有している。
In the figure, a laminated conductor (also referred to as a magnetic field winding) 2
Are slot grooves 6 formed on the circumferential side surface of the winding mounting shaft 4.
Is stored and held. The wedge 8 has a function of compressing and holding the centrifugal force acting on the laminated conductor 2 from above. The retaining ring 10 prevents liquid helium from leaking outside. A radiation shield outside the retaining ring 10
12 is provided, and has a function of keeping the winding mounting shaft 4 at the temperature of liquid helium.

このラジューションシールド12の外側に設けられる常
温ダンパ14は磁界の遮断、及び回転子のトルクを伝える
機能を有する。この常温ダンパ14の外側に電機子巻線16
が設けられ、交流電流が流される。また、電機子巻線16
の外側に設けられる磁気シールド18は、外部への漏れ磁
束のシールド作用と主磁束の増大をおこなうための機能
を有する。
The room temperature damper 14 provided outside the reduction shield 12 has a function of blocking a magnetic field and transmitting torque of a rotor. An armature winding 16 is provided outside the room temperature damper 14.
Are provided, and an alternating current flows. Also, armature winding 16
The magnetic shield 18 provided on the outside has a function of shielding leakage magnetic flux to the outside and increasing a main magnetic flux.

巻線取付軸4、保持環10、ラジューションシールド1
2、及び常温ダンパ14の各両端部を継ぐトルクチューブ3
6は、回転子のトルク伝達をおこなうとともに、外部か
らの浸入熱を低減する機能を有する。前記常温ダンパ14
の両端部に接続する継ぎシャフト38は、回転子のトルク
伝達をおこなう。また、回転子の一方の端部において常
温ダンパ14と巻線取付軸4を継ぐフレキシブルサポート
20は、回転子が熱収縮をおこなう際に特に軸方向の変形
を吸収する機能を有する。また、トルクチューブ36の内
側に接するようにして設けられる冷却筒22は、ガスヘリ
ウムを旋回させてトルクチューブ36の冷却をおこなう機
能を有する。
Winding mounting shaft 4, Retaining ring 10, Radiation shield 1
2, and a torque tube 3 connecting both ends of the normal temperature damper 14
6 has the function of transmitting torque of the rotor and reducing the amount of heat entering from the outside. Room temperature damper 14
Connecting shafts 38 connected to both ends of the rotor transmit torque of the rotor. A flexible support that connects the cold damper 14 and the winding mounting shaft 4 at one end of the rotor
Reference numeral 20 has a function of absorbing deformation, particularly in the axial direction, when the rotor undergoes thermal contraction. Further, the cooling cylinder 22 provided in contact with the inside of the torque tube 36 has a function of turning the gas helium to cool the torque tube 36.

ところで、前記積層導体2は、定格回転時には遠心力
により半径方向へ変形し、また、励磁時には電磁力によ
り主として接線方向へ変形する。この変形に対応する構
造を第7図及び第8図に示す。
Incidentally, the laminated conductor 2 is deformed in the radial direction by the centrifugal force at the time of rated rotation, and is mainly deformed in the tangential direction by the electromagnetic force at the time of excitation. FIGS. 7 and 8 show a structure corresponding to this deformation.

すなわち、巻線取付軸4の円周側面に形成されたスロ
ット溝6の内部に、積層導体2が収納される。この収納
は、スロット溝6の側壁、底面、及び2列の積層導体2
の中央、積層導体の上面の各スペーサ24,26,28,30を介
しておこなわれる。そして、スロット溝6の上部にはテ
ーパ溝32が形成されこのテーパ溝32に嵌合され得るテー
パ形状を両縁に有するくさび8が設けられ、前記積層導
体2を上から閉じ込める。
That is, the laminated conductor 2 is accommodated in the slot groove 6 formed on the circumferential side surface of the winding attachment shaft 4. This storage is performed by the side wall and the bottom surface of the slot groove 6 and the two rows of the laminated conductor 2.
In the center of the laminated conductor, through the spacers 24, 26, 28, 30 on the upper surface of the laminated conductor. A tapered groove 32 is formed on the upper part of the slot groove 6, and a wedge 8 having a tapered shape on both edges which can be fitted into the tapered groove 32 is provided to confine the laminated conductor 2 from above.

積層導体2の接線方向の変形を防止するために、従来
は、スロット溝6の側壁に配置されるサイドスペーサ24
を、図中縦方向に細いテーパ形状を有する2枚のくさび
に分割し、接線方向の変形を拘束すべく固定していた
(図示せず)。
Conventionally, in order to prevent the laminated conductor 2 from being deformed in the tangential direction, a side spacer 24 arranged on the side wall of the slot groove 6 is conventionally used.
Is divided into two wedges having a tapered shape that is thin in the vertical direction in the figure, and is fixed so as to restrain deformation in the tangential direction (not shown).

(発明が解決しようとする課題) しかしながら、前記従来技術においては接線方向に対
する変形には対応できるが、半径方向に対する変形には
不十分であった。特に、定量的に正確な面圧を負荷する
方法がなかった。一般に積層導体2(超電導線)は微小
であっても変形するとクエンチ(超電導状態から常電導
状態へ移行する現象)を生じ、発電機としての信頼性を
低くするものであった。微小な変形をも防止するために
は、正確な面圧を負荷する必要があり、このためには積
層導体に予め圧縮予荷重を負荷する必要がある。
(Problems to be Solved by the Invention) However, the above-described conventional technology can cope with deformation in a tangential direction, but is insufficient in deformation in a radial direction. In particular, there has been no method for quantitatively applying an accurate surface pressure. In general, when the laminated conductor 2 (superconducting wire) is minute, even if deformed, quenching (a phenomenon of transition from a superconducting state to a normal conducting state) occurs, thereby lowering the reliability as a generator. In order to prevent even minute deformation, it is necessary to apply an accurate surface pressure. For this purpose, it is necessary to apply a compression preload to the laminated conductor in advance.

一般に、超電導発電機の回転子に設けられる積層導体
2の変形を起こさせる力は、荷重負荷後の応力緩和(ク
リープ変形)、クールダウン時の支持構造物との熱収縮
差、定格回転時の遠心力、励磁時の電磁力等によって変
化するので、これらの変化を見込んだ正確な圧縮荷重を
負荷することが必要である。
In general, the force that causes deformation of the laminated conductor 2 provided on the rotor of the superconducting generator includes stress relaxation after load application (creep deformation), difference in heat shrinkage from the supporting structure at the time of cooling down, Since it changes due to the centrifugal force, the electromagnetic force at the time of excitation, etc., it is necessary to apply an accurate compressive load in consideration of these changes.

本発明はこのような点を考慮してなされたものであ
り、積層導体を定量的な面圧により固定し、この固定を
任意の圧縮予荷重を伴っておこない、クエンチを防止す
ることができる超電導発電機の回転子を低することを目
的とする。
The present invention has been made in view of such a point, and the laminated conductor is fixed by a quantitative surface pressure, and the fixing is performed with an arbitrary compressive preload to prevent quench. The purpose is to lower the rotor of the generator.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は、上記目的を達成するために、巻線取付軸の
円周側面に軸方向に延びる複数のスロット溝が形成さ
れ、各スロット溝の内部には半径方向に積層された積層
導体が収納され、スロット溝の周面近傍に形成されたテ
ーパ溝と、このテーパ溝に嵌入されて前記積層導体を上
から圧縮するくさびと、を有する超電導発電機の回転子
において、前記くさびが巻線取付軸の軸方向にテーパ形
状をなす分割自在の一対の部材からなり、これら一対の
部材が該テーパ形状を軸方向に逆にして重ね合され組に
なり前記テーパ溝に嵌入されているものである。
(Means for Solving the Problems) In order to achieve the above object, according to the present invention, a plurality of slot grooves extending in the axial direction are formed on a circumferential side surface of a winding mounting shaft, and a radius is formed inside each slot groove. The rotation of the superconducting generator includes a tapered groove formed in the vicinity of the peripheral surface of the slot groove and a wedge fitted in the tapered groove to compress the laminated conductor from above. The wedge comprises a pair of dividable members having a tapered shape in the axial direction of the winding mounting shaft, and the pair of members are overlapped with each other by reversing the tapered shape in the axial direction to form a set. It is fitted in the groove.

(作用) くさびを軸方向にテーパ形状をなす一対の部材から形
成することで、このテーパ角度を変え、重ね合され組と
なったくさびの半径方向の厚さを変えることにより、積
層導体に対し半径方向に定量的な面圧を負荷し、任意の
圧縮予荷重を与えることが可能となる。
(Operation) By forming the wedge from a pair of members having a tapered shape in the axial direction, the taper angle is changed, and by changing the radial thickness of the superposed wedges, the laminated wedge is formed. It is possible to apply a quantitative surface pressure in the radial direction and apply an arbitrary compression preload.

(実施例) 以下、図面を参照して本発明の実施例について説明す
る。
(Example) Hereinafter, an example of the present invention is described with reference to drawings.

第1図〜第2図は本発明による超電導発電機の回転子
の第1の実施例を示す図である。ここで第1図は従来例
の第7図に対応する図、第2図は従来例の第8図にに対
応する図である。なお、回転子全体の縦断面形状は従来
例の第5図と同一とする。
1 and 2 show a first embodiment of a rotor of a superconducting generator according to the present invention. Here, FIG. 1 is a diagram corresponding to FIG. 7 of the conventional example, and FIG. 2 is a diagram corresponding to FIG. 8 of the conventional example. The longitudinal sectional shape of the entire rotor is the same as that of the conventional example shown in FIG.

第1図において巻線取付軸4の円周側面にはスロット
溝6が形成されている。このスロット溝6は、半径方向
に深く、軸方向に長くなっている。このスロット溝6の
内部に、積層導体2が半径方向に積層されて収納されて
いる。積層導体2は円周方向に2つに分かれており、そ
の間に中間スペーサ28が設けられスロット溝6の底面に
は底部スペーサ26が設けられ、側壁にはサイドスペーサ
24が設けられ、積層導体2の上面には上部スペーサ30が
設けられている。スロット溝6の周方向に面する側壁に
は、上部にテーパ溝32が形成されている。このテーパ溝
32は周方向にテーパ形状を成し、軸方向に同一断面を有
する。両テーパ溝32に対して、くさび(一方の部材)34
が嵌入されている。このくさび34の周方向両縁は、前記
テーパ溝32に嵌入するテーパ形状を成している。また同
時に、軸方向にもテーパ形状を成している。そして同一
の軸方向断面形状を有するくさび(他方の部材)35が、
軸方向に逆なって前記くさび35の下に重ね合されて組を
作り、テーパ溝32に嵌入されている。また、くさび34,3
5は軸方向に複数組が配置されている(第2図)。
In FIG. 1, a slot groove 6 is formed on the circumferential side surface of the winding mounting shaft 4. The slot groove 6 is deeper in the radial direction and longer in the axial direction. The laminated conductor 2 is accommodated in the slot groove 6 while being laminated in the radial direction. The laminated conductor 2 is divided into two in the circumferential direction, an intermediate spacer 28 is provided therebetween, a bottom spacer 26 is provided on the bottom surface of the slot groove 6, and a side spacer is provided on the side wall.
24 are provided, and an upper spacer 30 is provided on the upper surface of the laminated conductor 2. A tapered groove 32 is formed on an upper part of a side wall facing the circumferential direction of the slot groove 6. This tapered groove
32 has a tapered shape in the circumferential direction and has the same cross section in the axial direction. Wedges (one member) 34 for both tapered grooves 32
Is inserted. Both circumferential edges of the wedge 34 have a tapered shape fitted into the tapered groove 32. At the same time, it is tapered in the axial direction. And the wedge (the other member) 35 having the same axial cross-sectional shape is
A pair is formed under the wedge 35 in the opposite direction to the axial direction to form a set, and is fitted into the tapered groove 32. Also, wedges 34,3
5 has a plurality of sets arranged in the axial direction (FIG. 2).

以下本実施例の作用について説明する。積層導体2
は、積層導体2を構成する超電導線、素線絶縁、含浸レ
ジン、撚線方法などにより剛性が異なり、また積層導体
2の厚さが変化することによっても剛性が変化する。こ
のような剛性や、荷重負荷後の応力緩和、クールダウン
時の支持構造物との熱収縮差、定格回転時の遠心力、励
磁時のレンジ力などにより積層導体2を変形しようとす
る力の変化に十分対応して、圧縮予荷重を調整しなけれ
ばならない。この調整は、前記くさび34,35の軸方向の
テーパ形状のテーパ角度や半径方向の厚さを変えること
により、正確におこなえる。すなわち変位制御型の圧縮
予荷重を負荷できる。
Hereinafter, the operation of the present embodiment will be described. Laminated conductor 2
The rigidity varies depending on the superconducting wire, the wire insulation, the impregnated resin, the stranded wire method, etc., which constitute the laminated conductor 2, and the rigidity also varies as the thickness of the laminated conductor 2 changes. Such rigidity, stress relaxation after load application, heat shrinkage difference with the supporting structure at cool down, centrifugal force at rated rotation, range force at excitation, etc. The compression preload must be adjusted sufficiently to accommodate the change. This adjustment can be performed accurately by changing the taper angle of the tapered shape in the axial direction and the thickness in the radial direction of the wedges 34 and 35. That is, a displacement control type compression preload can be applied.

1例として、積層導体2に圧縮予荷重を負荷した後に
生じる応力緩和(クリープ変形)に対する対応を第4図
に示す。積層導体2に初めに圧縮予荷重を付加する際に
は、ラインL1の如き荷重−変位曲線を示すが、この圧縮
予荷重を負荷した後、所定の時間が経つとクリープ変形
を定し、最終的にはラインL2の如き緩和後荷重−変位曲
線を示す。従って、初め必要な圧縮荷重PAを見込んで
A点で保持しても、時間が経つとB点(荷重PB)まで
下がってしまう。そこで、このような圧縮荷重後の応力
緩和を見込んで予めC点まで持っていけば、その後、応
力緩和が生じることで必要な圧縮荷重PAを与えるA点
が確保される。従って圧縮予荷重はC点、すなわち導体
厚さがtcになるように、くさび34,35のテーパ角度や厚
さ寸法を調整すればよいことになる。
As an example, FIG. 4 shows the response to stress relaxation (creep deformation) that occurs after applying a compressive preload to the laminated conductor 2. When a compressive preload is first applied to the laminated conductor 2, a load-displacement curve as shown by a line L1 is shown. After a predetermined time has passed after the compressive preload is applied, creep deformation is determined, and the final More specifically, it shows a load-displacement curve after relaxation as indicated by a line L2. Therefore, in anticipation of the beginning required compressive load P A be held at the point A, resulting in down to over time point B (load P B). Thus, if the stress relaxation after the compressive load is anticipated and brought to the point C in advance, the point A which gives the necessary compressive load PA by the occurrence of the stress relaxation is secured. Thus compressive preload is point C, i.e. so that the conductor thickness is t c, it is sufficient to adjust the taper angle and the thickness of the wedge 34.

なお、スロット溝6は第5図に示すように縦断面にお
いて略矩形を成すが、この矩形における直線部(スロッ
ト直線部)のみならずコーナ部(コーナエンド部)にお
いても本実施例のくさび34,35による圧縮予荷重が可能
である。すなわち、各くさび34,35は軸方向に分割し
(第2図参照)任意の長さとすることができ、直線部の
みならずコーナ部においても積層導体2をムラなく圧縮
することができる。
Although the slot groove 6 has a substantially rectangular shape in a vertical cross section as shown in FIG. 5, the wedge 34 of the present embodiment is formed not only at the linear portion (slot linear portion) but also at the corner portion (corner end portion) in this rectangle. , 35 is possible for compression preload. That is, each of the wedges 34 and 35 can be divided in the axial direction (see FIG. 2) to have an arbitrary length, and the laminated conductor 2 can be uniformly compressed not only in the linear portion but also in the corner portion.

(他の実施例) 以上の実施例は積層導体を上から圧縮するくさび34,3
5によって圧縮予荷重を負荷するものであったが、第3
図に示す第2実施例のように、このようなくさび34,35
のみでなくサイドスペーサ24をテーパ状とすることで、
半径方向の面圧負荷と同時に接線方向(円周方向)の面
圧負荷も同時におこなうことができる。接線方向の面圧
は、サイドスペーサ24のテーパ角度を調整することでお
こなうことができる。この調整も、例えば応力緩和を考
慮して正確な圧縮予荷重を負荷するためには、前記第4
図に示した如き荷重−変位線図を、予め試験により積層
導体2へ接線方向から荷重を負荷して得ておき、必要な
圧縮荷重を正確に負荷することができる。なお、半径方
向と接線方向からの両方向から同時に面圧負荷を与える
ことでポアソン比に基く相乗効果を得、積層導体の変形
をより強く防ぐことができる。
(Other Embodiments) The above-described embodiment employs wedges 34, 3 for compressing the laminated conductor from above.
Although a compression preload was applied according to 5, the third
As in the second embodiment shown in FIG.
Not only by making the side spacer 24 tapered,
The tangential (circumferential) surface pressure load can be performed simultaneously with the radial surface pressure load. The tangential surface pressure can be obtained by adjusting the taper angle of the side spacer 24. For this adjustment, for example, in order to apply an accurate compression preload in consideration of stress relaxation, the fourth
A load-displacement diagram as shown in the figure is obtained by applying a load to the laminated conductor 2 in a tangential direction by a test in advance, and a necessary compressive load can be accurately applied. By applying a surface pressure load simultaneously from both the radial direction and the tangential direction, a synergistic effect based on the Poisson's ratio can be obtained, and the deformation of the laminated conductor can be more strongly prevented.

特に、超電導発電機においては、接線方向の電磁力が
半径方向のそれに比べて大きいため、接線方向からの拘
束も同時におこなうことでクエンチに対する信頼性をよ
り一層高めることができる。
In particular, in the superconducting generator, the electromagnetic force in the tangential direction is larger than that in the radial direction, so that the quenching reliability can be further improved by simultaneously performing the constraint in the tangential direction.

以上の2つの実施例によれば、従来、定性的な評価し
かできなかった積層導体の固定構造に対し、くさび34,3
5を用い定量的な面圧により正確な圧縮荷重を変位制御
型で負荷することが可能となる。
According to the above two embodiments, the wedges 34, 3
With the use of 5, it is possible to apply accurate compressive load by displacement control type by quantitative surface pressure.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の超電導発電機の回転子
によれば、積層導体を上から圧縮するくさびが軸方向に
テーパ状態を成す一対の部材からなり、この一対の部材
が組になって圧縮をおこなうことでこのテーパ角度及び
くさびの厚さを変えることにより定量的な正確な面圧を
負荷でき、種々の原因によって変化する必要な圧縮予荷
重を与えることができる。従って、積層導体の微小な変
形も防止でき、クエンチをより効果的に防止できる。
As described above, according to the rotor of the superconducting generator of the present invention, the wedge that compresses the laminated conductor from above is formed of a pair of members that form a tapered state in the axial direction, and the pair of members is formed as a set. By changing the taper angle and the thickness of the wedge by performing compression, a quantitative and accurate surface pressure can be applied, and a necessary compression preload that changes depending on various causes can be given. Therefore, a small deformation of the laminated conductor can be prevented, and quench can be prevented more effectively.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例の要部を示す横断面図、第2
図は第1図のII-II断面図、第3図は第2実施例を示す
要部の横断面図、第4図は積層導体の応力緩和を示す
図、第5図は従来の代表的な超電導発電機の回転子を示
す縦断面図、第6図は第5図のVI-VI断面図、第7図は
第6図のVII部拡大図、第8図は第7図のVIII-VIII断面
図である。 2……積層導体、4……巻線取付軸、8……くさび、10
……保持環、12……ラジューションシールド、14……常
温ダンパー、16……電機子巻線、18……磁気シールド、
20……フレキシブルサポート、22……冷却筒、24……サ
イドスペーサー、26……底部スペーサー、28……中間ス
ペーサー、30……上部スペーサー、34……くさび、35…
…くさび、36……トルクチューブ、38……継ぎシャフ
ト、L1……負荷時荷重−変位線図、L2……緩和後荷重−
変位線図。
FIG. 1 is a cross sectional view showing a main part of one embodiment of the present invention, and FIG.
FIG. 1 is a cross-sectional view taken along the line II-II of FIG. 1, FIG. 3 is a cross-sectional view of a main part showing the second embodiment, FIG. 4 is a view showing stress relaxation of the laminated conductor, and FIG. 6 is a vertical sectional view showing a rotor of a superconducting generator, FIG. 6 is a sectional view taken along line VI-VI of FIG. 5, FIG. 7 is an enlarged view of a portion VII of FIG. 6, and FIG. It is VIII sectional drawing. 2 ... Laminated conductor, 4 ... Wound mounting shaft, 8 ... Wedge, 10
…… Retaining ring, 12… Radiation shield, 14… Room temperature damper, 16… Armature winding, 18… Magnetic shield,
20 ... Flexible support, 22 ... Cooling cylinder, 24 ... Side spacer, 26 ... Bottom spacer, 28 ... Intermediate spacer, 30 ... Top spacer, 34 ... Wedge, 35 ...
... Wedge, 36 ... Torque tube, 38 ... Splice shaft, L1 ... Load under load-displacement diagram, L2 ... Load after relaxation-
Displacement diagram.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】巻線取付軸の円周側面に軸方向に延びる複
数のスロット溝が形成され、各スロット溝の内部には半
径方向に積層された積層導体が収納され、スロット溝の
周面近傍に形成されたテーパ溝と、このテーパ溝に嵌入
されて前記積層導体を上から圧縮するくさびと、を有す
る超電導発電機の回転子において、前記くさびが巻線取
付軸の軸方向にテーパ形状をなす分割自在の一対の部材
からなり、これら一対の部材が該テーパ形状を軸方向に
逆にして重ね合され組になり前記テーパ溝に嵌入されて
いることを特徴とする超電導発電機の回転子。
A plurality of slot grooves extending in an axial direction are formed on a circumferential side surface of a winding mounting shaft, and a laminated conductor laminated in a radial direction is accommodated inside each slot groove, and a peripheral surface of the slot groove is provided. In a rotor of a superconducting generator having a tapered groove formed in the vicinity and a wedge fitted into the tapered groove and compressing the laminated conductor from above, the wedge has a tapered shape in the axial direction of the winding mounting shaft. The superconducting generator is characterized in that the pair of members is overlapped with each other in a manner that the tapered shape is reversed in the axial direction, and the paired members are fitted into the tapered groove. Child.
JP2099646A 1990-04-16 1990-04-16 Superconducting generator rotor Expired - Fee Related JP2766958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099646A JP2766958B2 (en) 1990-04-16 1990-04-16 Superconducting generator rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099646A JP2766958B2 (en) 1990-04-16 1990-04-16 Superconducting generator rotor

Publications (2)

Publication Number Publication Date
JPH04257A JPH04257A (en) 1992-01-06
JP2766958B2 true JP2766958B2 (en) 1998-06-18

Family

ID=14252820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099646A Expired - Fee Related JP2766958B2 (en) 1990-04-16 1990-04-16 Superconducting generator rotor

Country Status (1)

Country Link
JP (1) JP2766958B2 (en)

Also Published As

Publication number Publication date
JPH04257A (en) 1992-01-06

Similar Documents

Publication Publication Date Title
US6768232B1 (en) High temperature superconductor rotor for a synchronous machine
US3991333A (en) Winding support structure for superconducting rotor
JPH07142245A (en) High-temperature superconducting magnet, its designing method, its operating method, and manufacture of high-temperature superconducting tape material
US4500860A (en) Winding support and method for NMR magnet axisymmetric correction coils
US4387316A (en) Dynamoelectric machine stator wedges and method
US4060743A (en) Superconductive exciter winding for the rotor of a turbogenerator and method of production
JPH0523485B2 (en)
JP4788377B2 (en) Superconducting coil
US4328437A (en) Superconductive exciter winding for a turbogenerator rotor
US4561175A (en) Method of winding a superconducting coil
JP2766958B2 (en) Superconducting generator rotor
US4434382A (en) Viscoelastic support for dynamoelectric machines
KR100871944B1 (en) High temperature super-conducting rotor coil support and coil support method
Felice et al. Magnetic and mechanical analysis of the HQ model quadrupole designs for LARP
Perin Mechanical stability od superconducting quadrupole coils
JPH04229070A (en) Superconductive rotor and fixing method for its coil
US5247272A (en) Dipole coil and structure for use in the manufacture thereof
US4296395A (en) Structure for preventing winding collapse
JPH03164062A (en) Rotor for superconducting generator
JP3300387B2 (en) Superconducting rotating electric machine rotor
JPH0851016A (en) Superconducting coil
JPH0638368B2 (en) Superconducting coil
EP0625281A1 (en) Stable flux jumping resistant superconducting tape and superconducting magnet
JPS59208811A (en) Superconductive coil
JPH04322412A (en) Superconducting coil

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees