JP3300387B2 - Superconducting rotating electric machine rotor - Google Patents

Superconducting rotating electric machine rotor

Info

Publication number
JP3300387B2
JP3300387B2 JP20207291A JP20207291A JP3300387B2 JP 3300387 B2 JP3300387 B2 JP 3300387B2 JP 20207291 A JP20207291 A JP 20207291A JP 20207291 A JP20207291 A JP 20207291A JP 3300387 B2 JP3300387 B2 JP 3300387B2
Authority
JP
Japan
Prior art keywords
end ring
laminated conductor
load
rotor
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20207291A
Other languages
Japanese (ja)
Other versions
JPH0549235A (en
Inventor
信久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20207291A priority Critical patent/JP3300387B2/en
Publication of JPH0549235A publication Critical patent/JPH0549235A/en
Application granted granted Critical
Publication of JP3300387B2 publication Critical patent/JP3300387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は超電導回転電機の回転子
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor for a superconducting rotating electric machine.

【0002】[0002]

【従来の技術】図6ないし図9に従来の代表的な超電導
回転電機の回転子構成を示す。これらの図において積層
導体(界磁巻線)1は、巻線取付軸2にて保持されてい
る。くさび3は積層導体1の直線部分を圧縮保持する機
能を有する。保持環4は液体ヘリウムが外部へ漏れるの
を防いでいる。ラジエーションシールド5は巻線取付軸
2を液体ヘリウム温度に保つために設けられており、常
温ダンパー6は磁界の遮断効果、および回転子のトルク
を受け持つ機能を有する。電機子巻線7には交流電流が
流れ、磁気シールド8は外部への漏れ磁束のシールドと
主磁束の増大のための機能を有する。トルクチューブ9
は回転子のトルク伝達を行うとともに外部から浸入熱を
低減する。継ぎシャフト10はトルク伝達を行い、フレキ
シブルサポート11は回転子熱収縮時の軸方向変形を吸収
する。冷却筒12はガスヘリウムを旋回して、トルクチュ
ーブ9の冷却を行う。従来型エンドリング13は積層導体
1のエンド部を焼ばめ減により圧縮保持する機能を有す
る。
2. Description of the Related Art FIGS. 6 to 9 show a rotor configuration of a typical conventional superconducting rotary electric machine. In these figures, a laminated conductor (field winding) 1 is held by a winding mounting shaft 2. The wedge 3 has a function of compressing and holding the linear portion of the laminated conductor 1. The retaining ring 4 prevents liquid helium from leaking to the outside. The radiation shield 5 is provided to keep the winding attachment shaft 2 at the liquid helium temperature, and the room temperature damper 6 has a function of blocking a magnetic field and receiving torque of a rotor. An alternating current flows through the armature winding 7, and the magnetic shield 8 has a function of shielding leakage magnetic flux to the outside and increasing a main magnetic flux. Torque tube 9
Transmits torque of the rotor and reduces heat intrusion from the outside. The joint shaft 10 transmits torque, and the flexible support 11 absorbs axial deformation at the time of rotor thermal contraction. The cooling cylinder 12 turns gas helium to cool the torque tube 9. The conventional end ring 13 has a function of compressing and holding the end portion of the laminated conductor 1 by shrink fitting.

【0003】さてこの積層導体1はエンド部において、
急激に磁束密度、電磁力が高くなり、従来型エンドリン
グ13による一様面圧負荷ではクエンチ防止に対する信頼
性は低い。
The laminated conductor 1 has an end portion at
The magnetic flux density and the electromagnetic force suddenly increase, and the reliability for quenching prevention is low with a uniform surface pressure load by the conventional end ring 13.

【0004】[0004]

【発明が解決しようとする課題】図8ないし図9に示す
従来構造においては、全てのスロットの積層導体に対し
て、一様な面圧しか負荷できず、エンド部固有の急激に
増大する電磁力に対応した面圧負荷ができない。積層導
体1(超電導線)は微小であっても変形するとクエンチ
(超電導状態から常電導状態へ移行すること)を生じ、
回転電機としての信頼性上好ましくない。
In the conventional structure shown in FIGS. 8 and 9, only a uniform surface pressure can be applied to the laminated conductors of all the slots, and the rapidly increasing electromagnetic characteristic inherent in the end portion. Can not apply surface pressure load corresponding to force. Even if the laminated conductor 1 (superconducting wire) is minute, if it is deformed, it will quench (transition from the superconducting state to the normal conducting state),
It is not preferable in terms of reliability as a rotating electric machine.

【0005】本発明は上記の欠点を解決するために成さ
れたものであり、その目的はエンド部固有の電磁力分布
に応じた面圧負荷を可能にすることにより、クエンチを
防止することにある。
The present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to prevent a quench by enabling a surface pressure load according to an electromagnetic force distribution inherent to an end portion. is there.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明においてはエンドリングを各スロット毎に分
割した構成とする。
In order to achieve the above object, in the present invention, an end ring is divided for each slot.

【0007】[0007]

【作用】本発明は上記のように構成されており、エンド
リングがスロット毎に分割されているため、面圧負荷に
必要な焼ばめ代を局所的な電磁力に合わせて調整するこ
とが可能である。従って積層導体のエンド部における急
激に変化する電磁力に対応した適切な面圧負荷にするこ
とが可能であり、いずれのスロットの積層導体に対して
も、スロット毎の局所的な電磁力に対応した面圧負荷が
可能であり、クエンチ防止に対する信頼性を格段に向上
させることができる。
The present invention is configured as described above, and the end ring is divided for each slot, so that the shrink fit required for the surface pressure load can be adjusted according to the local electromagnetic force. It is possible. Therefore, it is possible to set an appropriate surface pressure load corresponding to the rapidly changing electromagnetic force at the end portion of the laminated conductor, and to cope with the local electromagnetic force of each slot for the laminated conductor of any slot The surface pressure load can be improved, and the reliability for quenching prevention can be remarkably improved.

【0008】また、一般に積層導体の圧縮予荷重(面
圧)は、荷重負荷後の応力緩和(クリープ変形)、クー
ルダウン時の支持構造物との熱収縮差、定格回転時の遠
心力、励磁時の電磁力等によって変化するが、これらの
予荷重変化を見込んだ正確な圧縮予荷重を負荷すること
が可能である。
In general, the compressive preload (surface pressure) of a laminated conductor includes stress relaxation (creep deformation) after a load, a difference in heat shrinkage from a supporting structure at a cool down time, a centrifugal force at a rated rotation, an excitation. Although it changes depending on the electromagnetic force at the time, it is possible to apply an accurate compression preload in consideration of these preload changes.

【0009】[0009]

【実施例】以下本発明の一実施例について図面を用いて
説明する。図1は本発明に係る超電導回転電機の回転子
のエンドリングの一実施例を示す外形図、図2は図1の
断面図を示す。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an external view showing an embodiment of an end ring of a rotor of a superconducting rotary electric machine according to the present invention, and FIG. 2 is a sectional view of FIG.

【0010】図において、回転子のスロットに収納され
た積層導体1の外周には各スロット毎に分割されたエン
ドリング14が設けられている。その他の構成は従来と同
様であるので説明は省略する。
In the figure, an end ring 14 divided for each slot is provided on the outer periphery of a laminated conductor 1 housed in a slot of a rotor. The other configuration is the same as the conventional one, and the description is omitted.

【0011】次に、このような本実施例の作用、効果に
ついて説明する。本実施例では、エンド部のスロット毎
にエンドリング14を分割し、エンド部の局部的な電磁力
に応じて焼ばめ代を調節し、必要面圧を負荷する。積層
導体1の剛性(超電導線、素線絶縁、含浸レジン、撚線
方法などによるもの)や、厚さの変化による剛性の変化
に対しても、焼ばめ代を調整することにより変位制御型
の正確な圧縮予荷重を負荷することが可能である。また
荷重負荷後の応力緩和や、クールダウン時、定格回転
時、励磁時等の場合に生じる圧縮予荷重の変化に対して
も十分対応可能である。
Next, the operation and effect of the embodiment will be described. In the present embodiment, the end ring 14 is divided for each slot of the end portion, the shrink fit is adjusted according to the local electromagnetic force of the end portion, and the required surface pressure is applied. Displacement control type by adjusting shrink fitting allowance for rigidity of laminated conductor 1 (by superconducting wire, strand insulation, impregnated resin, stranded wire method, etc.) and for rigidity change due to thickness change. It is possible to apply an accurate compression preload. In addition, it is possible to sufficiently cope with stress relaxation after load application, and a change in precompression load that occurs at the time of cooling down, rated rotation, excitation, and the like.

【0012】一例として積層導体1に圧縮予荷重を負荷
後の応力緩和(クリープ変形)に対する対応を以下に示
す。分割エンドリング14は図3に示すように、積層導体
1を圧縮することで反発力を受け、これは簡易的に内圧
Paと考えられる。 ただし Pi:i番目のスロットの反発力 D :エンドリング内径(直径) l :エンドリング軸長
As an example, the response to stress relaxation (creep deformation) after a compressive preload is applied to the laminated conductor 1 will be described below. As shown in FIG. 3, the split end ring 14 receives a repulsive force by compressing the laminated conductor 1, and this is simply considered as the internal pressure Pa. Where Pi: Repulsive force of the i-th slot D: End ring inner diameter (diameter) l: End ring shaft length

【0013】この反発力Piは圧縮荷重レベル等により
異なる図4に示す荷重−変位線図において、積層導体1
は荷重を負荷する際には曲線15のような特性を示すが、
荷重を保持するとクリープ変形を呈し、最終的には16に
示す緩和後荷重−変位線図に落ち着く。従って圧縮予荷
重をA点で保持しても、B点のレベルまで下がってしま
うので、圧縮予荷重の緩和を見込んでC点のレベルまで
荷重を負荷すれば、A点での圧縮予荷重が確保される。
このようにして必要圧縮荷重(反発力)Piを各スロッ
ト毎に算出すれば、(1)式より、分割エンドリング14
に作用する内圧Paが計算される。内圧Paにより、分
割エンドリング14は以下に示す量だけ半径方向変位を生
じる。(最内径において) ただし a:内径(半径) E:縦弾性係数 b:外径(半径) Pa:内圧 ν:ポアソン比 したがって焼ばめ代δ(半径)としては δ=u+max(t1 ,t2 ,…,tn ) (3) ただし ti :i番目スロットの積層導体の必要圧縮厚
さ(必要圧縮予荷重に対応)
The repulsive force Pi varies depending on the compression load level and the like.
Shows a characteristic like curve 15 when a load is applied,
When the load is maintained, creep deformation is exhibited, and finally, the load-displacement diagram after relaxation shown in FIG. 16 is settled. Therefore, even if the compressive preload is held at the point A, the compressive preload at the point A is reduced if the load is applied to the level of the point C in anticipation of relaxation of the compressive preload. Secured.
When the required compression load (repulsion force) Pi is calculated for each slot in this manner, the divided end ring 14
Is calculated. Due to the internal pressure Pa, the split end ring 14 is displaced in the radial direction by the following amount. (At the innermost diameter) However, a: inner diameter (radius) E: longitudinal elastic modulus b: outer diameter (radius) Pa: internal pressure ν: Poisson's ratio Therefore, shrink fit δ (radius) is δ = u + max (t 1 , t 2 ,..., T) n ) (3) where t i is the required compression thickness of the laminated conductor in the i-th slot (corresponding to the required compression preload)

【0014】(3)式から計算される焼ばめ代を各分割
エンドリング14に適用すれば、応力緩和によるクエンチ
を防止できる。反発力Pi、圧縮厚さti は積層導体1
の収縮量、遠心力、クリープ変形量、エンド部固有の電
磁力等により定まるが、エンド部の局部的な電磁力の占
める割合が高い。したがって分割エンドリング法を採用
することにより巻線取付軸2の軸方向に沿って急激に変
化するこれらの量に合わせた適切な焼ばめ代δを選定
し、適切な面圧を負荷することが可能である。次に、他
の実施例について図5を用いて説明する。
If the shrink fit calculated from the equation (3) is applied to each divided end ring 14, quenching due to stress relaxation can be prevented. The repulsive force Pi and the compressed thickness t i are the thickness of the laminated conductor 1
Is determined by the amount of shrinkage, centrifugal force, creep deformation, electromagnetic force inherent to the end portion, and the like, and the ratio of the local electromagnetic force at the end portion is high. Therefore, by adopting the split end ring method, it is necessary to select an appropriate shrink fit allowance δ corresponding to these amounts that rapidly change along the axial direction of the winding mounting shaft 2 and apply an appropriate surface pressure. Is possible. Next, another embodiment will be described with reference to FIG.

【0015】図5は上記実施例での分割エンドリング14
の厚さを変化させたものである。分割エンドリングの厚
さを変化させることで、焼ばめ代の他に厚さによっても
面圧を調節することが可能である。従って負荷面圧の範
囲を焼ばめ単独の場合よりも広くなりクエンチ防止に対
する信頼性もそれだけ向上する。
FIG. 5 shows the split end ring 14 in the above embodiment.
Is changed in thickness. By changing the thickness of the split end ring, the surface pressure can be adjusted by the thickness in addition to the shrink fit. Accordingly, the range of the load surface pressure is wider than that of the shrink fit alone, and the reliability for preventing quench is improved accordingly.

【0016】また分割エンドリングの厚さ、例えば内径
aを変えることで(2)式から半径方向変位uを調整す
ることができ、(3)式から焼ばめ代δを調整すること
が可能である。従って分割エンドリング組立の際のクリ
アランスを制御することが可能であり、組立性を大幅に
向上することができる。
By changing the thickness of the divided end ring, for example, the inner diameter a, the radial displacement u can be adjusted from the equation (2), and the shrink fit δ can be adjusted from the equation (3). It is. Therefore, the clearance at the time of assembling the split end ring can be controlled, and the assemblability can be greatly improved.

【0017】[0017]

【発明の効果】以上説明したように、本発明の回転子
は、エンドリングが分割構成されているので、積層導体
の収縮量、遠心力、クリープ変形量相当の面圧の他に、
エンド部固有の電磁力分布に対応した適切な面圧負荷が
可能である。従って従来のエンドリング構造による一様
面圧負荷に比べて、クエンチ防止に対する信頼性は格段
に向上する。
As described above, in the rotor according to the present invention, since the end ring is divided, the rotor has a contraction amount, a centrifugal force, and a creep deformation amount corresponding to the contraction amount of the laminated conductor.
Appropriate surface pressure load corresponding to the electromagnetic force distribution unique to the end part is possible. Therefore, the reliability for preventing quench is remarkably improved as compared with the uniform surface pressure load by the conventional end ring structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明は超電導回転電機の回転子の一実施例を
示す要部構成図
FIG. 1 is a main part configuration diagram showing one embodiment of a rotor of a superconducting rotary electric machine according to the present invention;

【図2】図1におけるエンドリング部の断面図FIG. 2 is a sectional view of an end ring portion in FIG. 1;

【図3】エンドリング部が積層導体の反発力により内圧
を受けた状態を説明するための概略図
FIG. 3 is a schematic diagram for explaining a state in which an end ring receives an internal pressure due to a repulsive force of a laminated conductor.

【図4】積層導体に圧縮荷重を負荷した際の荷重−変位
(厚さ)線図
FIG. 4 is a load-displacement (thickness) diagram when a compressive load is applied to a laminated conductor.

【図5】本発明の他の実施例を示す要部構成図FIG. 5 is a main part configuration diagram showing another embodiment of the present invention.

【図6】従来の代表的な超電導回転電機の構造図FIG. 6 is a structural diagram of a typical conventional superconducting rotating electric machine.

【図7】図6の積層導体を含むエンドリング部の縦断面
FIG. 7 is a longitudinal sectional view of an end ring portion including the laminated conductor of FIG. 6;

【図8】従来の回転子のエンドリング部要部構成図FIG. 8 is a configuration diagram of a main part of an end ring portion of a conventional rotor.

【図9】図8の積層導体を含むエンドリング部の横断面
FIG. 9 is a cross-sectional view of an end ring portion including the laminated conductor of FIG. 8;

【符号の説明】[Explanation of symbols]

1…積層導体 2…巻線取付軸 3…くさび 4…保持環 5…ラジエーションシールド 6…常温ダンパ
ー 7…電機子巻線 8…磁気シール
ド 9…トルクチューブ 10…継ぎシャフ
ト 11…フレキシブルサポート 12…冷却筒 13…従来エンドリング 14…分割エンド
リング 15…負荷時荷重−変位線図 16…緩和後荷重
−変位線図
DESCRIPTION OF SYMBOLS 1 ... Laminated conductor 2 ... Winding mounting shaft 3 ... Wedge 4 ... Retaining ring 5 ... Radiation shield 6 ... Room temperature damper 7 ... Armature winding 8 ... Magnetic shield 9 ... Torque tube 10 ... Joint shaft 11 ... Flexible support 12 ... Cooling Cylinder 13 ... Conventional end ring 14 ... Split end ring 15 ... Load-displacement diagram under load 16 ... Load-displacement diagram after relaxation

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 巻線取付軸に設けた複数のスロットに積
層導体が収納され、その周りにエンドリングが嵌合され
た超電導回転電機の回転子において、前記巻線取付軸の
周方向に形成された各スロットに収納される前記積層導
体を、前記巻線取付軸の軸方向に分割されたリングで保
したことを特徴とする超電導回転電機の回転子。
In a rotor of a superconducting rotating electrical machine in which a laminated conductor is accommodated in a plurality of slots provided on a winding attachment shaft and an end ring is fitted around the laminated conductor ,
The stacked conductors accommodated in the respective slots formed in the circumferential direction.
The body is held by a ring divided in the axial direction of the winding attachment shaft.
The rotor of the superconducting rotating electrical machine, characterized in that lifting the.
JP20207291A 1991-08-13 1991-08-13 Superconducting rotating electric machine rotor Expired - Lifetime JP3300387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20207291A JP3300387B2 (en) 1991-08-13 1991-08-13 Superconducting rotating electric machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20207291A JP3300387B2 (en) 1991-08-13 1991-08-13 Superconducting rotating electric machine rotor

Publications (2)

Publication Number Publication Date
JPH0549235A JPH0549235A (en) 1993-02-26
JP3300387B2 true JP3300387B2 (en) 2002-07-08

Family

ID=16451489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20207291A Expired - Lifetime JP3300387B2 (en) 1991-08-13 1991-08-13 Superconducting rotating electric machine rotor

Country Status (1)

Country Link
JP (1) JP3300387B2 (en)

Also Published As

Publication number Publication date
JPH0549235A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
US5122704A (en) Composite rotor sleeve
US5777420A (en) Superconducting synchronous motor construction
KR101887714B1 (en) High-temperature superconductor (hts) coil
US6140719A (en) High temperature superconducting rotor for a synchronous machine
US6879081B1 (en) Stator coil assembly for superconducting rotating machines
US4060743A (en) Superconductive exciter winding for the rotor of a turbogenerator and method of production
EP0750806B1 (en) Electrical machines and components thereof incorporating foil journal bearings
JP2004266988A (en) Cold structural enclosure for multi-pole rotor having super-conducting field coil windings
US5726516A (en) Rotor for high speed switched reluctance machine
US4126798A (en) Superconductive winding
JPS61278109A (en) Conical impregnation-free winding for magnetic resonance
JP4376869B2 (en) Rotor assembly
US7728466B2 (en) Machine based on superconducting technology with part support elements
US4328437A (en) Superconductive exciter winding for a turbogenerator rotor
JP3300387B2 (en) Superconducting rotating electric machine rotor
US20040051419A1 (en) Winding support of a superconductive rotor, comprising a structure allowing the axial expansion of said support
US4316113A (en) Electric rotary machine
US4442369A (en) Rotor of a superconductive rotary electric machine
US20020180305A1 (en) Electrical machine
KR100871944B1 (en) High temperature super-conducting rotor coil support and coil support method
US20060125331A1 (en) Electric machine comprising a wrapped coil that is to be deep-frozen
JPH06284608A (en) Ac rotating machine
US11626769B2 (en) External rotor motor with cast stator
JPH04200263A (en) Rotor of superconducting rotating machine
EP1051793A1 (en) Electric turbogenerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10