JP2764109B2 - Gas identification sensor system - Google Patents

Gas identification sensor system

Info

Publication number
JP2764109B2
JP2764109B2 JP5056389A JP5056389A JP2764109B2 JP 2764109 B2 JP2764109 B2 JP 2764109B2 JP 5056389 A JP5056389 A JP 5056389A JP 5056389 A JP5056389 A JP 5056389A JP 2764109 B2 JP2764109 B2 JP 2764109B2
Authority
JP
Japan
Prior art keywords
gas
sensor system
resonance frequency
change
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5056389A
Other languages
Japanese (ja)
Other versions
JPH02228538A (en
Inventor
宏 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP5056389A priority Critical patent/JP2764109B2/en
Publication of JPH02228538A publication Critical patent/JPH02228538A/en
Application granted granted Critical
Publication of JP2764109B2 publication Critical patent/JP2764109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、化学工業、環境計測分野におけるガスの
計測、識別を行う装置に関する。
Description: TECHNICAL FIELD The present invention relates to an apparatus for measuring and identifying gas in the chemical industry and the environmental measurement field.

〔発明の概要〕[Summary of the Invention]

この発明の水晶振動子のインピーダンス変化と共振周
波数変化の比を指標とするガス識別センサーシステム
は、感応膜を有する水晶振動子、電気的インピーダンス
および共振周波数測定装置、記録装置(または表示装
置)から構成され、ガスの濃度の測定と識別を行う装置
である。このうち、インピーダンスおよび共振周波数測
定装置は、周波数走引型インピーダンスアナライザーと
コンピューター、または、発振回路と周波数カウンター
と高周波電流計から構成した。
A gas identification sensor system using the ratio of the change in impedance and the change in resonance frequency of a quartz oscillator according to the present invention as an index is provided by a quartz oscillator having a sensitive film, an electrical impedance and resonance frequency measuring device, and a recording device (or display device). It is a device configured to measure and identify gas concentration. Among them, the impedance and resonance frequency measuring device was composed of a frequency sweep type impedance analyzer and a computer, or an oscillation circuit, a frequency counter and a high frequency ammeter.

さらに、識別能を高めるため水晶振動子の電気的イン
ピーダンス変化と共振周波数変化の比、および、2つの
水晶振動子の共振周波数変化の比を指標とし、ガスの識
別を行なうガス識別センサーシステムは、少なくとも、
感応膜を有する複数の水晶振動子と同数のリレー、イン
ピーダンスおよび共振周波数測定装置、記録装置(また
は表示装置)より構成される。
Furthermore, in order to enhance the discriminating ability, a gas discrimination sensor system that performs gas discrimination using a ratio between a change in the electrical impedance of the crystal unit and a change in the resonance frequency and a ratio between the change in the resonance frequency of the two crystal units as an index is at least,
It is composed of the same number of relays as a plurality of quartz oscillators having a sensitive film, impedance and resonance frequency measuring devices, and a recording device (or display device).

この装置によって、これまでの水晶振動子センサーシ
ステムに比べて、より少ないセンサー素子でガスの識別
が行えるようになった。
With this device, gas identification can be performed with fewer sensor elements as compared with the conventional quartz oscillator sensor system.

〔従来の技術〕[Conventional technology]

従来、圧電素子とくに水晶振動子を利用したガスセン
サーでは、ガスの識別のために複数の有機薄膜で被覆し
た水晶振動子を用い、発振回路によって、発振周波数を
測定する方法がとられていた。
Conventionally, in a gas sensor using a piezoelectric element, particularly a quartz oscillator, a method of measuring an oscillation frequency by an oscillation circuit using a quartz oscillator covered with a plurality of organic thin films for gas identification has been adopted.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の発振周波数を指標とする測定法でガスの識別を
行なう場合、1つのセンサーについて、共振周波数変化
という1つの指標しか得られないため、識別を行なうた
めに数多くのセンサーを使用する必要があった。
When a gas is identified by a conventional measurement method using an oscillation frequency as an index, only one index, that is, a change in resonance frequency, can be obtained for one sensor. Therefore, it is necessary to use a large number of sensors for identification. Was.

〔課題を解決するための手段〕[Means for solving the problem]

上記の課題を解決するために、新たに水晶振動子のイ
ンピーダンス変化と共振周波数変化の2つの指標を利用
し、この比を求めることによって、ガスの識別を行なわ
せることにした。さらに、感応膜の異なる2つの水晶振
動子の共振周波数変化の比を合わせて使用することによ
って、識別の効果を高めた。
In order to solve the above-mentioned problem, gas is newly identified by using two indices of a change in impedance and a change in resonance frequency of the crystal unit and calculating the ratio. Furthermore, the effect of discrimination was enhanced by using the ratio of the change in the resonance frequency of the two quartz resonators having different sensitive films.

〔作用〕[Action]

これまで水晶振動子ガスセンサーの共振周波数変化
は、Saurebreyの式に従うとされていた。しかし、Saure
breyの式では、水晶振動子表面の弾性的な膜に限って適
用されるものであり、高分子膜のような粘弾性的な膜で
は、そのまま適用することはできない。従って、実際の
周波数変化は、Saurebreyの式から計算される値と異な
ると考えられる。一方、高分子膜の粘弾性的な性質か
ら、水晶振動子などの圧電素子表面における振動に対し
て、摩擦抵抗を与えることになる。圧電素子において、
この機械的な摩擦抵抗は、電気的な共振抵抗に反映され
ることが既に知られている[H.Muramatsu et al.,Ana
l.Chem.,60(1988)2142]。ここで、共振抵抗は、高分
子膜の密度と粘度に依存して変化すると考えられる。し
たがって、ガスが高分子膜に吸着した場合、まず、密度
の変化として共振抵抗が変化する。これに加えて、高分
子膜の粘弾性的性質(特に粘性的性質)が変化すること
によって、さらに共振抵抗の値が変化すると考えられ
る。ここで、吸着するガスの種類によって、膜の構造変
化への寄与が異なることから、吸着するガスによって、
共振周波数変化と共振抵抗の比は、異なる変化をするも
のであり、これを利用することによって、ガス識別が可
能となる。
Until now, the change in the resonance frequency of a quartz oscillator gas sensor was said to follow Saurebrey's equation. But Saure
The Brey's equation is applied only to an elastic film on the surface of a quartz oscillator, and cannot be applied to a viscoelastic film such as a polymer film as it is. Therefore, the actual frequency change is considered to be different from the value calculated from the Saurebrey equation. On the other hand, due to the viscoelastic properties of the polymer film, frictional resistance is given to vibration on the surface of a piezoelectric element such as a quartz oscillator. In the piezoelectric element,
It is already known that this mechanical frictional resistance is reflected in the electrical resonance resistance [H. Muramatsu et al., Ana
l. Chem., 60 (1988) 2142]. Here, it is considered that the resonance resistance changes depending on the density and the viscosity of the polymer film. Therefore, when the gas is adsorbed on the polymer film, first, the resonance resistance changes as the density changes. In addition to this, it is considered that the value of the resonance resistance further changes when the viscoelastic property (particularly, the viscous property) of the polymer film changes. Here, since the contribution to the structural change of the film differs depending on the type of the gas to be adsorbed,
The ratio between the resonance frequency change and the resonance resistance changes differently, and by using this, the gas can be identified.

〔実施例〕〔Example〕

以下、この発明の実施例を図面に基づいて説明する。
第1図aは、本発明のガスセンサーシステムの模式図を
示したものである。第1図aにおいて、高分子膜4をコ
ートした圧電素子1は、圧電素子の電気的インピーダン
スおよび共振周波数測定装置2に接続され、装置2に
は、記録装置(または表示装置)3が接続されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1a shows a schematic view of the gas sensor system of the present invention. In FIG. 1a, a piezoelectric element 1 coated with a polymer film 4 is connected to a device 2 for measuring the electrical impedance and resonance frequency of the piezoelectric element, and a recording device (or display device) 3 is connected to the device 2. ing.

第1図bは、2つの高分子膜被覆圧電素子として、ア
ゾレクチン膜5とアゾレクチン/コレステロール3:1の
混合膜6を被覆したATカット9MHzの水晶振動子7、7aと
リレー8、8aを用い、電気的インピーダンスおよび共振
周波数測定装置2として、インピーダンスアナライザー
とコンピューターを使用するセンサーシステムの模式図
である。第1図bにおいて、水晶振動子7、7aはフロー
セル9中に固定され、このフローセル9中へ匂い物質ガ
スが送り込まれるようになっている。
FIG. 1B shows an AT-cut 9 MHz quartz oscillator 7, 7a and a relay 8, 8a coated with an azolectin film 5 and an azolectin / cholesterol 3: 1 mixed film 6 as two polymer film-coated piezoelectric elements. FIG. 1 is a schematic diagram of a sensor system using an impedance analyzer and a computer as an electrical impedance and resonance frequency measuring device 2. In FIG. 1b, the quartz oscillators 7 and 7a are fixed in a flow cell 9, and an odor substance gas is fed into the flow cell 9.

共振抵抗の測定は、アドミッタンスの虚数成分サセプ
タンスの最大値、最小値を与える周波数の間に共振周波
数変化があることから、まず、この範囲を周波数掃引し
てアドミッタンスの測定を行った。測定したコンダクタ
ンスとサセプタンスのデータをXY軸上にプロットした場
合描かれる円の直径を求め、この逆数を共振抵抗の値と
した。また、コンダクタンスの最大値を示す周波数を共
振周波数として求めた。この処理はすべてコンピュータ
ーで行うことが可能であり、1回の測定は、4秒以内で
行うことが可能であった。
In the measurement of the resonance resistance, since there was a change in the resonance frequency between the frequencies giving the maximum value and the minimum value of the imaginary component susceptance of the admittance, first, the frequency was swept over this range to measure the admittance. The diameter of the circle drawn when the measured conductance and susceptance data were plotted on the XY axis was determined, and the reciprocal thereof was used as the value of the resonance resistance. Further, the frequency showing the maximum value of the conductance was determined as the resonance frequency. All of this processing could be performed by a computer, and one measurement could be performed within 4 seconds.

本発明の装置によって、共振抵抗と共振周波数変化の
比は、ガスの種類によって変化し、ガスの識別に利用可
能であることがわかる。第2図は、横軸に、2つのセン
サーの共振周波数変化の標準化した値(共振周波数変化
をそれぞれ膜形成時の周波数変化で割った値)の比(混
合膜で得た値をアゾレクチンで得た値で割った値)をと
ったもので、縦軸は、アゾレクチンに対する標準化した
共振周波数変化と標準化した共振抵抗の比(共振周波数
変化を共振抵抗変化で割った値)をとったものであり、
測定対象として、β−イオノン、シトラール、メント
ン、n−アルミアセテート、エタノール、メタノール、
アセトン、エチルエーテルを使用したものである。第2
図に示されるように、2つの感応膜を有するセンサーに
よって、匂い物質の識別を行なうことが可能であること
が示された。
According to the apparatus of the present invention, it can be seen that the ratio between the resonance resistance and the change in the resonance frequency changes depending on the type of gas and can be used for gas identification. FIG. 2 shows the ratio of the standardized value of the resonance frequency change of the two sensors (the value obtained by dividing the resonance frequency change by the frequency change at the time of film formation) of the two sensors (the value obtained with the mixed film was obtained with azolectin). The vertical axis shows the ratio of the normalized resonance frequency change to the azo lectin to the standardized resonance resistance (resonance frequency change divided by resonance resistance change). ,
As the measurement target, β-ionone, citral, mentone, n-aluminum acetate, ethanol, methanol,
Acetone and ethyl ether were used. Second
As shown in the figure, it was shown that the odorant can be identified by a sensor having two sensitive films.

一方、インピーダンスおよび共振周波数変化測定回路
として、発振回路と周波数カウンターと高周波電流計を
用い、発振周波数と共振抵抗に変わる指標として水晶振
動子に流れる電流の測定を行なうことによっても同様に
ガスの識別を行なうことができた。
On the other hand, by using an oscillation circuit, a frequency counter, and a high-frequency ammeter as an impedance and resonance frequency change measurement circuit, and by measuring the current flowing through the crystal resonator as an index that changes to the oscillation frequency and the resonance resistance, the gas can be similarly identified. Was able to do.

さらに、インピーダンスアナライザーの代わりに、周
波数走引回路と周波数カウンターを使用し、マイクロコ
ンピューターを用いて、電流がピークを示す周波数を近
似的に共振周波数とし、ピークの高さから、近似的に共
振抵抗を算出することによっても、測定が可能だった。
Furthermore, a frequency sweep circuit and a frequency counter are used in place of the impedance analyzer, and the frequency at which the current shows a peak is approximately determined as the resonance frequency using a microcomputer, and the resonance resistance is approximately determined from the height of the peak. The measurement was also possible by calculating.

また本装置で得られた共振抵抗または共振周波数の変
化量からガスの濃度を測定することも可能である。
It is also possible to measure the gas concentration from the amount of change in the resonance resistance or the resonance frequency obtained by the present apparatus.

〔発明の効果〕〔The invention's effect〕

本発明のガス識別センサーシステムによって、従来よ
り少ない数のセンサーによって、ガスの識別を行なうこ
とが可能となった。
The gas identification sensor system of the present invention makes it possible to identify a gas with a smaller number of sensors than before.

【図面の簡単な説明】[Brief description of the drawings]

第1図aは、本発明のガス識別センサーシステムの模式
図、第1図bは、本発明の実施例で使用したセンサーシ
ステムの模式図、第2図は、本発明のセンサーシステム
によるガス識別のための2次元パターンを示す図であ
る。
FIG. 1a is a schematic diagram of a gas identification sensor system of the present invention, FIG. 1b is a schematic diagram of a sensor system used in an embodiment of the present invention, and FIG. 2 is a gas identification by the sensor system of the present invention. FIG. 3 is a diagram showing a two-dimensional pattern for the above.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 5/02,9/00,11/00 G01N 27/02 - 27/24 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 6 , DB name) G01N 5 / 02,9 / 00,11 / 00 G01N 27/02-27/24 JICST file (JOIS)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水晶振動子の電気的インピーダンス変化と
共振周波数変化の比を指標とし、ガスの識別を行なうガ
ス識別センサーシステム。
1. A gas discrimination sensor system for discriminating a gas using a ratio between a change in electrical impedance and a change in resonance frequency of a crystal unit as an index.
【請求項2】少なくとも、感応膜を有する水晶振動子と
インピーダンスおよび共振周波数測定装置、記録装置
(または表示装置)より構成される請求項1記載のガス
識別センサーシステム。
2. The gas identification sensor system according to claim 1, comprising at least a quartz oscillator having a sensitive film, an impedance and resonance frequency measuring device, and a recording device (or a display device).
【請求項3】水晶振動子の電気的インピーダンス変化と
共振周波数変化の比、および、2つの水晶振動子の共振
周波数変化の比を指標とし、ガスの識別を行なうガス識
別センサーシステム。
3. A gas discrimination sensor system for discriminating a gas using a ratio between a change in electrical impedance of a crystal unit and a change in resonance frequency and a ratio between a change in resonance frequency between two crystal units as an index.
【請求項4】少なくとも、感応膜を有する複数の水晶振
動子と同数のリレー、インピーダンスおよび共振周波数
測定装置、記録装置(または表示装置)より構成される
請求項3記載のガス識別センサーシステム。
4. The gas discrimination sensor system according to claim 3, comprising at least as many relays, impedance and resonance frequency measuring devices and recording devices (or display devices) as the plurality of quartz oscillators having a sensitive film.
【請求項5】前記インピーダンスおよび共振周波数測定
装置が、周波数走引型インピーダンスアナライザーとコ
ンピューターより構成される請求項1あるいは3記載の
ガス識別センサーシステム。
5. The gas identification sensor system according to claim 1, wherein said impedance and resonance frequency measuring device comprises a frequency sweep type impedance analyzer and a computer.
【請求項6】前記インピーダンスおよび共振周波数測定
装置が、発振回路と周波数カウンターと高周波電流計に
より構成される請求項1あるいは3記載のガス識別セン
サーシステム。
6. The gas discrimination sensor system according to claim 1, wherein said impedance and resonance frequency measuring device comprises an oscillation circuit, a frequency counter, and a high-frequency ammeter.
【請求項7】前記水晶振動子が、ATカット水晶振動子で
ある請求項1あるいは3記載のガス識別センサーシステ
ム。
7. The gas identification sensor system according to claim 1, wherein said quartz oscillator is an AT-cut quartz oscillator.
【請求項8】前記感応膜が、脂質またはその他細胞膜構
成物質である請求項1あるいは3記載のガス識別センサ
ーシステム。
8. The gas identification sensor system according to claim 1, wherein the sensitive membrane is a lipid or other cell membrane constituent.
JP5056389A 1989-03-02 1989-03-02 Gas identification sensor system Expired - Lifetime JP2764109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5056389A JP2764109B2 (en) 1989-03-02 1989-03-02 Gas identification sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5056389A JP2764109B2 (en) 1989-03-02 1989-03-02 Gas identification sensor system

Publications (2)

Publication Number Publication Date
JPH02228538A JPH02228538A (en) 1990-09-11
JP2764109B2 true JP2764109B2 (en) 1998-06-11

Family

ID=12862471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5056389A Expired - Lifetime JP2764109B2 (en) 1989-03-02 1989-03-02 Gas identification sensor system

Country Status (1)

Country Link
JP (1) JP2764109B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057324B2 (en) * 1990-09-13 2000-06-26 セイコーインスツルメンツ株式会社 Chemical substance identification sensor system
JPH05306983A (en) * 1991-08-16 1993-11-19 Kaoru Santo Odorant sensor
ES2845173T3 (en) * 2012-05-24 2021-07-26 Air Prod & Chem Procedure and apparatus for regulating the mass flow rate of a gas
JP6726376B1 (en) * 2020-03-13 2020-07-22 東京瓦斯株式会社 Gas leak detection system, gas leak detection device and program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
計測技術 17[8] (1989−7−5) P.35〜40、松村宏,軽部征夫
遺伝 43[1] (1989−1−1) P.25〜29、松村宏

Also Published As

Publication number Publication date
JPH02228538A (en) 1990-09-11

Similar Documents

Publication Publication Date Title
Josse et al. Analysis of the radial dependence of mass sensitivity for modified-electrode quartz crystal resonators
Patel et al. Real-time detection of organic compounds in liquid environments using polymer-coated thickness shear mode quartz resonators
SE504199C2 (en) Device for measuring resonant frequency and / or dissipation factor of a piezoelectric crystal microwave
Bund et al. Viscoelastic properties of low-viscosity liquids studied with thickness-shear mode resonators
US5211054A (en) Method and system for analyzing a gelation reaction by utilizing a piezoelectric resonator
Reibel et al. Influence of phase position on the performance of chemical sensors based on SAW device oscillators
JP2764109B2 (en) Gas identification sensor system
JP4476496B2 (en) High-frequency measurement circuit with intrinsic noise reduction for resonant chemical sensors
Zaitsev et al. Compact liquid analyzer based on a resonator with a lateral excitation electric field
Nakamoto et al. Development of circuit for measuring both Q variation and resonant frequency shift of quartz crystal microbalance
Massa et al. Computerized measurement of viscoelastic properties of macromolecular solutions: Frequency dependence over and extended range of solvent viscosity
Matsiev et al. Application of low frequency mechanical resonators to liquid property measurements
Fioretto et al. Dynamics of polybutadiene above the glass transition studied by Brillouin light scattering
JP2003240697A (en) Analytical method and device for membrane properties
Kankare et al. Method for measuring the losses and loading of a quartz crystal microbalance
Bianchi et al. A microwave system for moisture monitoring in wet powders for industrial applications
JP2811315B2 (en) Piezoelectric gas sensor system
CN104034798A (en) Cell suspension concentration detection system and its detection method
US7350403B2 (en) Method and apparatus for determination of food quality and authenticity
Menon et al. Coated-quartz crystal resonator (QCR) sensors for on-line detection of organic contaminants in water
EP0304283A2 (en) Apparatus for measuring a characteristic of a liquid
JP5123046B2 (en) Relative permittivity / conductivity measuring apparatus and measuring method thereof
JP3376417B2 (en) Calibration method for ultra-low-mass detectors using high-frequency quartz oscillators
JP2819167B2 (en) Erythrocyte sedimentation velocity measuring method and apparatus
Cumpson Quartz crystal microbalance: A new design eliminates sensitivity outside the electrodes, often wrongly attributed to the electric fringing field

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090403

EXPY Cancellation because of completion of term