JP2762895B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2762895B2
JP2762895B2 JP5151871A JP15187193A JP2762895B2 JP 2762895 B2 JP2762895 B2 JP 2762895B2 JP 5151871 A JP5151871 A JP 5151871A JP 15187193 A JP15187193 A JP 15187193A JP 2762895 B2 JP2762895 B2 JP 2762895B2
Authority
JP
Japan
Prior art keywords
film
silicon nitride
resistor
thin film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5151871A
Other languages
Japanese (ja)
Other versions
JPH0722585A (en
Inventor
大川  誠
眞喜男 飯田
哲章 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP5151871A priority Critical patent/JP2762895B2/en
Priority to US08/222,815 priority patent/US5525831A/en
Priority to EP94105245A priority patent/EP0620586B1/en
Priority to DE69427501T priority patent/DE69427501T2/en
Publication of JPH0722585A publication Critical patent/JPH0722585A/en
Application granted granted Critical
Publication of JP2762895B2 publication Critical patent/JP2762895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、基板上に形成される薄
膜抵抗体のレーザートリミングに関し、特に薄膜抵抗体
上に形成される保護膜構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to laser trimming of a thin film resistor formed on a substrate, and more particularly to a protective film structure formed on a thin film resistor.

【0002】[0002]

【従来技術】従来、基板上に形成した薄膜抵抗体をレー
ザー光により溶融切断して、その抵抗値を調整するレー
ザートリミング法が知られている。そして、この薄膜抵
抗体の保護膜として、トリミング性の観点から薄膜抵抗
上には酸化珪素を成膜し、耐環境性の観点から酸化珪素
膜上に窒化珪素膜を成膜するといった2層保護膜が使用
されている。
2. Description of the Related Art Conventionally, there has been known a laser trimming method in which a thin film resistor formed on a substrate is melt-cut with a laser beam to adjust the resistance value. Then, as a protective film for the thin film resistor, a two-layer protective film is formed by forming a silicon oxide film on the thin film resistor from the viewpoint of trimming property and forming a silicon nitride film on the silicon oxide film from the viewpoint of environmental resistance. A membrane is used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、保護膜
に窒化珪素膜を用いた場合には、窒化珪素膜の屈折率が
約2.0と大きいため、薄膜抵抗体で吸収されるレーザ
ー光エネルギーが図3に示すように、窒化珪素膜の膜厚
により大きく変動してしまう。その変動により薄膜抵抗
体4でのレーザー光エネルギーの吸収率が低い場合に
は、トリミングができないといった問題が生じてしまう
ことがある。これを光の性質を基にして以下に説明す
る。
However, when a silicon nitride film is used as a protective film, the refractive index of the silicon nitride film is as large as about 2.0, so that the laser light energy absorbed by the thin film resistor is reduced. As shown in FIG. 3, the value greatly varies depending on the thickness of the silicon nitride film. If the thin film resistor 4 has a low absorptance of laser light energy due to the fluctuation, a problem may occur that trimming cannot be performed. This will be described below based on the properties of light.

【0004】光の性質として、平行平板に入射されたレ
ーザー光エネルギーは、平行平板表面での反射R、平行
平板での吸収Aおよび透過Tと3種類の状態に分けられ
る。すなわち、この3種類の状態の和が、入射したレー
ザー光のエネルギーに相当する。入射したレーザー光の
エネルギーを1としてこれを式で表すと、
As the nature of light, laser light energy incident on a parallel plate is divided into three types: reflection R on the surface of the parallel plate, absorption A and transmission T on the parallel plate. That is, the sum of these three states corresponds to the energy of the incident laser light. If the energy of the incident laser light is expressed as 1 and this is expressed by the formula,

【0005】[0005]

【数1】A+T+R=1 となる。そして、多層膜においては、その表面での反射
光R0 は、各層界面からの反射光(R1,2,3,・・
・)の干渉光となる。従って、反射光R0 が変化すると
数1式をみても分かるように、多層膜中に入射されるレ
ーザー光も変動することになる。ここで、図2に示すよ
うな窒化珪素膜2,酸化珪素膜3,薄膜抵抗体4,下地
酸化膜5,シリコン基板6からなる多層膜系を考える場
合、反射光R 0 は、窒化珪素膜2の表面での反射、すな
わち界面aからの反射光R1 とそれ以下の界面b,c,
d,eからの反射光R2 との干渉光と考えることができ
る。薄膜抵抗4をトリミングするレーザー光が波長1.
064μmのYAGレーザー光の場合、干渉光である反
射光R0 は窒化珪素膜2の膜厚変動に影響を受け、約2
66nmの周期で変化する。実際、図2に示す窒化珪素
膜の膜厚は1μm程度であり、この厚さでの膜厚ばらつ
きは200〜300nmとなってしまう。従って、図2
に示すような素子構造では反射光R0 は窒化珪素膜の膜
厚変動の影響を受けることになり、上述のように薄膜抵
抗体4に到達するレーザー光が変動し、図3に示すよう
に薄膜抵抗体4でのレーザー光エネルギーの吸収率が変
動してしまう。特に、SOI構造を有する素子の場合
は、薄膜抵抗体でのレーザー光エネルギー吸収率がSO
I層の影響を受けるため、さらに深刻な問題となってい
る。
## EQU1 ## A + T + R = 1. And in a multilayer film, the reflection on the surface
Light R0Is the reflected light (R1,R2,R3,・ ・
・) Becomes interference light. Therefore, the reflected light R0Changes
As can be seen from equation (1), the laser beam incident on the multilayer film
The user light will also fluctuate. Here, as shown in FIG.
Silicon nitride film 2, silicon oxide film 3, thin film resistor 4, base
A place to think about a multilayer film system consisting of an oxide film 5 and a silicon substrate 6
The reflected light R 0Means reflection on the surface of the silicon nitride film 2
Light R reflected from interface a1And the interfaces b, c,
Reflected light R from d and eTwoCan be considered as interference light with
You. The laser light for trimming the thin film resistor 4 has a wavelength of 1.
In the case of a 064 μm YAG laser beam, the
Glow R0Is affected by the variation in the thickness of the silicon nitride film 2 and is about 2
It changes at a period of 66 nm. In fact, the silicon nitride shown in FIG.
The thickness of the film is about 1 μm, and the thickness varies at this thickness.
In this case, it becomes 200 to 300 nm. Therefore, FIG.
In the element structure shown in FIG.0Is a silicon nitride film
It is affected by thickness fluctuations, and as described above,
The laser light reaching antibody 4 fluctuates, as shown in FIG.
The absorption rate of laser light energy in the thin film resistor 4
Will move. In particular, in the case of an element having an SOI structure
Indicates that the laser light energy absorption rate of the thin film resistor is SO
This is an even more serious problem due to the impact of the I layer.
You.

【0006】従って、本発明は、上記問題点に鑑み、基
板上に形成した薄膜抵抗体のレーザートリミングにおい
て、この薄膜抵抗体上に形成した保護膜の膜厚ばらつき
の影響を低減することのできる半導体装置を提供するこ
とを目的とする。
Accordingly, in view of the above problems, the present invention can reduce the influence of the variation in the thickness of a protective film formed on a thin film resistor in laser trimming of a thin film resistor formed on a substrate. It is an object to provide a semiconductor device.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに成された本発明による半導体装置は、基板上に形成
され、レーザー光によってその抵抗値を調整される薄膜
抵抗体を有する半導体装置において、該薄膜抵抗体上に
形成される第1の保護膜の屈折率よりも小さい屈折率を
有する第2の保護膜を形成したことを特徴としている。
SUMMARY OF THE INVENTION A semiconductor device according to the present invention, which has been made to solve the above problems, has a thin film resistor formed on a substrate and having its resistance adjusted by laser light. Wherein a second protective film having a refractive index smaller than that of the first protective film formed on the thin film resistor is formed.

【0008】[0008]

【作用】本発明によると、薄膜抵抗体上に形成される第
1の保護膜よりも屈折率の小さい第2の保護膜を形成す
るようにしているため、前記第1の保護膜表面でのレー
ザー光の反射を抑えることができる。これにより、前記
第1の保護膜の膜厚ばらつきに起因する、前記第1の保
護膜下層界面からの反射光と前記第1の保護膜表面上か
らの反射光との干渉による反射光の変動を抑えることが
できる。
According to the present invention, since the second protective film having a smaller refractive index than the first protective film formed on the thin film resistor is formed, the second protective film on the surface of the first protective film is formed. The reflection of laser light can be suppressed. Thereby, the fluctuation of the reflected light due to the interference between the reflected light from the lower protective film interface and the reflected light from the surface of the first protective film caused by the thickness variation of the first protective film. Can be suppressed.

【0009】[0009]

【実施例】本発明の一実施例を図1を用いて説明する。
本実施例は、従来構造の素子表面にさらに反射防止膜と
して、酸化珪素膜を堆積したものである。本実施例の構
造を以下に示す。Si基板6上に、ボロンおよびリンを
含有する酸化珪素膜であるBPSG膜および酸化珪素膜
からなる下地酸化膜5を形成し、その上にCrSiから
なる薄膜抵抗体4を形成し、その上に薄膜抵抗体の保護
膜としてTEOS酸化膜3,p−SiNからなる窒化珪
素膜2を形成し、さらにTEOS酸化膜1を形成する。
窒化珪素膜2の屈折率n2 は2.0であり、酸化膜1の
屈折率n1 は1.45である。このときのTEOS酸化
膜1の厚さは183nm程度(後に説明する)とする。
なお、図中7はAl配線である。
An embodiment of the present invention will be described with reference to FIG.
In this embodiment, a silicon oxide film is further deposited as an antireflection film on the surface of a device having a conventional structure. The structure of this embodiment is shown below. A base oxide film 5 made of a BPSG film and a silicon oxide film, which is a silicon oxide film containing boron and phosphorus, is formed on a Si substrate 6, and a thin film resistor 4 made of CrSi is formed thereon. A TEOS oxide film 3 and a silicon nitride film 2 made of p-SiN are formed as a protective film of the thin film resistor, and a TEOS oxide film 1 is further formed.
Refractive index n 2 of the silicon nitride film 2 is 2.0, the refractive index n 1 of the oxide film 1 is 1.45. At this time, the thickness of the TEOS oxide film 1 is about 183 nm (described later).
In the figure, reference numeral 7 denotes an Al wiring.

【0010】上記構造の素子にYAGレーザー光(波長
1064nm)を照射した場合の薄膜抵抗体4でのレー
ザー光の吸収率変化を図4に示す。また、従来構造の素
子における薄膜抵抗体でのレーザー光の吸収率変化を図
3に示す。両図を見比べても分かるように、窒化珪素膜
上に酸化珪素膜を形成した本実施例の方が、窒化珪素膜
の膜厚変化に対して薄膜抵抗体でのレーザー光エネルギ
ーの変動が小さいことが分かる。
FIG. 4 shows a change in absorptivity of laser light in the thin film resistor 4 when the device having the above structure is irradiated with YAG laser light (wavelength: 1064 nm). FIG. 3 shows a change in absorptivity of laser light in a thin film resistor in a device having a conventional structure. As can be seen by comparing both figures, in the present embodiment in which the silicon oxide film is formed on the silicon nitride film, the variation of the laser light energy in the thin film resistor with respect to the change in the thickness of the silicon nitride film is smaller. You can see that.

【0011】以上のように、本実施例によると窒化珪素
膜よりも屈折率の小さい酸化珪素膜(TEOS酸化膜)
を窒化珪素膜上に形成しているため、窒化珪素膜表面で
の反射光を抑えることができる。そのため、窒化珪素膜
下層界面からの反射光と窒化珪素膜表面の反射光との干
渉による反射光の変動を抑えることができる。すなわ
ち、窒化珪素膜の膜厚ばらつきによる反射光の変動を抑
えることができる。これにより、薄膜抵抗体に到達する
レーザー光の変動を抑えることができ、薄膜抵抗体での
レーザー光エネルギーの吸収率の変動を抑えることがで
きる。従って、薄膜抵抗体のレーザートリミングにおい
て、窒化珪素膜の膜厚ばらつきの影響を低減することの
できる半導体装置を提供できる。
As described above, according to the present embodiment, the silicon oxide film (TEOS oxide film) having a smaller refractive index than the silicon nitride film.
Is formed on the silicon nitride film, so that light reflected on the surface of the silicon nitride film can be suppressed. For this reason, it is possible to suppress the fluctuation of the reflected light due to the interference between the reflected light from the lower interface of the silicon nitride film and the reflected light on the surface of the silicon nitride film. That is, it is possible to suppress the variation of the reflected light due to the variation in the thickness of the silicon nitride film. Thereby, the fluctuation of the laser light reaching the thin film resistor can be suppressed, and the fluctuation of the absorptivity of laser light energy in the thin film resistor can be suppressed. Therefore, it is possible to provide a semiconductor device which can reduce the influence of the thickness variation of the silicon nitride film in the laser trimming of the thin film resistor.

【0012】尚、薄膜抵抗体以下の構造がどの様な構造
になっていても、薄膜抵抗体上に保護膜が存在する場合
には、その上に保護膜よりも低屈折率の膜を形成するよ
うにすれば同等な効果が得られる。上述のように、窒化
珪素膜上に酸化珪素膜を形成した場合には、窒化珪素膜
の膜厚変動による薄膜抵抗体でのレーザー光エネルギー
の吸収率変動を抑えることができる事が分かった。そこ
で、次に、窒化珪素膜上の酸化珪素膜の厚さの最適化に
ついて考える。酸化珪素の最適膜厚とは、窒化珪素膜表
面上でのレーザー光の反射が最小になるときである。こ
こで、垂直入射光に対して、1個の単層膜を下から順に
それと等価な1つの面に次々に置き換えていくRoua
rdの方法がある。この方法では、単層膜の上下両界面
での反射率を1つの式に置き換えることが可能となる。
なお、この方法は上の単層膜から順に行っても同等であ
り、ここでは上の単層膜から行うRouardの方法を
適用する。
Regardless of the structure of the thin film resistor and below, if a protective film is present on the thin film resistor, a film having a lower refractive index than the protective film is formed thereon. By doing so, an equivalent effect can be obtained. As described above, it has been found that when the silicon oxide film is formed on the silicon nitride film, the change in the absorptivity of laser light energy in the thin film resistor due to the change in the thickness of the silicon nitride film can be suppressed. Therefore, next, optimization of the thickness of the silicon oxide film on the silicon nitride film will be considered. The optimum thickness of silicon oxide is when the reflection of laser light on the surface of the silicon nitride film is minimized. Here, for a vertically incident light, a single layer film is sequentially replaced with one surface equivalent to the single layer film from the bottom one by one.
There is an rd method. In this method, the reflectance at both upper and lower interfaces of the single-layer film can be replaced with one equation.
Note that this method is the same even when the method is performed in order from the upper single-layer film. Here, the method of Round performed from the upper single-layer film is applied.

【0013】2層膜において上層膜の屈折率をn1 膜厚
をdとして、下層膜の屈折率をn2、また空気の屈折率
をn0 とする。このとき、n1 <n2 とすると反射率は
常に上層膜があるときの方が小さくなる。さらに、トリ
ミングに使用する照射レーザー光の波長をλとして、
In the two-layer film, the refractive index of the upper layer film is defined as n 1 film thickness, the refractive index of the lower layer film is defined as n 2 , and the refractive index of air is defined as n 0 . At this time, if n 1 <n 2 , the reflectance is always smaller when there is an upper layer film. Furthermore, assuming that the wavelength of the irradiation laser beam used for trimming is λ,

【0014】[0014]

【数2】n1 d=λ/4+mλ/2 (m=0,1,
2,・・・) という条件を満たすとき、上層膜をRouardの方法
により上層膜を面に置き換えたときの反射率は、
## EQU2 ## n 1 d = λ / 4 + mλ / 2 (m = 0, 1,
2, ...), the reflectance when the upper layer film is replaced with a surface by the method of Rouard is:

【0015】[0015]

【数3】R1 =(n1 2−n2 0 /n1 2+n2 0 2 となり、反射率R1 は最小となる。従って、この方法を
本実施例に適用して、面に置き換えられる単層膜を窒化
珪素膜上の酸化珪素膜と考えると、この酸化珪素膜の膜
厚を数2式で与えられるような膜厚にすれば、窒化珪素
膜上面での反射を最小にすることができる。本実施例の
場合では、トリミングレーザー光にYAGレーザー光を
用いているので、酸化珪素膜の光学的厚さは183nm
となる。図4は、この厚さ程度の酸化膜1を形成した時
の例である。このときの反射率は、酸化膜の屈折率をn
1 =1.45、窒化珪素膜の屈折率n2 =2.0、空気
の屈折率n0 として数3式よりR1 =6.2×10-4
なり、窒化珪素膜単独での反射率0.11に比べ遙に小
さい値となる。
Equation 3] R 1 = (n 1 2 -n 2 n 0 / n 1 2 + n 2 n 0) 2 , and the reflectance R 1 is minimized. Therefore, when this method is applied to the present embodiment and the single-layer film to be replaced with a surface is considered as a silicon oxide film on a silicon nitride film, the film thickness of this silicon oxide film is given by the following equation (2). When the thickness is increased, reflection on the upper surface of the silicon nitride film can be minimized. In the case of this embodiment, since the YAG laser beam is used as the trimming laser beam, the optical thickness of the silicon oxide film is 183 nm.
Becomes FIG. 4 shows an example in which the oxide film 1 having this thickness is formed. The reflectivity at this time is obtained by setting the refractive index of the oxide film to n.
1 = 1.45, the refractive index n 2 = 2.0 of the silicon nitride film, air R 1 = 6.2 × 10 -4 next from Equation 3 as the refractive index n 0 of the reflectance of a silicon nitride film alone The value is much smaller than 0.11.

【0016】また、薄膜抵抗体のレーザートリミング
は、窒化珪素膜などの保護膜の影響を受けるばかりでな
く、薄膜抵抗体下のBPSG膜および酸化珪素膜からな
る下地酸化膜の膜厚の影響を受けることが知られてい
る。下地酸化膜の影響は、本発明の課題と同様にその膜
厚変動によるトリミングの不安定性である。これを解決
するために、下地酸化膜の膜厚制御を考えない場合はト
リミングエネルギーを増加させなければならず、このエ
ネルギーの増加により窒化珪素膜や酸化珪素膜の破壊が
起こってしまうといった問題がある。
Further, the laser trimming of the thin film resistor is affected not only by the protective film such as a silicon nitride film but also by the thickness of the BPSG film and the underlying oxide film made of the silicon oxide film under the thin film resistor. It is known to receive. The effect of the underlying oxide film is the instability of the trimming due to the variation in the film thickness as in the case of the present invention. In order to solve this problem, the trimming energy must be increased if the thickness control of the underlying oxide film is not considered, and the increase in the energy causes a problem of destruction of the silicon nitride film and the silicon oxide film. is there.

【0017】そこで、本発明者らは、本実施例における
窒化珪素膜上の酸化膜ありの素子と従来構造の酸化膜な
しの素子とにおいて、下地酸化膜の影響をトリミングに
必要な照射レーザーエネルギーの大きさで比較検討し
た。その結果を図5に示す。同図(a)は本実施例によ
るものであり、(b)は従来技術によるものである。膜
厚は、低屈折率膜であるTEOS酸化膜を177nm,
保護膜である窒化珪素膜を1μm,TEOS酸化膜を8
20nmとした。この図より、本実施例の素子の方が下
地酸化膜の膜厚変動に対してトリミングエネルギーが小
さくなっていると共に安定していることも分かる。すな
わち、窒化珪素膜上に酸化膜を形成することにより、薄
膜抵抗体のレーザートリミングにおいて、下地酸化膜の
影響も小さくできるという効果もあることがわかった。
Therefore, the inventors of the present invention have proposed an irradiation laser energy required for trimming the influence of the base oxide film in the device having an oxide film on the silicon nitride film in the present embodiment and the device having no oxide film of the conventional structure. The size was compared. The result is shown in FIG. FIG. 3A shows the result of the present embodiment, and FIG. 3B shows the result of the prior art. The thickness of the TEOS oxide film, which is a low refractive index film, is 177 nm,
1 μm silicon nitride film as protection film and 8 μm TEOS oxide film
20 nm. From this figure, it can also be seen that the device of this example has a smaller trimming energy and is more stable with respect to the variation in the thickness of the underlying oxide film. That is, it has been found that forming an oxide film on the silicon nitride film has an effect that the influence of the underlying oxide film can be reduced in laser trimming of the thin film resistor.

【0018】[0018]

【発明の効果】以上のように、本発明によると、第1の
保護膜下層界面からの反射光と前記第1の保護膜表面上
からの反射光との干渉による反射光の変動を抑えること
ができるため、薄膜抵抗体に到達するレーザー光の変動
を抑えることができる。従って、薄膜抵抗体でのレーザ
ー光エネルギーの吸収率変動を抑えることができる。す
なわち、薄膜抵抗体のレーザートリミングにおいて、薄
膜抵抗体上に形成した保護膜の膜厚ばらつきの影響を低
減することができるという優れた効果が得られる。
As described above, according to the present invention, it is possible to suppress the fluctuation of the reflected light due to the interference between the reflected light from the lower protective film interface and the reflected light from the surface of the first protective film. Therefore, the fluctuation of the laser light reaching the thin film resistor can be suppressed. Therefore, it is possible to suppress a change in the absorptance of laser light energy in the thin film resistor. That is, in the laser trimming of the thin film resistor, an excellent effect that the influence of the thickness variation of the protective film formed on the thin film resistor can be reduced can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例を説明するための素子の
断面図である。
FIG. 1 is a cross-sectional view of a device for explaining an embodiment according to the present invention.

【図2】従来技術を説明するための素子の断面図であ
る。
FIG. 2 is a cross-sectional view of an element for explaining a conventional technique.

【図3】従来技術を説明する図である。FIG. 3 is a diagram illustrating a conventional technique.

【図4】本発明による一実施例を説明する図である。FIG. 4 is a diagram for explaining an embodiment according to the present invention.

【図5】(a)は、一実施例による特性図である。
(b)は、従来技術による特性図である。
FIG. 5A is a characteristic diagram according to one embodiment.
(B) is a characteristic diagram according to the related art.

【符号の説明】[Explanation of symbols]

1 酸化珪素膜 2 窒化珪素膜 3 酸化珪素膜 4 薄膜抵抗体 5 下地酸化膜 6 Si基板 DESCRIPTION OF SYMBOLS 1 Silicon oxide film 2 Silicon nitride film 3 Silicon oxide film 4 Thin film resistor 5 Base oxide film 6 Si substrate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−14245(JP,A) 特開 昭63−114159(JP,A) 特開 平3−242966(JP,A) 特開 昭61−22650(JP,A) 特開 平6−291260(JP,A) 特開 昭59−33859(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 27/04 H01C 17/22 H01L 21/82 H01L 21/822 H01L 27/01 321──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-4-14245 (JP, A) JP-A-63-114159 (JP, A) JP-A-3-242966 (JP, A) JP-A 61-114 22650 (JP, A) JP-A-6-291260 (JP, A) JP-A-59-33859 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 27/04 H01C 17 / 22 H01L 21/82 H01L 21/822 H01L 27/01 321

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に形成され、レーザー光によって
その抵抗値を調整される薄膜抵抗体を有する半導体装置
において、 該薄膜抵抗体上に形成される第1の保護膜の屈折率より
も小さい屈折率を有する第2の保護膜を形成したことを
特徴とする半導体装置。
1. A semiconductor device having a thin-film resistor formed on a substrate and having its resistance adjusted by laser light, wherein the refractive index of the first protective film formed on the thin-film resistor is smaller than that of the first protective film. A semiconductor device, wherein a second protective film having a refractive index is formed.
JP5151871A 1993-04-05 1993-06-23 Semiconductor device Expired - Lifetime JP2762895B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5151871A JP2762895B2 (en) 1993-06-23 1993-06-23 Semiconductor device
US08/222,815 US5525831A (en) 1993-04-05 1994-04-05 Semiconductor device with thin film resistor having reduced film thickness sensitivity during trimming process
EP94105245A EP0620586B1 (en) 1993-04-05 1994-04-05 Semiconductor device having thin film resistor
DE69427501T DE69427501T2 (en) 1993-04-05 1994-04-05 Semiconductor device with thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5151871A JP2762895B2 (en) 1993-06-23 1993-06-23 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0722585A JPH0722585A (en) 1995-01-24
JP2762895B2 true JP2762895B2 (en) 1998-06-04

Family

ID=15528044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5151871A Expired - Lifetime JP2762895B2 (en) 1993-04-05 1993-06-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2762895B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741131B2 (en) * 2007-05-25 2010-06-22 Electro Scientific Industries, Inc. Laser processing of light reflective multilayer target structure
CN105719783A (en) * 2015-07-23 2016-06-29 中国电子科技集团公司第四十一研究所 Thin-film resistor adjustment device for microwave circuit and adjustment method of thin-film resistor adjustment device

Also Published As

Publication number Publication date
JPH0722585A (en) 1995-01-24

Similar Documents

Publication Publication Date Title
US7002719B2 (en) Mirror for an integrated device
US5525831A (en) Semiconductor device with thin film resistor having reduced film thickness sensitivity during trimming process
US6160945A (en) Optical waveguide device for loss absorption and fabrication method thereof
JP3290426B2 (en) Pixel structure and active matrix array screen display system for reflective LCD display
JP2861340B2 (en) Semiconductor device
EP0649517B1 (en) Microstructure design for high ir sensitivity
US6271968B1 (en) Cut-off filters
US6242816B1 (en) Method for improving a stepper signal in a planarized surface over alignment topography
JP2762895B2 (en) Semiconductor device
US6818966B2 (en) Method and structure for controlling surface properties of dielectric layers in a thin film component for improved trimming
US7616673B2 (en) Semiconductor laser device
US4843610A (en) Semiconductor laser apparatus
US7508567B1 (en) Metal etalon with enhancing stack
JP3206207B2 (en) Laser trimming method
JPH0831582B2 (en) Semiconductor device including photo sensor and signal processing circuit
JPH02244153A (en) Lowering of structural dimensional change based on reflection generated in cover layer
JPH04234109A (en) Method of forming wiring in semiconductor device
JP3112361B2 (en) Thin film transistor substrate for display device and liquid crystal display device using the same
JP3257245B2 (en) Method of forming fine pattern
US5982547A (en) Optical filter
KR100241534B1 (en) Method of forming anti-reflection film of semiconductor device
JP3344022B2 (en) Optical device and optical pickup
JPH1041461A (en) Semiconductor device
JP2979071B2 (en) Image reading device
JPH0411001B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 16

EXPY Cancellation because of completion of term