JPH0722585A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0722585A
JPH0722585A JP5151871A JP15187193A JPH0722585A JP H0722585 A JPH0722585 A JP H0722585A JP 5151871 A JP5151871 A JP 5151871A JP 15187193 A JP15187193 A JP 15187193A JP H0722585 A JPH0722585 A JP H0722585A
Authority
JP
Japan
Prior art keywords
film
resistor
thin
oxide film
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5151871A
Other languages
Japanese (ja)
Other versions
JP2762895B2 (en
Inventor
Makoto Okawa
大川  誠
Makio Iida
眞喜男 飯田
Tetsuaki Kamiya
哲章 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5151871A priority Critical patent/JP2762895B2/en
Priority to US08/222,815 priority patent/US5525831A/en
Priority to DE69427501T priority patent/DE69427501T2/en
Priority to EP94105245A priority patent/EP0620586B1/en
Publication of JPH0722585A publication Critical patent/JPH0722585A/en
Application granted granted Critical
Publication of JP2762895B2 publication Critical patent/JP2762895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor device wherein the influence of the variation in a film thickness of a protective film formed on a thin-film resistor can be reduced in laser trimming of the thin-film resistor formed on a substrate. CONSTITUTION:A base oxide film 5 constituted of a BPSG film and a silicon oxide film is formed on an Si substrate 6 and then a thin-film resistor 4 is formed on the base oxide film 5. On the thin-film resistor 4, a silicon oxide film 3, a silicon nitride film 2 and another silicon oxide film 1 are formed as protective films for the thin-film resistor. With the silicon oxide film 1, the fluctuation of a laser light energy absorptivity of the thin-film resistor 4 due to the variation of a film thickness of the silicon nitride film can be held down and thereby a resistance value of the thin-film resistor can be controlled stably with laser light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基板上に形成される薄
膜抵抗体のレーザートリミングに関し、特に薄膜抵抗体
上に形成される保護膜構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to laser trimming of a thin film resistor formed on a substrate, and more particularly to a protective film structure formed on the thin film resistor.

【0002】[0002]

【従来技術】従来、基板上に形成した薄膜抵抗体をレー
ザー光により溶融切断して、その抵抗値を調整するレー
ザートリミング法が知られている。そして、この薄膜抵
抗体の保護膜として、トリミング性の観点から薄膜抵抗
上には酸化珪素を成膜し、耐環境性の観点から酸化珪素
膜上に窒化珪素膜を成膜するといった2層保護膜が使用
されている。
2. Description of the Related Art Conventionally, there is known a laser trimming method in which a thin film resistor formed on a substrate is melted and cut by laser light to adjust its resistance value. Then, as a protective film for the thin film resistor, a two-layer protective film is formed in which a silicon oxide film is formed on the thin film resistor from the viewpoint of trimming property and a silicon nitride film is formed on the silicon oxide film from the viewpoint of environment resistance. Membranes are used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、保護膜
に窒化珪素膜を用いた場合には、窒化珪素膜の屈折率が
約2.0と大きいため、薄膜抵抗体で吸収されるレーザ
ー光エネルギーが図3に示すように、窒化珪素膜の膜厚
により大きく変動してしまう。その変動により薄膜抵抗
体4でのレーザー光エネルギーの吸収率が低い場合に
は、トリミングができないといった問題が生じてしまう
ことがある。これを光の性質を基にして以下に説明す
る。
However, when the silicon nitride film is used as the protective film, the laser light energy absorbed by the thin film resistor is large because the refractive index of the silicon nitride film is as large as about 2.0. As shown in FIG. 3, the thickness of the silicon nitride film varies greatly. Due to the fluctuation, if the thin film resistor 4 has a low absorptance of laser light energy, a problem that trimming cannot be performed may occur. This will be described below based on the nature of light.

【0004】光の性質として、平行平板に入射されたレ
ーザー光エネルギーは、平行平板表面での反射R、平行
平板での吸収Aおよび透過Tと3種類の状態に分けられ
る。すなわち、この3種類の状態の和が、入射したレー
ザー光のエネルギーに相当する。入射したレーザー光の
エネルギーを1としてこれを式で表すと、
As a property of light, the laser light energy incident on the parallel plate is divided into three states: reflection R on the surface of the parallel plate, absorption A on the parallel plate and transmission T. That is, the sum of these three types of states corresponds to the energy of the incident laser light. When the energy of the incident laser light is set to 1 and this is expressed by the formula,

【0005】[0005]

【数1】A+T+R=1 となる。そして、多層膜においては、その表面での反射
光R0 は、各層界面からの反射光(R1,2,3,・・
・)の干渉光となる。従って、反射光R0 が変化すると
数1式をみても分かるように、多層膜中に入射されるレ
ーザー光も変動することになる。ここで、図2に示すよ
うな窒化珪素膜2,酸化珪素膜3,薄膜抵抗体4,下地
酸化膜5,シリコン基板6からなる多層膜系を考える場
合、反射光R 0 は、窒化珪素膜2の表面での反射、すな
わち界面aからの反射光R1 とそれ以下の界面b,c,
d,eからの反射光R2 との干渉光と考えることができ
る。薄膜抵抗4をトリミングするレーザー光が波長1.
064μmのYAGレーザー光の場合、干渉光である反
射光R0 は窒化珪素膜2の膜厚変動に影響を受け、約2
66nmの周期で変化する。実際、図2に示す窒化珪素
膜の膜厚は1μm程度であり、この厚さでの膜厚ばらつ
きは200〜300nmとなってしまう。従って、図2
に示すような素子構造では反射光R0 は窒化珪素膜の膜
厚変動の影響を受けることになり、上述のように薄膜抵
抗体4に到達するレーザー光が変動し、図3に示すよう
に薄膜抵抗体4でのレーザー光エネルギーの吸収率が変
動してしまう。特に、SOI構造を有する素子の場合
は、薄膜抵抗体でのレーザー光エネルギー吸収率がSO
I層の影響を受けるため、さらに深刻な問題となってい
る。
## EQU1 ## A + T + R = 1. And in a multilayer film, the reflection on the surface
Light R0Is the reflected light (R1,R2,R3,・ ・
・) Interfering light. Therefore, the reflected light R0When changes
As can be seen from the equation (1), the radiation incident on the multilayer film is
The laser light will also fluctuate. Here, as shown in Figure 2.
Una silicon nitride film 2, silicon oxide film 3, thin film resistor 4, base
When considering a multilayer film system consisting of an oxide film 5 and a silicon substrate 6.
Reflected light R 0Is reflected on the surface of the silicon nitride film 2, that is,
Reflected light R from the interface a1And the following interfaces b, c,
Reflected light R from d and e2Can be considered as interference light with
It The laser light for trimming the thin film resistor 4 has a wavelength of 1.
In the case of 064 μm YAG laser light, it is an interference light
Light R0Is affected by the film thickness variation of the silicon nitride film 2 and is about 2
It changes with a period of 66 nm. In fact, the silicon nitride shown in FIG.
The film thickness is about 1 μm, and the film thickness variation at this thickness
It becomes 200-300 nm. Therefore, FIG.
In the element structure as shown in, the reflected light R0Is a silicon nitride film
It will be affected by the thickness variation and, as mentioned above,
As the laser light reaching the antibody 4 fluctuates, as shown in FIG.
Changes the absorption rate of the laser light energy in the thin film resistor 4.
It will move. Especially in the case of an element having an SOI structure
Indicates that the laser light energy absorption rate in the thin film resistor is SO
Since it is affected by layer I, it has become a more serious problem.
It

【0006】従って、本発明は、上記問題点に鑑み、基
板上に形成した薄膜抵抗体のレーザートリミングにおい
て、この薄膜抵抗体上に形成した保護膜の膜厚ばらつき
の影響を低減することのできる半導体装置を提供するこ
とを目的とする。
Therefore, in view of the above problems, the present invention can reduce the influence of the film thickness variation of the protective film formed on the thin film resistor in laser trimming of the thin film resistor formed on the substrate. An object is to provide a semiconductor device.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに成された本発明による半導体装置は、基板上に形成
され、レーザー光によってその抵抗値を調整される薄膜
抵抗体を有する半導体装置において、該薄膜抵抗体上に
形成される第1の保護膜の屈折率よりも小さい屈折率を
有する第2の保護膜を形成したことを特徴としている。
A semiconductor device according to the present invention made to solve the above problems has a thin film resistor formed on a substrate and having its resistance value adjusted by laser light. In the second aspect, a second protective film having a refractive index smaller than that of the first protective film formed on the thin film resistor is formed.

【0008】[0008]

【作用】本発明によると、薄膜抵抗体上に形成される第
1の保護膜よりも屈折率の小さい第2の保護膜を形成す
るようにしているため、前記第1の保護膜表面でのレー
ザー光の反射を抑えることができる。これにより、前記
第1の保護膜の膜厚ばらつきに起因する、前記第1の保
護膜下層界面からの反射光と前記第1の保護膜表面上か
らの反射光との干渉による反射光の変動を抑えることが
できる。
According to the present invention, since the second protective film having a smaller refractive index than the first protective film formed on the thin film resistor is formed, the second protective film on the surface of the first protective film is formed. The reflection of laser light can be suppressed. As a result, variation in reflected light due to interference between reflected light from the first protective film lower-layer interface and reflected light from the first protective film surface due to variation in the thickness of the first protective film. Can be suppressed.

【0009】[0009]

【実施例】本発明の一実施例を図1を用いて説明する。
本実施例は、従来構造の素子表面にさらに反射防止膜と
して、酸化珪素膜を堆積したものである。本実施例の構
造を以下に示す。Si基板6上に、ボロンおよびリンを
含有する酸化珪素膜であるBPSG膜および酸化珪素膜
からなる下地酸化膜5を形成し、その上にCrSiから
なる薄膜抵抗体4を形成し、その上に薄膜抵抗体の保護
膜としてTEOS酸化膜3,p−SiNからなる窒化珪
素膜2を形成し、さらにTEOS酸化膜1を形成する。
窒化珪素膜2の屈折率n2 は2.0であり、酸化膜1の
屈折率n1 は1.45である。このときのTEOS酸化
膜1の厚さは183nm程度(後に説明する)とする。
なお、図中7はAl配線である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
In this embodiment, a silicon oxide film is further deposited as an antireflection film on the surface of the element having the conventional structure. The structure of this example is shown below. A base oxide film 5 made of a BPSG film and a silicon oxide film, which are silicon oxide films containing boron and phosphorus, is formed on a Si substrate 6, and a thin film resistor 4 made of CrSi is formed on the base oxide film 5. As a protective film for the thin film resistor, a TEOS oxide film 3, a silicon nitride film 2 made of p-SiN are formed, and a TEOS oxide film 1 is further formed.
Refractive index n 2 of the silicon nitride film 2 is 2.0, the refractive index n 1 of the oxide film 1 is 1.45. The thickness of the TEOS oxide film 1 at this time is about 183 nm (described later).
In the figure, 7 is an Al wiring.

【0010】上記構造の素子にYAGレーザー光(波長
1064nm)を照射した場合の薄膜抵抗体4でのレー
ザー光の吸収率変化を図4に示す。また、従来構造の素
子における薄膜抵抗体でのレーザー光の吸収率変化を図
3に示す。両図を見比べても分かるように、窒化珪素膜
上に酸化珪素膜を形成した本実施例の方が、窒化珪素膜
の膜厚変化に対して薄膜抵抗体でのレーザー光エネルギ
ーの変動が小さいことが分かる。
FIG. 4 shows the change in the absorptance of the laser light in the thin film resistor 4 when the YAG laser light (wavelength 1064 nm) is applied to the device having the above structure. Further, FIG. 3 shows changes in absorptance of laser light in a thin film resistor in an element having a conventional structure. As can be seen by comparing both figures, in the present embodiment in which the silicon oxide film is formed on the silicon nitride film, the fluctuation of the laser light energy in the thin film resistor is smaller with respect to the change in the film thickness of the silicon nitride film. I understand.

【0011】以上のように、本実施例によると窒化珪素
膜よりも屈折率の小さい酸化珪素膜(TEOS酸化膜)
を窒化珪素膜上に形成しているため、窒化珪素膜表面で
の反射光を抑えることができる。そのため、窒化珪素膜
下層界面からの反射光と窒化珪素膜表面の反射光との干
渉による反射光の変動を抑えることができる。すなわ
ち、窒化珪素膜の膜厚ばらつきによる反射光の変動を抑
えることができる。これにより、薄膜抵抗体に到達する
レーザー光の変動を抑えることができ、薄膜抵抗体での
レーザー光エネルギーの吸収率の変動を抑えることがで
きる。従って、薄膜抵抗体のレーザートリミングにおい
て、窒化珪素膜の膜厚ばらつきの影響を低減することの
できる半導体装置を提供できる。
As described above, according to this embodiment, the silicon oxide film (TEOS oxide film) having a smaller refractive index than the silicon nitride film.
Is formed on the silicon nitride film, the reflected light on the surface of the silicon nitride film can be suppressed. Therefore, the fluctuation of the reflected light due to the interference between the reflected light from the lower interface of the silicon nitride film and the reflected light on the surface of the silicon nitride film can be suppressed. That is, it is possible to suppress the fluctuation of the reflected light due to the variation in the film thickness of the silicon nitride film. Thereby, the fluctuation of the laser light reaching the thin film resistor can be suppressed, and the fluctuation of the absorption rate of the laser light energy in the thin film resistor can be suppressed. Therefore, it is possible to provide the semiconductor device capable of reducing the influence of the film thickness variation of the silicon nitride film in the laser trimming of the thin film resistor.

【0012】尚、薄膜抵抗体以下の構造がどの様な構造
になっていても、薄膜抵抗体上に保護膜が存在する場合
には、その上に保護膜よりも低屈折率の膜を形成するよ
うにすれば同等な効果が得られる。上述のように、窒化
珪素膜上に酸化珪素膜を形成した場合には、窒化珪素膜
の膜厚変動による薄膜抵抗体でのレーザー光エネルギー
の吸収率変動を抑えることができる事が分かった。そこ
で、次に、窒化珪素膜上の酸化珪素膜の厚さの最適化に
ついて考える。酸化珪素の最適膜厚とは、窒化珪素膜表
面上でのレーザー光の反射が最小になるときである。こ
こで、垂直入射光に対して、1個の単層膜を下から順に
それと等価な1つの面に次々に置き換えていくRoua
rdの方法がある。この方法では、単層膜の上下両界面
での反射率を1つの式に置き換えることが可能となる。
なお、この方法は上の単層膜から順に行っても同等であ
り、ここでは上の単層膜から行うRouardの方法を
適用する。
No matter what the structure of the thin film resistor and below is, if a protective film is present on the thin film resistor, a film having a lower refractive index than that of the protective film is formed thereon. By doing so, the same effect can be obtained. As described above, it has been found that when the silicon oxide film is formed on the silicon nitride film, the fluctuation of the absorption rate of the laser light energy in the thin film resistor due to the fluctuation of the thickness of the silicon nitride film can be suppressed. Therefore, next, optimization of the thickness of the silicon oxide film on the silicon nitride film will be considered. The optimum film thickness of silicon oxide is when the reflection of laser light on the surface of the silicon nitride film is minimized. Here, with respect to the vertically incident light, one single layer film is sequentially replaced with one surface equivalent to the single layer film from the bottom.
There is a method of rd. With this method, it is possible to replace the reflectance at the upper and lower interfaces of the monolayer film with a single equation.
It should be noted that this method is the same when sequentially performed from the upper single layer film, and here, the method of Rouard performed from the upper single layer film is applied.

【0013】2層膜において上層膜の屈折率をn1 膜厚
をdとして、下層膜の屈折率をn2、また空気の屈折率
をn0 とする。このとき、n1 <n2 とすると反射率は
常に上層膜があるときの方が小さくなる。さらに、トリ
ミングに使用する照射レーザー光の波長をλとして、
In the two-layer film, the refractive index of the upper film is n 1, the film thickness is d, the refractive index of the lower film is n 2 , and the refractive index of air is n 0 . At this time, if n 1 <n 2 , the reflectance is always smaller when the upper layer film is present. Furthermore, the wavelength of the irradiation laser beam used for trimming is λ,

【0014】[0014]

【数2】n1 d=λ/4+mλ/2 (m=0,1,
2,・・・) という条件を満たすとき、上層膜をRouardの方法
により上層膜を面に置き換えたときの反射率は、
## EQU00002 ## n 1 d = λ / 4 + mλ / 2 (m = 0, 1,
2, ...), the reflectance when the upper layer film is replaced with a surface by the method of Rouard is:

【0015】[0015]

【数3】R1 =(n1 2−n2 0 /n1 2+n2 0 2 となり、反射率R1 は最小となる。従って、この方法を
本実施例に適用して、面に置き換えられる単層膜を窒化
珪素膜上の酸化珪素膜と考えると、この酸化珪素膜の膜
厚を数2式で与えられるような膜厚にすれば、窒化珪素
膜上面での反射を最小にすることができる。本実施例の
場合では、トリミングレーザー光にYAGレーザー光を
用いているので、酸化珪素膜の光学的厚さは183nm
となる。図4は、この厚さ程度の酸化膜1を形成した時
の例である。このときの反射率は、酸化膜の屈折率をn
1 =1.45、窒化珪素膜の屈折率n2 =2.0、空気
の屈折率n0 として数3式よりR1 =6.2×10-4
なり、窒化珪素膜単独での反射率0.11に比べ遙に小
さい値となる。
## EQU3 ## R 1 = (n 1 2 −n 2 n 0 / n 1 2 + n 2 n 0 ) 2 and the reflectance R 1 becomes the minimum. Therefore, if this method is applied to this embodiment and the single layer film to be replaced on the surface is considered as the silicon oxide film on the silicon nitride film, the film thickness of this silicon oxide film can be given by the equation (2). If the thickness is increased, the reflection on the upper surface of the silicon nitride film can be minimized. In the case of this embodiment, since the YAG laser light is used as the trimming laser light, the optical thickness of the silicon oxide film is 183 nm.
Becomes FIG. 4 shows an example when the oxide film 1 having this thickness is formed. The reflectance at this time is the refractive index of the oxide film n
1 = 1.45, the refractive index n 2 of the silicon nitride film is 2.0, and the refractive index n 0 of air is R 1 = 6.2 × 10 −4 from the equation 3, and the reflectance of the silicon nitride film alone is obtained. It is a much smaller value than 0.11.

【0016】また、薄膜抵抗体のレーザートリミング
は、窒化珪素膜などの保護膜の影響を受けるばかりでな
く、薄膜抵抗体下のBPSG膜および酸化珪素膜からな
る下地酸化膜の膜厚の影響を受けることが知られてい
る。下地酸化膜の影響は、本発明の課題と同様にその膜
厚変動によるトリミングの不安定性である。これを解決
するために、下地酸化膜の膜厚制御を考えない場合はト
リミングエネルギーを増加させなければならず、このエ
ネルギーの増加により窒化珪素膜や酸化珪素膜の破壊が
起こってしまうといった問題がある。
Further, the laser trimming of the thin film resistor is not only affected by the protective film such as a silicon nitride film, but is also affected by the film thickness of the underlying oxide film formed of the BPSG film and the silicon oxide film below the thin film resistor. Known to receive. The effect of the underlying oxide film is the instability of trimming due to the film thickness variation as in the case of the present invention. In order to solve this problem, the trimming energy must be increased unless the thickness of the underlying oxide film is controlled, and this increase in energy causes a problem that the silicon nitride film or the silicon oxide film is destroyed. is there.

【0017】そこで、本発明者らは、本実施例における
窒化珪素膜上の酸化膜ありの素子と従来構造の酸化膜な
しの素子とにおいて、下地酸化膜の影響をトリミングに
必要な照射レーザーエネルギーの大きさで比較検討し
た。その結果を図5に示す。同図(a)は本実施例によ
るものであり、(b)は従来技術によるものである。膜
厚は、低屈折率膜であるTEOS酸化膜を177nm,
保護膜である窒化珪素膜を1μm,TEOS酸化膜を8
20nmとした。この図より、本実施例の素子の方が下
地酸化膜の膜厚変動に対してトリミングエネルギーが小
さくなっていると共に安定していることも分かる。すな
わち、窒化珪素膜上に酸化膜を形成することにより、薄
膜抵抗体のレーザートリミングにおいて、下地酸化膜の
影響も小さくできるという効果もあることがわかった。
Therefore, the inventors of the present invention applied the irradiation laser energy necessary for trimming the influence of the underlying oxide film in the device with the oxide film on the silicon nitride film and the device without the oxide film of the conventional structure in this embodiment. The size was compared and examined. The result is shown in FIG. The figure (a) is based on a present Example, and the figure (b) is based on a prior art. The film thickness of the TEOS oxide film, which is a low refractive index film, is 177 nm,
The silicon nitride film, which is a protective film, is 1 μm, and the TEOS oxide film is 8
It was set to 20 nm. From this figure, it can be seen that the trimming energy of the device of this example is smaller and more stable with respect to the variation of the film thickness of the underlying oxide film. That is, it has been found that forming an oxide film on the silicon nitride film also has the effect of reducing the influence of the underlying oxide film in laser trimming of the thin film resistor.

【0018】[0018]

【発明の効果】以上のように、本発明によると、第1の
保護膜下層界面からの反射光と前記第1の保護膜表面上
からの反射光との干渉による反射光の変動を抑えること
ができるため、薄膜抵抗体に到達するレーザー光の変動
を抑えることができる。従って、薄膜抵抗体でのレーザ
ー光エネルギーの吸収率変動を抑えることができる。す
なわち、薄膜抵抗体のレーザートリミングにおいて、薄
膜抵抗体上に形成した保護膜の膜厚ばらつきの影響を低
減することができるという優れた効果が得られる。
As described above, according to the present invention, the fluctuation of the reflected light due to the interference between the reflected light from the first protective film lower layer interface and the reflected light from the surface of the first protective film is suppressed. Therefore, the fluctuation of the laser light reaching the thin film resistor can be suppressed. Therefore, it is possible to suppress variations in the absorption rate of laser light energy in the thin film resistor. That is, in laser trimming of the thin film resistor, an excellent effect that the influence of the film thickness variation of the protective film formed on the thin film resistor can be reduced can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例を説明するための素子の
断面図である。
FIG. 1 is a sectional view of an element for explaining an embodiment according to the present invention.

【図2】従来技術を説明するための素子の断面図であ
る。
FIG. 2 is a cross-sectional view of an element for explaining a conventional technique.

【図3】従来技術を説明する図である。FIG. 3 is a diagram illustrating a conventional technique.

【図4】本発明による一実施例を説明する図である。FIG. 4 is a diagram illustrating an embodiment according to the present invention.

【図5】(a)は、一実施例による特性図である。
(b)は、従来技術による特性図である。
FIG. 5A is a characteristic diagram according to one embodiment.
FIG. 6B is a characteristic diagram according to the related art.

【符号の説明】[Explanation of symbols]

1 酸化珪素膜 2 窒化珪素膜 3 酸化珪素膜 4 薄膜抵抗体 5 下地酸化膜 6 Si基板 1 Silicon Oxide Film 2 Silicon Nitride Film 3 Silicon Oxide Film 4 Thin Film Resistor 5 Base Oxide Film 6 Si Substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成され、レーザー光によって
その抵抗値を調整される薄膜抵抗体を有する半導体装置
において、 該薄膜抵抗体上に形成される第1の保護膜の屈折率より
も小さい屈折率を有する第2の保護膜を形成したことを
特徴とする半導体装置。
1. A semiconductor device having a thin film resistor formed on a substrate and having its resistance value adjusted by laser light, wherein the refractive index is smaller than the refractive index of a first protective film formed on the thin film resistor. A semiconductor device in which a second protective film having a refractive index is formed.
JP5151871A 1993-04-05 1993-06-23 Semiconductor device Expired - Lifetime JP2762895B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5151871A JP2762895B2 (en) 1993-06-23 1993-06-23 Semiconductor device
US08/222,815 US5525831A (en) 1993-04-05 1994-04-05 Semiconductor device with thin film resistor having reduced film thickness sensitivity during trimming process
DE69427501T DE69427501T2 (en) 1993-04-05 1994-04-05 Semiconductor device with thin film resistor
EP94105245A EP0620586B1 (en) 1993-04-05 1994-04-05 Semiconductor device having thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5151871A JP2762895B2 (en) 1993-06-23 1993-06-23 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0722585A true JPH0722585A (en) 1995-01-24
JP2762895B2 JP2762895B2 (en) 1998-06-04

Family

ID=15528044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5151871A Expired - Lifetime JP2762895B2 (en) 1993-04-05 1993-06-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2762895B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528861A (en) * 2007-05-25 2010-08-26 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Laser processing of light-reflective multilayer target structures.
CN105719783A (en) * 2015-07-23 2016-06-29 中国电子科技集团公司第四十一研究所 Thin-film resistor adjustment device for microwave circuit and adjustment method of thin-film resistor adjustment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528861A (en) * 2007-05-25 2010-08-26 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド Laser processing of light-reflective multilayer target structures.
CN105719783A (en) * 2015-07-23 2016-06-29 中国电子科技集团公司第四十一研究所 Thin-film resistor adjustment device for microwave circuit and adjustment method of thin-film resistor adjustment device

Also Published As

Publication number Publication date
JP2762895B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
US5525831A (en) Semiconductor device with thin film resistor having reduced film thickness sensitivity during trimming process
US11747529B2 (en) Wafer level microstructures for an optical lens
JPH0782133B2 (en) Method for manufacturing optical microguide
US11016227B2 (en) Diffractive optical element
JP2007013015A (en) Semiconductor light receiving element
US20020097493A1 (en) Graded anti-reflective coatings for photolithography
US20050117233A1 (en) X-ray total reflection mirror and X-ray exposure apparatus
US6271968B1 (en) Cut-off filters
EP0649517B1 (en) Microstructure design for high ir sensitivity
JPH04119535A (en) Semiconductor device
US6501188B1 (en) Method for improving a stepper signal in a planarized surface over alignment topography
JPH0722585A (en) Semiconductor device
EP2068325B1 (en) Optical element for X-ray
US7508567B1 (en) Metal etalon with enhancing stack
JP2019028059A (en) Scanning plate for optical position measuring device
JP3206207B2 (en) Laser trimming method
JPH02244153A (en) Lowering of structural dimensional change based on reflection generated in cover layer
JPS58223101A (en) Production of polygonal mirror
JPH04234109A (en) Method of forming wiring in semiconductor device
JP3344022B2 (en) Optical device and optical pickup
JP3213405B2 (en) A photodetector that detects incident light that is incident at an angle smaller than the angle at which total reflection occurs from a high refractive index medium to a low refractive index medium.
WO2004034390A1 (en) Optical information recording medium and manufacturing method thereof
JPH10213708A (en) Light absorbing filter
EP0534535A1 (en) Device including a mirror operating in the field of X-rays or neutrons
JPH06180401A (en) Edge filter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 16

EXPY Cancellation because of completion of term