JP2762183B2 - Method for manufacturing silicon substrate - Google Patents

Method for manufacturing silicon substrate

Info

Publication number
JP2762183B2
JP2762183B2 JP3265366A JP26536691A JP2762183B2 JP 2762183 B2 JP2762183 B2 JP 2762183B2 JP 3265366 A JP3265366 A JP 3265366A JP 26536691 A JP26536691 A JP 26536691A JP 2762183 B2 JP2762183 B2 JP 2762183B2
Authority
JP
Japan
Prior art keywords
silicon substrate
oxygen
manufacturing
precipitates
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3265366A
Other languages
Japanese (ja)
Other versions
JPH0574784A (en
Inventor
幹夫 門井
猛夫 秋吉
清一 堀口
久 降屋
康 島貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP3265366A priority Critical patent/JP2762183B2/en
Publication of JPH0574784A publication Critical patent/JPH0574784A/en
Application granted granted Critical
Publication of JP2762183B2 publication Critical patent/JP2762183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、シリコン基板の製造方
法に関し、詳しくはデバイス工程中に誘起される欠陥、
不純物等を、デバイスが構成される活性領域から除去す
ることができるようにしたシリコン基板の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon substrate, and more particularly, to a method for manufacturing a silicon substrate.
The present invention relates to a method for manufacturing a silicon substrate capable of removing impurities and the like from an active region where a device is formed.

【0002】[0002]

【従来の技術】近年、メガビットメモリの量産化に基づ
いてDRAM等の半導体素子の高集積化が要求され、シ
リコン基板についてもより一層の高品質化が要望されて
いる。
2. Description of the Related Art In recent years, high integration of semiconductor devices such as DRAMs has been demanded based on mass production of megabit memories, and further higher quality silicon substrates have been demanded.

【0003】従来、CZ単結晶から切り出された単結晶
シリコン基板では、特定の加熱処理が施されている。こ
の加熱処理により、基板表面に無欠陥層(DZ)を、基
板内部に内部領域微小欠陥(Bulk Micro Defect:BMD)
を、それぞれ形成している。この内部領域微小欠陥によ
り、半導体集積回路の製造過程中に侵入する微量の重金
属、例えば鉄、ニッケル、銅等を析出させている。イン
トリンシック・ゲッタリング(IG)効果を積極的に利
用しているものである。そして、その結果として、半導
体装置の歩留まりの向上、例えばpn接合のリーク電流
の減少、キャリアのライフタイムの向上等を図ってい
る。
Conventionally, a single crystal silicon substrate cut from a CZ single crystal has been subjected to a specific heat treatment. By this heat treatment, a defect-free layer (DZ) is formed on the substrate surface, and an internal area minute defect (Bulk Micro Defect: BMD) is formed inside the substrate.
Are formed respectively. Due to the minute defects in the internal region, a minute amount of heavy metal, for example, iron, nickel, copper, or the like that invades during the manufacturing process of the semiconductor integrated circuit is deposited. It uses the intrinsic gettering (IG) effect positively. As a result, the yield of the semiconductor device is improved, for example, the leakage current of the pn junction is reduced, and the lifetime of the carrier is improved.

【0004】この場合、IG効果には、単結晶シリコン
基板中に含有されている酸素([Oi]:格子間に存在
する酸素)濃度が関連する。すなわち、結晶成長時、坩
堝や雰囲気から混入し、単結晶シリコン中に溶解してい
る過剰の酸素(高酸素)は、高温処理、例えば1100
〜1150℃程度の熱処理を行い、基板中の酸素を外方
拡散させている。このことにより、酸素濃度が低下した
領域内の一部を最終的にDZに形成するものである。次
に、低温処理、例えば900℃以下の熱処理を行い、基
板内部に酸素が析出し、その析出箇所の周囲に結晶欠陥
を形成する。この形成により、結晶格子に歪が生じ、ゲ
ッタリング源として作用し、重金属等が析出するもので
ある。
In this case, the IG effect is related to the concentration of oxygen ([Oi]: oxygen existing between lattices) contained in the single crystal silicon substrate. That is, during crystal growth, excess oxygen (high oxygen) mixed from the crucible or atmosphere and dissolved in the single crystal silicon is treated at a high temperature, for example, 1100.
A heat treatment of about 1150 ° C. is performed to diffuse oxygen in the substrate outward. As a result, a part of the region where the oxygen concentration is reduced is finally formed in the DZ. Next, a low-temperature treatment, for example, a heat treatment at 900 ° C. or lower is performed to deposit oxygen inside the substrate and form crystal defects around the deposition location. This formation causes distortion in the crystal lattice, acts as a gettering source, and precipitates heavy metals and the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のIG処理では、シリコン結晶中に固溶する酸
素の濃度が低いシリコン基板では、酸素析出物が発生し
難いものであった。また、DZ(デバイス形成領域)を
形成するための上記高温処理により、酸素析出物の核も
縮小してしまう。このため、低酸素濃度のシリコン基板
については十分な量のゲッタリング源の確保が難しかっ
た。すなわち、従来のIG処理は、主に高酸素濃度のシ
リコン基板にのみ用いられ、低酸素濃度のシリコン基板
には用いられていなかった。換言すると、低酸素濃度の
シリコン基板については十分なIG効果を備えることは
できなかった。
However, in such a conventional IG process, oxygen precipitates are hardly generated on a silicon substrate having a low concentration of oxygen dissolved in a silicon crystal. In addition, the high-temperature treatment for forming the DZ (device formation region) also reduces the nuclei of oxygen precipitates. For this reason, it has been difficult to secure a sufficient amount of a gettering source for a silicon substrate having a low oxygen concentration. That is, the conventional IG process is mainly used only for a silicon substrate having a high oxygen concentration, and is not used for a silicon substrate having a low oxygen concentration. In other words, a silicon substrate having a low oxygen concentration could not have a sufficient IG effect.

【0006】[0006]

【発明の目的】本発明の目的は、低酸素濃度のシリコン
基板においても十分なIG効果を得ることのできるシリ
コン基板の製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a silicon substrate which can obtain a sufficient IG effect even on a silicon substrate having a low oxygen concentration.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
になされた本発明のシリコン基板の製造方法において
は、7.5×1017atoms/cm3以下の格子間酸素
を含有している単結晶シリコン基板を準備する工程と、
この単結晶シリコン基板の裏面に多結晶シリコン膜を形
成する工程と、このシリコン基板を1200℃以上で3
0分間以上熱処理する工程と、このシリコン基板を10
00℃以下で2時間以上熱処理する工程と、を有してい
る。
In order to achieve the above object, a method of manufacturing a silicon substrate according to the present invention is directed to a method for producing a silicon substrate containing at least 7.5 × 10 17 atoms / cm 3 of interstitial oxygen. Preparing a crystalline silicon substrate;
Forming a polycrystalline silicon film on the back surface of the single crystal silicon substrate;
Heat-treating the silicon substrate for 10 minutes or more,
Heat treating at a temperature of not more than 00 ° C. for 2 hours or more.

【0008】[0008]

【作用】上記のように構成されたシリコン基板の製造方
法では、7.5×1017atoms/cm3以下の格子間
酸素を含有している低酸素濃度の単結晶シリコン基板の
裏面に、例えばCVD法(化学気相成長法)により、多
結晶シリコン膜を形成する。そして、このシリコン基板
に上記2段階の熱処理を施す。この1200℃以上の熱
処理と1000℃以下の熱処理とにより、低酸素濃度の
シリコン基板にあってもそのシリコン基板の内部に形成
される酸素析出物の核の成長が助長される。すなわち、
十分な量のゲッタリング源をシリコン基板の内部に確保
することができるものである。
In the method of manufacturing a silicon substrate configured as described above, for example, the back surface of a low-oxygen-concentration single-crystal silicon substrate containing 7.5 × 10 17 atoms / cm 3 or less of interstitial oxygen is formed on the back surface. A polycrystalline silicon film is formed by a CVD method (chemical vapor deposition). Then, the silicon substrate is subjected to the two-stage heat treatment. The heat treatment at 1200 ° C. or higher and the heat treatment at 1000 ° C. or lower promotes the growth of nuclei of oxygen precipitates formed inside the silicon substrate even in the case of a low oxygen concentration silicon substrate. That is,
It is possible to secure a sufficient amount of gettering source inside the silicon substrate.

【0009】[0009]

【実施例】以下、本発明に係るシリコン基板の製造方法
の実施例について、図面を参照して説明する。図1は本
発明の一実施例に係るシリコン基板の製造方法の工程を
示す断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the method for manufacturing a silicon substrate according to the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing steps of a method for manufacturing a silicon substrate according to one embodiment of the present invention.

【0010】図1(a)、(b)に示すように、まず、
7.5×1017atoms/cm3(JEIDA)の格子
間酸素を含んだ単結晶シリコン基板1を準備し、この単
結晶シリコン基板1の裏面(図中の上面)に、例えばS
iH4ガスを用い620℃の温度にて通常のCVD法に
よって、多結晶シリコン膜2を1.5μmの厚さに被着
し、シリコン基板3を得る。
As shown in FIGS. 1A and 1B, first,
A single-crystal silicon substrate 1 containing interstitial oxygen of 7.5 × 10 17 atoms / cm 3 (JEIDA) is prepared, and for example, S
A polycrystalline silicon film 2 is deposited to a thickness of 1.5 μm by a normal CVD method at a temperature of 620 ° C. using iH 4 gas to obtain a silicon substrate 3.

【0011】このようにして準備したシリコン基板3
に、例えば1200℃、1時間の高温熱処理を施す(図
1(c))。次に、このシリコン基板3に例えば550
℃、48時間の低温熱処理を加える(図1(d))。こ
の結果、単結晶シリコン基板1内部に、酸素析出物の核
4(図1(d)中×印)が成長する。そして、多結晶シ
リコン膜2と単結晶シリコン基板1との界面近傍におい
ては、酸素析出物の発生量が多くなる。次に、析出物を
顕在化させるために、1000℃、24時間の熱処理を
施す。そして、表1は、光顕微鏡の観察により求めた酸
素析出物の密度を示している。酸素濃度の同じ単結晶シ
リコン基板に、多結晶シリコン膜2を被着した場合と、
被着しない場合とを比較して示している。
The silicon substrate 3 thus prepared
Is subjected to a high-temperature heat treatment at, for example, 1200 ° C. for one hour (FIG. 1C). Next, 550, for example, is
A low-temperature heat treatment at 48 ° C. for 48 hours is applied (FIG. 1D). As a result, nuclei 4 of oxygen precipitates (indicated by x in FIG. 1D) grow inside the single crystal silicon substrate 1. In the vicinity of the interface between the polycrystalline silicon film 2 and the single-crystal silicon substrate 1, the amount of generated oxygen precipitates increases. Next, heat treatment is performed at 1000 ° C. for 24 hours to make the precipitates visible. Table 1 shows the density of oxygen precipitates obtained by observation with a light microscope. A case where the polycrystalline silicon film 2 is deposited on a single crystal silicon substrate having the same oxygen concentration;
This is shown in comparison with the case where no attachment is made.

【0012】[0012]

【表1】 [Table 1]

【0013】この表より、低酸素濃度のシリコン基板に
あっても、多結晶シリコン膜をその裏面に形成すること
により、そのシリコン基板の内部に形成される酸素析出
物の核の成長が助長されることがわかる。すなわち、十
分な量のゲッタリング源をシリコン基板の内部に確保す
ることができる。この場合、この酸素析出物の周囲に形
成される歪はゲッタリング源として機能することとな
る。すなわち、このシリコン基板3は十分なIG効果を
有することとなる。例えば、その後のデバイス形成工程
において、これらの歪に重金属等が析出される結果とな
る。
According to this table, even when the silicon substrate has a low oxygen concentration, the growth of nuclei of oxygen precipitates formed inside the silicon substrate is promoted by forming the polycrystalline silicon film on the back surface. You can see that That is, it is possible to secure a sufficient amount of the gettering source inside the silicon substrate. In this case, the strain formed around the oxygen precipitate functions as a gettering source. That is, the silicon substrate 3 has a sufficient IG effect. For example, in a subsequent device forming process, heavy metals and the like are precipitated due to these strains.

【0014】また、このシリコン基板3にあっては、多
結晶シリコン膜2の結晶粒界はEG(エクストリンシッ
ク・ゲッタリング)源として作用する。なお、この多結
晶シリコン膜2は、デバイス形成工程にあって酸化工程
等を繰り返すと、それの一部が酸化により消費された
り、多結晶シリコンの再結晶化が起こる。しかし、多結
晶シリコン膜2のこの様な変化が起きても、上記酸素析
出物の成長に起因して、積層欠陥などの二次欠陥がこの
酸素析出物の近傍に高密度に発生し、これが強力なゲッ
ター源として作用し、不純物等を析出させる。つまり、
ゲッター効果が強力で長持ちし、クリーンである。
In the silicon substrate 3, the crystal grain boundaries of the polycrystalline silicon film 2 act as an EG (extrinsic gettering) source. When the oxidation process or the like is repeated in the device forming process, a part of the polycrystalline silicon film 2 is consumed by oxidation or the polycrystalline silicon is recrystallized. However, even if such a change of the polycrystalline silicon film 2 occurs, secondary defects such as stacking faults are generated at high density near the oxygen precipitates due to the growth of the oxygen precipitates. It acts as a powerful getter source and precipitates impurities and the like. That is,
Getter effect is strong, long lasting and clean.

【0015】さらに、出発原料の単結晶シリコン基板1
の酸素濃度が、従来のIG効果を有する高酸素シリコン
基板より低いので、より完全なDZ(無欠陥層)5をシ
リコン基板3の表面(デバイス活性領域)に実現でき
る。また、不純物等のゲッタリング源も、酸素析出物の
周囲の歪、多結晶シリコン膜の結晶粒界、積層欠陥等
で、IG効果に加え、強力で長持ちするEG効果を得る
ことができる。以上の結果、デバイス特性の劣化、製品
の歩留りの低下をなくすことができる。
Further, a single-crystal silicon substrate 1 as a starting material
Has a lower oxygen concentration than that of a conventional high oxygen silicon substrate having an IG effect, so that a more complete DZ (defect-free layer) 5 can be realized on the surface (device active region) of the silicon substrate 3. In addition, a gettering source such as an impurity can obtain a strong and long-lasting EG effect in addition to the IG effect due to distortion around the oxygen precipitate, crystal grain boundaries of the polycrystalline silicon film, stacking faults, and the like. As a result, deterioration of device characteristics and reduction of product yield can be prevented.

【0016】[0016]

【発明の効果】本発明は、以上説明してきたように構成
されているので、格子間酸素濃度の低いシリコン基板に
おいて、十分なIG効果を持つことができる。また、多
結晶シリコン膜によるEG効果を合わせて持つことがで
きる。また、完全なDZを得ることができる。そして、
これらの結果として、不純物、重金属等の汚染物質を、
ゲッタリング源に取り込み、基板表面でのデバイス特性
の劣化や、製品歩留りの低下をなくすことができる。
Since the present invention is configured as described above, a sufficient IG effect can be obtained on a silicon substrate having a low interstitial oxygen concentration. In addition, the EG effect of the polycrystalline silicon film can be obtained. Further, complete DZ can be obtained. And
As a result of these, impurities, pollutants such as heavy metals,
Incorporation into a gettering source can prevent degradation of device characteristics on the substrate surface and reduction in product yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係るシリコン基板の製造
方法の工程を示す断面図である。
FIG. 1 is a cross-sectional view showing steps of a method for manufacturing a silicon substrate according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 単結晶シリコン基板 2 多結晶シリコン膜 3 シリコン基板 4 酸素析出物の核 5 DZ Reference Signs List 1 single-crystal silicon substrate 2 polycrystalline silicon film 3 silicon substrate 4 nucleus of oxygen precipitate 5 DZ

フロントページの続き (72)発明者 堀口 清一 埼玉県大宮市北袋町一丁目297番地 三 菱マテリアル株式会社 中央研究所内 (72)発明者 降屋 久 埼玉県大宮市北袋町一丁目297番地 三 菱マテリアル株式会社 中央研究所内 (72)発明者 島貫 康 埼玉県大宮市北袋町一丁目297番地 三 菱マテリアル株式会社 中央研究所内 審査官 宮崎 園子 (56)参考文献 特開 昭61−24240(JP,A) 特開 昭63−7636(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/322Continuing from the front page (72) Inventor Seiichi Horiguchi 1-297 Kitabukurocho, Omiya-shi, Saitama Prefecture, Central Research Laboratory (72) Inventor Hisashi Furiya 1-297 Kitabukurocho, Omiya-shi, Saitama, Japan Materials Co., Ltd. Central Research Laboratory (72) Inventor Yasushi Shimanuki Yasushi 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Co., Ltd. Central Research Laboratory Inspector Sonoko Miyazaki (56) References JP-A-61-24240 (JP, A ) JP-A-63-7636 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 21/322

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 7.5×1017atoms/cm3以下の
格子間酸素を含有している単結晶シリコン基板を準備す
る工程と、 この単結晶シリコン基板の裏面に多結晶シリコン膜を形
成する工程と、 このシリコン基板を1200℃以上で30分間以上熱処
理する工程と、 このシリコン基板を1000℃以下で2時間以上熱処理
する工程と、を有したことを特徴とするシリコン基板の
製造方法。
1. A step of preparing a single crystal silicon substrate containing interstitial oxygen of 7.5 × 10 17 atoms / cm 3 or less, and forming a polycrystalline silicon film on the back surface of the single crystal silicon substrate A method of manufacturing a silicon substrate, comprising: a step of heat-treating the silicon substrate at 1200 ° C. or higher for 30 minutes or more; and a step of heat-treating the silicon substrate at 1000 ° C. or lower for 2 hours or longer.
JP3265366A 1991-09-17 1991-09-17 Method for manufacturing silicon substrate Expired - Fee Related JP2762183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3265366A JP2762183B2 (en) 1991-09-17 1991-09-17 Method for manufacturing silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3265366A JP2762183B2 (en) 1991-09-17 1991-09-17 Method for manufacturing silicon substrate

Publications (2)

Publication Number Publication Date
JPH0574784A JPH0574784A (en) 1993-03-26
JP2762183B2 true JP2762183B2 (en) 1998-06-04

Family

ID=17416183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265366A Expired - Fee Related JP2762183B2 (en) 1991-09-17 1991-09-17 Method for manufacturing silicon substrate

Country Status (1)

Country Link
JP (1) JP2762183B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275436A (en) * 1992-03-24 1993-10-22 Shin Etsu Handotai Co Ltd Heat treatment of silicon wafer
JPH0786289A (en) * 1993-07-22 1995-03-31 Toshiba Corp Semiconductor silicon wafer and its manufacture
JP5188673B2 (en) 2005-06-09 2013-04-24 株式会社Sumco Silicon wafer for IGBT and method for manufacturing the same
JP4760729B2 (en) 2006-02-21 2011-08-31 株式会社Sumco Silicon single crystal wafer for IGBT and manufacturing method of silicon single crystal wafer for IGBT
US20120049330A1 (en) * 2009-05-15 2012-03-01 Sumco Corporation Silicon wafer and method for producing the same

Also Published As

Publication number Publication date
JPH0574784A (en) 1993-03-26

Similar Documents

Publication Publication Date Title
EP0635879A2 (en) Semiconductor silicon wafer and process for producing it
JPS6255697B2 (en)
JP2004304095A (en) Silicon wafer, and manufacturing method thereof
TW201003746A (en) Silicon substrate for solid-state imaging device and method for manufacturing the same
JP3381816B2 (en) Semiconductor substrate manufacturing method
JP4013276B2 (en) Manufacturing method of silicon epitaxial wafer
US20090226736A1 (en) Method of manufacturing silicon substrate
JP2762183B2 (en) Method for manufacturing silicon substrate
WO2003021660A1 (en) Production method for anneal wafer and anneal wafer
KR100625822B1 (en) Silicon wafer and process for producing it
WO2002049091A1 (en) Anneal wafer manufacturing method and anneal wafer
JPS63227026A (en) Gettering method for silicon crystal substrate
JPS60247935A (en) Manufacture of semiconductor wafer
JPH08139295A (en) Soi substrate
US20020157597A1 (en) Method for producing silicon epitaxial wafer
JPH11204534A (en) Manufacture of silicon epitaxial wafer
US5574307A (en) Semiconductor device and method of producing the same
JP2003188176A (en) Silicon wafer and its producing method
JP2003100760A (en) Epitaxial silicon wafer and method for manufacturing the same
JP3294722B2 (en) Method for manufacturing silicon wafer and silicon wafer
JP2774855B2 (en) Gettering effect enhanced silicon substrate and method of manufacturing the same
JP2002076005A (en) Single crystal silicon wafer
JP2762190B2 (en) Silicon wafer manufacturing method
JP2005050942A (en) Silicon wafer and manufacturing method therefor
JPS60148127A (en) Manufacture of semiconductor substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980224

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100327

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110327

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees