JP2756871B2 - Setup control method in rolling of single crown metal strip - Google Patents

Setup control method in rolling of single crown metal strip

Info

Publication number
JP2756871B2
JP2756871B2 JP3040660A JP4066091A JP2756871B2 JP 2756871 B2 JP2756871 B2 JP 2756871B2 JP 3040660 A JP3040660 A JP 3040660A JP 4066091 A JP4066091 A JP 4066091A JP 2756871 B2 JP2756871 B2 JP 2756871B2
Authority
JP
Japan
Prior art keywords
rolling
control
ipushironq
epsilon
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3040660A
Other languages
Japanese (ja)
Other versions
JPH04258306A (en
Inventor
敦 相沢
健治 原
利郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP3040660A priority Critical patent/JP2756871B2/en
Publication of JPH04258306A publication Critical patent/JPH04258306A/en
Application granted granted Critical
Publication of JP2756871B2 publication Critical patent/JP2756871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、板幅の一方の側端から
他方の側端に向かって板厚が漸減する片クラウン金属帯
を所定の断面形状に圧延する際のセットアップ制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a set-up control method for rolling a single crown metal strip having a gradually decreasing thickness from one side end to the other side end of a sheet width into a predetermined sectional shape. It is.

【0002】[0002]

【従来の技術】金属帯の圧延は古くから一般に左右(駆
動側と操作側)対称な条件で行われてきたが、近年次の
ような事情から左右非対称な条件で圧延する必要が起こ
ってきている。その事情とは、一旦中間厚さにまで圧延
した広幅金属帯(以下、材の語に代えて言うことがあ
る)を長手方向にスリットして狭幅材とし、それを更に
圧延するケースが最近増えていることである。一般に圧
延材の板厚は幅の中央部分が最も厚くても両側端に向か
ってほぼ対称的に漸減しており、そして上記スリットで
は広幅材の幅の真中で左右にスリットする場合が多いの
で、このようにして得られるスリット材は板幅の側端か
ら他方の側端に向かって板厚が漸減する片クラウンの板
厚分布となっている。このような片クラウン材を左右対
称な条件で圧延すると、板厚の厚い側の伸びが大で、板
厚の薄い側の伸びが小となるいわゆる片伸びを発生し易
い。そこでこのような片クラウン材を圧延する場合、片
伸びにならないような断面形状、つまり圧延前と相似の
断面形状なるように、左右非対称な圧延条件が必要とな
ってくるのである。
2. Description of the Related Art Rolling of metal strips has long been generally performed under symmetric conditions (drive side and operation side) for a long time. In recent years, however, it has become necessary to perform rolling under asymmetric conditions under the following circumstances. I have. The situation is that a wide metal strip (hereinafter sometimes referred to as “material”) that has been rolled to an intermediate thickness is slit in the longitudinal direction to form a narrow material, which is further rolled. It is increasing. Generally, the thickness of the rolled material is gradually reduced almost symmetrically toward both sides even if the center portion of the width is the thickest, and in the above slit, the slit is often slit right and left in the middle of the width of the wide material, The slit material thus obtained has a plate thickness distribution of a single crown in which the plate thickness gradually decreases from the side end of the plate width to the other side end. When such a single crown material is rolled under symmetrical conditions, so-called single elongation in which the elongation on the thicker side is large and the elongation on the thinner side is small tends to occur. Therefore, when such a single crown material is rolled, asymmetrical rolling conditions are required so that the cross-sectional shape does not become one-sided, that is, the cross-sectional shape is similar to that before rolling.

【0003】このような圧延状況を図面により説明す
る。図11は6重圧延機による圧延状況を示す説明図で
ある。圧延による片伸び形状の発生を防止する左右非対
称な圧延条件として、図11に示すようにワークロール
1の操作側と駆動側とのベンディング力Wb,Wb′,中
間ロール2の操作側と駆動側とのベンディング力Ib,
Ib′,バックアップロール3の操作側と駆動側にかか
る圧下力P,P′,上下中間ロール2のシフト位置δ,
δ′にそれぞれ差をつけることが採用されており(この
ような方法を非対称形状制御手段と言う)、これにより
ワークロール1のたわみや傾きを変え、操作側と駆動側
との伸び率が等しくなるように上記各圧延条件における
差を制御して金属帯4を圧延するのである。
[0003] Such a rolling situation will be described with reference to the drawings. FIG. 11 is an explanatory view showing a rolling state by a six-high rolling mill. As shown in FIG. 11, the asymmetrical rolling conditions for preventing the occurrence of the one-sided elongation shape due to the rolling include bending forces Wb and Wb 'between the operation side and the drive side of the work roll 1 and the operation side and the drive side of the intermediate roll 2 as shown in FIG. Bending force Ib,
Ib ', the rolling forces P and P' applied to the operation side and the driving side of the backup roll 3, the shift position δ of the upper and lower intermediate rolls 2,
It is adopted to make δ 'different from each other (this method is referred to as asymmetrical shape control means), thereby changing the deflection and inclination of the work roll 1 so that the elongation ratio between the operation side and the drive side is equal. Thus, the metal strip 4 is rolled by controlling the difference between the above rolling conditions.

【0004】各ロールの圧延条件について上記のような
操作側と駆動側との差の値を経験的に設定するときは、
制御精度が悪く、片伸びの発生を防ぐことは困難であっ
た。そこで圧延機出側に形状検出器を設置してそれによ
り得られる圧延後の金属帯の形状情報から、圧延機出側
形状の非対称成分を修正するのに最適な操作側と駆動側
とのワークロール1のベンディング力差dWb,バック
アップロール3にかかる圧下力差dPを算出して形状制
御する方法が特開昭56−59525号公報に開示され
ている。この形状検出器を使用する非対称形状制御方法
は、片伸び形状の修正に大きな効果があった。しかしな
がら、片クラウン材の圧延においては、圧延機入側にお
ける(即ち圧延前の)板幅方向の板厚分布を充分に考慮
する必要があるにも拘らず、この圧延機入側の板厚分布
と圧延機出側(即ち圧延後の)形状との関係が明らかに
されていないため、セットアップ(圧延開始に当って行
う条件設定)時には、各ロールの圧延条件の駆動側と操
作側との差、即ちワークロール1のベンディング力差d
Wb,中間ロール2のベンディング力差dIb,バックア
ップロール3にかかる圧下力差dP、それに上下中間ロ
ール2のシフト位置差dδ(以下において、これらdW
b,dIb,dP及びdδを一括して非対称形状制御項と
言うことがある)を経験的に設定しているのが現状であ
る。そのため、圧延の初期において金属帯4の片伸びが
著しくなるなどの問題があった。
When empirically setting the above-mentioned difference between the operating side and the driving side for the rolling conditions of each roll,
The control accuracy was poor, and it was difficult to prevent the occurrence of one-sided elongation. Therefore, a work detector between the operation side and the drive side that is optimal for correcting the asymmetric component of the shape of the rolling mill exit side from the shape information of the metal strip after rolling by installing a shape detector on the rolling mill exit side Japanese Patent Application Laid-Open No. 56-59525 discloses a method of calculating the bending force difference dWb of the roll 1 and the rolling force difference dP applied to the backup roll 3 to control the shape. The asymmetric shape control method using this shape detector has a great effect on correcting the one-sided extension shape. However, in the rolling of the single crown material, the thickness distribution on the entry side of the rolling mill (that is, before the rolling) must be sufficiently considered in spite of the necessity of sufficiently considering the thickness distribution on the entry side. The relationship between the roll and the rolling mill exit side (that is, after rolling) has not been clarified. Therefore, during setup (setting of conditions for starting the rolling), the difference between the driving side and the operating side of the rolling conditions of each roll is determined. That is, the bending force difference d of the work roll 1
Wb, the bending force difference dIb of the intermediate roll 2, the rolling force difference dP applied to the backup roll 3, and the shift position difference dδ of the upper and lower intermediate rolls 2 (hereinafter, these dW
At present, b, dIb, dP, and dδ are collectively referred to as an asymmetric shape control term). For this reason, there was a problem that the elongation of the metal strip 4 became remarkable in the initial stage of rolling.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記従来技術
の問題点をなくし、圧延機入側における板幅方向の板厚
分布を充分に考慮したセットアップ制御を行って、圧延
開始のときから片伸びのない圧延を行うこと可能とさ
せることを課題とする。
SUMMARY OF THE INVENTION The present invention eliminates the above-mentioned problems of the prior art, and performs setup control in which the thickness distribution in the width direction at the entry side of the rolling mill is sufficiently taken into consideration so that the stripping can be started from the start of rolling. It is an object to enable rolling without elongation.

【0006】[0006]

【課題を解決するための手段】そこで本発明者らは、圧
延機入側における板幅方向の板厚分布を考慮した片クラ
ウン材のセットアップ制御方法を構成すべく種々検討を
行った結果、金属帯の板幅中央より操作側及び駆動側に
向かって等距離にある両側の板側端部及び両側のクォー
タ部のそれぞれにおける伸び率及び板厚について、圧延
機出側における板側端部同士間の伸び率差△εe及びク
ォータ部同士間の伸び率差△εqのそれぞれと、圧延機
入側における板側端部同士間の板厚差△He及びクォー
タ部同士間の板厚差△Hqとの間に線形の関係が成り立
つことを究明して本発明を完成したのである。
The inventors of the present invention have conducted various studies to establish a method for controlling the set-up of a single crown material in consideration of the thickness distribution in the width direction at the entry side of the rolling mill. Regarding the elongation and the thickness of each of the plate-side end portions and the quarter portions on both sides that are equidistant from the center of the plate width toward the operation side and the drive side, between the plate-side ends on the rolling mill exit side. Elongation difference Δεe and the elongation difference Δqq between the quarters, and the thickness difference ΔHe between the plate-side ends on the entry side of the rolling mill and the thickness difference ΔHq between the quarters, The present inventors have completed the present invention by finding that a linear relationship holds between them.

【0007】即ち本発明は、前記伸び率差△εe及び△
εqのそれぞれと前記板厚差△He及び△Hqとが線形関
係にあることを利用して、△εe及び△εqがそれぞれ目
標値△εe0及び△εq0となるように非対称形状制御項群
dWb,dIb,dP及びdδの中から任意の2つについ
てその制御量を合理的に導いて設定するセットアップ制
御方法であって、次のように構成されている。
That is, according to the present invention, the elongation differences Δεe and △
each said plate thickness difference εq △ He and △ Hq and using the fact that a linear relationship, △ .epsilon.e and △ Ipushironq each target value △ .epsilon.e 0 and △ εq 0 become as asymmetric control term group This is a setup control method that rationally derives and sets a control amount for any two of dWb, dIb, dP, and dδ, and is configured as follows.

【0008】本発明の第1は、板幅の一方の側端から他
方の側端に向かって板厚が漸減する両側非対称形状の片
クラウン金属帯を、4重圧延機以上の多段圧延機を使用
して操作側と駆動側とのワークロールのベンディング力
差dWb,同じく中間ロールのベンディング力差dIb,
同じくバックアップロールの圧下力差dP及び上下中間
ロールのシフト位置差dδから成る非対称形状制御項群
の一部又は全部についての制御により所定の断面形状に
圧延する際のセットアップ制御において、圧延機出側の
金属帯の板幅中央より操作側及び駆動側のそれぞれに等
距離にある両側の板側端部及び両側のクォータ部の伸び
率に関し、板側端部同士間の伸び率差△εe及びクォー
タ部同士間の伸び率差△εqがそれぞれ目標値△εe0
び△εq0となるように、前記非対称形状制御項群の中か
ら任意の2つの制御項dW1′及びdW2′を選んでその
制御量dW1及びdW2を、下記の式
A first aspect of the present invention is to provide a single-crown metal strip having an asymmetric shape on both sides in which the sheet thickness gradually decreases from one side end to the other side end of the sheet width, and a multi-high rolling mill of four or more rolling mills. The bending force difference dWb of the work roll between the operating side and the driving side is used, and the bending force difference dIb of the intermediate roll as well.
Similarly, in the setup control when rolling to a predetermined cross-sectional shape by controlling a part or all of the asymmetric shape control term group consisting of the rolling force difference dP of the backup roll and the shift position difference dδ of the upper and lower intermediate rolls, The elongation difference △ εe between the plate-side ends and the quarter Any two control terms dW 1 ′ and dW 2 ′ are selected from the group of asymmetric shape control terms so that the elongation difference △ εq between the parts becomes the target values △ εe 0 and △ εq 0 respectively. The control amounts dW 1 and dW 2 are calculated by the following equations.

【数4】 に従って設定することを特徴とする片クラウン金属帯の
圧延におけるセットアップ制御方法であり、本発明の第
2は、上記第1の発明方法において任意に選ぶ2つの非
対称形状制御項dW1′,dW2′の他に、更に任意に上
記2つの非対称形状制御項とは別の1つの非対称形状制
御項dW3′を選んで任意な制御量dW3に設定し、前記
2つの非対称形状制御項の制御量dW1及びdW2を、下
記の式
(Equation 4) In the second aspect of the present invention, two asymmetrical shape control terms dW 1 ′ and dW 2 arbitrarily selected in the first aspect of the present invention. In addition to the above two asymmetric shape control terms, another asymmetric shape control term dW 3 ′ other than the above two asymmetric shape control terms is arbitrarily selected and set to an arbitrary control amount dW 3 to control the two asymmetric shape control terms. The quantities dW 1 and dW 2 are given by the following equations:

【数5】 に従って設定することを特徴とする片クラウン金属帯の
圧延におけるセットアップ制御方法であり、本発明の第
3は、上記第1の発明方法において任意に選ぶ2つの非
対称形状制御項dW1′,dW2′以外の残りの2つの非
対称形状制御事項dW3′及びdW4′のそれぞれについ
ても任意な制御量dW3及びdW4を設定し、前記2つの
制御量dW1及びdW2を、下記の式
(Equation 5) A third aspect of the present invention is a setup control method for rolling a single crown metal strip, wherein the two asymmetric shape control terms dW 1 ′ and dW 2 are arbitrarily selected in the first invention method. ′, The arbitrary control amounts dW 3 and dW 4 are set for the remaining two asymmetric shape control items dW 3 ′ and dW 4 ′, respectively, and the two control amounts dW 1 and dW 2 are calculated by the following equations.

【数6】 に従って設定することを特徴とする片クラウン金属帯の
圧延におけるセットアップ制御方法に関するものであ
る。上記における△He,△Hq,a,b,c,d,e,
f,g,h,k,m,n,rについては以下において説
明する。
(Equation 6) The present invention relates to a setup control method in rolling of a single crown metal strip, characterized by setting according to the following. △ He, △ Hq, a, b, c, d, e,
f, g, h, k, m, n, and r will be described below.

【0009】以下に、本発明に係る片クラウン金属帯の
圧延におけるセットアップ制御方法を図面によって具体
的に説明する。図1は金属帯の圧延における圧延機の入
側と出側の板厚分布,板厚差及び伸び率差の説明図、図
2〜図5は板厚差△He及び△Hqのそれぞれと伸び率差
△εe及び△εqのそれぞれとの線形関係を示す各説明
図、図6〜図9は非対称形状制御項群dWb,dWI,
dP及びdδのそれぞれと伸び率差△εe及び△εqのそ
れぞれとの線形関係を示す各説明図、図10は実施例及
び比較例における全板幅に亘る伸び率を板幅中央に対す
る伸び率差で示す図である。
Hereinafter, a setup control method for rolling a single crown metal strip according to the present invention will be specifically described with reference to the drawings. FIG. 1 is an explanatory view of sheet thickness distribution, sheet thickness difference and elongation rate difference between the entrance side and exit side of a rolling mill in rolling of a metal strip, and FIGS. 2 to 5 show the sheet thickness differences ΔHe and ΔHq, respectively. FIGS. 6 to 9 are explanatory diagrams showing a linear relationship with each of the rate differences Δεe and Δεq, and FIGS. 6 to 9 show asymmetric shape control term groups dWb, dWI,
FIG. 10 is an explanatory view showing a linear relationship between each of dP and dδ and each of the elongation differences Δεe and Δεq. FIG. 10 shows the elongation percentage over the entire width of the plate in the example and the comparative example. FIG.

【0010】以下、6重圧延機を例にして説明する。先
ず、本発明においては図1に示すように、圧延機出側の
金属帯の板幅中央の位置(図1中の線L)より操作側及
び駆動側(図面では板厚の厚い方を操作側としている
が、これに拘束されない)に向かってそれぞれに等距離
にある両側の板側端部及び両側のクォータ部のそれぞれ
の板厚を次の各記号で表わす。即ち、圧延機入側におけ
る操作側の板側端部の板厚をHeW,クォータ部の板厚
をHqWとすると共に、同じく駆動側の板側端部の板厚
をHeD,クォータ部の板厚をHqDとし、圧延機出側に
おける操作側の板側端部の板厚をheW,クォータ部の
板厚をhqWとすると共に、同じく駆動側の板側端部の
板厚をheD,クォータ部の板厚をhqDとする。本発明
において板側端部とは、圧延された金属帯の板厚が一般
に板端から約20mmの位置より板側端側で急減するので、
板側端から20mmの位置とする。またクォータ部は板幅中
央と板側端との間の中点とする。
Hereinafter, a six-high rolling mill will be described as an example. First, in the present invention, as shown in FIG. 1, the operation side and the drive side (in the drawing, the thicker one is operated) than the center (width L in FIG. 1) of the metal strip on the exit side of the rolling mill. The thickness of each of the plate-side end portions and both-side quota portions that are equidistant from each other toward the sides (but not restricted to these sides) is represented by the following symbols. That is, the plate thickness at the operation-side plate side at the entry side of the rolling mill is HeW, the plate thickness at the quarter portion is HqW, the plate thickness at the drive-side plate side is HeD, and the plate thickness at the quarter portion is the same. Is HqD, the plate thickness at the operation-side plate side at the rolling mill exit side is heW, the plate thickness at the quarter portion is hqW, and the plate thickness at the drive-side plate side is heD, The thickness is hqD. In the present invention, the plate-side end portion, since the thickness of the rolled metal strip is sharply reduced on the plate-side end side from a position generally about 20 mm from the plate end,
20mm from the edge of the board. The quota part is the midpoint between the center of the plate width and the end on the plate side.

【0011】前記記号を使用して圧延機出側の板側端部
同士間の伸び率差△εe及びクォータ部同士間の伸び率
差△εqと、板側端部及びクォータ部の各板厚との関係
を考察する。先ず、圧延機入側における板側端部同士間
の板厚差△He及びクォータ部同士間の板厚差△Hqは次
の式で表わされる。 △He=HeW−HeD‥‥(1) △Hq=HqW−HqD‥‥(2) また伸び率差△εe及び△εqは次式で表わされる。 △εe=−ζ{ln(heW/HeW)−ln(heD/HeD)}‥‥(3) △εq=−ζ{ln(hqW/HqW)−ln(hqd/Hqd)}‥‥(4) (ここでζは操作側と駆動側とにおける圧延方向の歪差
と板厚方向の歪差との比である。)
Using the above symbols, the elongation difference △ εe between the plate-side ends on the exit side of the rolling mill and the elongation difference △ εq between the quarter portions, and the thickness of each of the plate-side end and the quarter portion Consider the relationship with First, the thickness difference ΔHe between the plate side ends at the entry side of the rolling mill and the thickness difference ΔHq between the quarter portions are expressed by the following equations. ΔHe = HeW−HeD ‥‥ (1) ΔHq = HqW−HqD ‥‥ (2) The elongation differences Δεe and Δεq are represented by the following equations. Δεe = −Δln (heW / HeW) −ln (heD / HeD)} ‥‥ (3) Δεq = −ζ {ln (hqW / HqW) −ln (hqd / Hqd)} ‥‥ (4) (Here, ζ is the ratio of the difference in strain in the rolling direction and the difference in strain in the thickness direction between the operating side and the driving side.)

【0012】式(3),(4)は次のように誘導される。即
ち、圧延方向の歪をε,板厚方向の歪をε′,板幅方向
の歪をε″とすると、圧延処理は塑性加工の1種である
から素材の体積一定の条件から次のような関係が成り立
つ。 ε+ε′+ε″=0‥‥(5) 操作側と駆動側とにおける圧延方向,板厚方向及び板幅
方向の歪差をそれぞれ△ε,△ε′及び△ε″とする
と、同様に次のような関係が成り立つ。 △ε+△ε′+△ε″=0‥‥(6) ここで、圧延の前後において板幅は殆ど変化しないとし
て板幅方向の歪差を考慮しない場合には△ε=−△ε″
となるが、板幅方向の歪差を考慮して圧延方向と板厚方
向の歪差の比をζとすると △ε=−ζ△ε″‥‥(7) となる。また、板厚方向の歪は真歪(対数歪)で一般式
ln(h/H)と表わされるから、式(7)の関係と合わせ
ると、(3)式及び(4)式が得られる。
Equations (3) and (4) are derived as follows. That is, assuming that the strain in the rolling direction is ε, the strain in the plate thickness direction is ε ′, and the strain in the plate width direction is ε ″, the rolling process is one type of plastic working. Ε + ε ′ + ε ″ = 0 ‥‥ (5) Assuming that the strain differences in the rolling direction, sheet thickness direction and sheet width direction between the operating side and the driving side are △ ε, △ ε ′ and △ ε ″, respectively. Similarly, the following relationship holds: Δε + △ ε ′ + △ ε ″ = 0 = (6) Here, since the sheet width hardly changes before and after rolling, the difference in strain in the sheet width direction is not considered. In this case, △ ε = − △ ε ″
However, when the ratio of the strain difference between the rolling direction and the thickness direction is set to し て in consideration of the strain difference in the sheet width direction, Δε = −ζ △ ε ″ ‥‥ (7). Is represented by the general expression ln (h / H) in true distortion (logarithmic distortion), and when combined with the relationship of Expression (7), Expressions (3) and (4) are obtained.

【0013】多くの圧延条件で検討した結果、非対称形
状制御手段を用いない場合、伸び率差△εe及び△εqそ
れぞれと板厚差△He及び△Hqそれぞれとの間に線形の
関係が成り立つことが判明した。従って伸び率差△εe
及び△εqは次式のように表わされる。 △εe=a△He+b△Hq+k‥‥(8) △εq=c△He+d△Hq+k′‥‥(9) ここで、k,k′は常数項
As a result of investigations under many rolling conditions, it was found that a linear relationship is established between the elongation differences Δεe and Δεq and the plate thickness differences ΔHe and ΔHq when the asymmetric shape control means is not used. There was found. Therefore, the elongation difference △ εe
And △ εq are represented by the following equations. Δεe = a △ He + b △ Hq + k ‥‥ (8) △ εq = c △ He + d △ Hq + k ′ ‥‥ (9) where k and k ′ are constant terms

【0014】ここで上記係数a,b,c,dの意味を図
2〜図5により説明する。上記各図及び後に説明する図
6〜図9に示すデータは後記実施例に使用した6重圧延
機と同じものを使用して得たデータである。式(8)にお
いて△Hqを一定にすると、図2に示すように△εeと△
Heとは線形関係にあり、aは△Heに対する△εeの傾
き(即ち、原点に直線が載るように座標軸を平行移動さ
せたときの△εe/△He)を示す係数である。また、式
(8)において△Heを一定すると、図3に示すように△
εeと△Hqとは線形関係にあり、bは△Hqに対する△
εeの傾きを示す係数である。式(9)においても上記と
同様にして、c及びdは図4及び図5に示すようにそれ
ぞれ△Heに対する△εqの傾き及び△Hqに対する△εq
の傾きを示す係数である。
Here, the meaning of the coefficients a, b, c and d will be described with reference to FIGS. The data shown in each of the above figures and FIGS. 6 to 9 described later are data obtained by using the same six-rolling mill used in the examples described later. Assuming that 一定 Hq is constant in equation (8), △ e and △
He is in a linear relationship with He, and a is a coefficient indicating the slope of △ εe with respect to 即 ち He (ie, eεe / △ He when the coordinate axes are translated so that a straight line is placed at the origin). Also, the formula
When △ He is constant in (8), as shown in FIG.
There is a linear relationship between εe and △ Hq, and b is △
This is a coefficient indicating the slope of εe. Similarly, in the equation (9), c and d are the slopes of 示 す εq with respect to △ He and △ εq with respect to △ Hq, respectively, as shown in FIGS.
Is a coefficient indicating the slope of

【0015】式(8)及び式(9)において、非対称形状制
御手段を用いない場合板厚差△He及び△Hqを共に0と
すると、圧延機入側の板厚分布は左右対称となるから、
圧延機出側形状も左右対称(即ち、△εe=0,△εq=
0)となる。従って定数項k,k′はいずれも0であ
り、式(8),(9)は △εe=a△He+b△Hq‥‥(10) △εq=c△He+d△Hq‥‥(11) となる。これらをまとめて次のように行列表示する。
In the equations (8) and (9), when the sheet thickness differences ΔHe and ΔHq are both set to 0 when the asymmetric shape control means is not used, the sheet thickness distribution on the entry side of the rolling mill becomes bilaterally symmetric. ,
The rolling mill exit side shape is also symmetrical (that is, △ εe = 0, △ εq =
0). Accordingly, the constant terms k and k 'are both 0, and the equations (8) and (9) are as follows:? E = a? He + b? Hq? (10)? E = c? He + d? Hq? (11) Become. These are collectively displayed as a matrix as follows.

【数7】 (Equation 7)

【0016】次に、上記のように非対称形状制御手段を
用いないで金属帯を圧延する場合に対して、非対称形状
制御手段を用いたときの影響を考察して適切な制御量を
求める。多くの圧延条件についての検討により、伸び率
差△εe及び△εqのそれぞれは非対称形状制御項群dW
b,dIb,dP及びdδのいずれとの間にも線形関係を
有することが判明した。それらの線形関係についての各
例は、dWbとの関係は図6に、dIbとの関係は図7
に、dPとの関係は図8に、そしてdδとの関係は図9
にそれぞれ示す如くである。
Next, in the case where the metal strip is rolled without using the asymmetrical shape control means as described above, an appropriate control amount is obtained by considering the effect of using the asymmetrical shape control means. Examination of many rolling conditions shows that each of the elongation differences △ εe and △ εq is asymmetric shape control term group dW
It was found that there was a linear relationship with any of b, dIb, dP and dδ. In each example of the linear relationship, the relationship with dWb is shown in FIG. 6, and the relationship with dIb is shown in FIG.
FIG. 8 shows the relationship with dP, and FIG. 9 shows the relationship with dδ.
Respectively.

【0017】先ず非対称形状制御項群の中から任意に選
んだ2つの制御項としてのdW1′とdW2′とによる非
対称形状制御手段を用いる場合について説明する。非対
称形状制御項dW1′とdW2′とのそれぞれと伸び率差
△εe及び△εqのそれぞれとの間に成立する直線関係に
おいて、dW 1 に対する△εeの傾き(前記aの場合の傾
きと同じ意味)を示す係数をeとし、dW 2 に対する△
εeの傾きを示す係数をfとし、dW 1 に対する△εqの
傾きを示す係数をgとし、dW 2 に対する△εqの傾きを
示す係数をhとする。
First, a description will be given of a case in which asymmetric shape control means using dW 1 ′ and dW 2 ′ as two control terms arbitrarily selected from the asymmetric shape control term group is used. In linear relationship established between each respectively elongation difference △ .epsilon.e and △ Ipushironq 'and dW 2' asymmetrical control term dW 1 and the inclination of the case of the slope (the a of △ .epsilon.e for dW 1 The same meaning) as e, △ for dW 2
The coefficient indicating the slope of εe is f, the coefficient indicating the slope of △ Ipushironq for dW 1 and g, the coefficient indicating the slope of △ Ipushironq for dW 2 and h.

【0018】各非対称形状制御手段の影響は、加算して
考えることができる。即ち、適用する非対称形状制御項
dW1′,dW2′の制御量をそれぞれdW1,dW2とす
れば、式(11)及び式(12)は次式のようになる。 △εe=a△He+b△Hq+edW1+fdW2‥‥(13) △εq=c△He+d△Hq+gdW1+hdW2‥‥(14) これらをまとめて次のように行列表示する。
The effect of each asymmetric shape control means can be considered by adding. That is, assuming that the control amounts of the applied asymmetric shape control terms dW 1 ′ and dW 2 ′ are dW 1 and dW 2 , respectively, equations (11) and (12) are as follows. Δεe = a △ He + b △ Hq + edW 1 + fdW 2 13 (13) Δεq = c △ He + d △ Hq + gdW 1 + hdW 2 14 (14) These are collectively displayed as a matrix as follows.

【数8】 式(15)において、伸び率差△εe及び△εqをそれぞれ
目標値△εe0,△εq0と置いて制御量dW1,dW2につ
いて解けば制御式(16)を得る。
(Equation 8) In the equation (15), the control equations (16) are obtained by solving the control amounts dW 1 and dW 2 by setting the elongation difference △ εe and △ εq as the target values △ εe 0 and △ εq 0 respectively.

【数9】 従って、係数a,b,c,d,e,f,g,hを圧延荷
重,板幅等圧延条件の関数として予め求めておき、式
(16)に従ってdW1,dW2を設定することができる。
(Equation 9) Therefore, the coefficients a, b, c, d, e, f, g, and h are determined in advance as a function of rolling conditions such as rolling load and strip width, and
According to (16), dW 1 and dW 2 can be set.

【0019】次に、非対称形状制御項群の中から前記の
場合のように任意に選ぶ2つの非対称形状制御項d
1′,dW2′とは別の1つの非対称形状制御項d
3′を任意に選び、合計3つの非対称形状制御項d
1′,dW2′及びdW3′による非対称形状制御手段
を用いる場合について説明する。前記2つの非対称形状
制御項を用いる場合と同様の考え方により、式(15)に
相当して次式(17)が得られる。
Next, two asymmetric shape control terms d arbitrarily selected from the group of asymmetric shape control terms as described above.
One asymmetrical shape control term d different from W 1 ′, dW 2
W 3 ′ is arbitrarily selected, and a total of three asymmetric shape control terms d
The case where asymmetric shape control means based on W 1 ′, dW 2 ′ and dW 3 ′ is used will be described. Based on the same concept as when using the two asymmetric shape control terms, the following equation (17) is obtained corresponding to equation (15).

【数10】 ここで、dW3は非対称形状制御項dW3′の制御量であ
り、そしてkはdW3と△εeとが示す線形関係における
dW3に対する△εeの傾きを示す係数であり、mはdW
3と△εqとが示す線形関係おけるdW3に対する△εqの
傾きを示す係数である。
(Equation 10) Here, dW 3 is a control amount of the asymmetrical control term dW 3 ', and k is a coefficient indicating the slope of △ .epsilon.e for dW 3 in the linear relation shown by the the dW 3 △ .epsilon.e, m is dW
This is a coefficient indicating the slope of △ εq with respect to dW 3 in the linear relationship indicated by 3 and △ εq.

【0020】いま式(17)において非対称形状制御項d
3′の制御量dW3を任意の制御量に設定し、伸び率差
△εe及び△εqをそれぞれ目標値△εe0及び△εq0と置
いて制御量dW1,dW2について解けば、式(16)に対
応して制御式(18)を得る。
In equation (17), the asymmetric shape control term d
If the control amount dW 3 of W 3 ′ is set to an arbitrary control amount, and the elongation differences △ εe and △ εq are set to the target values △ εe 0 and △ εq 0 respectively, and the control amounts dW 1 and dW 2 are solved, A control equation (18) is obtained corresponding to the equation (16).

【数11】 従って、前記2つの非対称形状制御項dW1′,dW2
による制御手段を用いる場合と同様に係数a〜hと共に
係数k,mについても圧延荷重,板幅等圧延条件の関数
として予め求めておき、式(18)に従って制御量d
1,dW2を設定することが出来る。以上2つの場合に
おいて非対称形状制御手段に用いられない非対称形状制
御項は対称的な非対称形状制御項として扱われる。
[Equation 11] Therefore, the two asymmetric shape control terms dW 1 ′, dW 2
The coefficients k and m are determined in advance as a function of the rolling conditions such as the rolling load and the sheet width in the same manner as in the case of using the control means according to the formula (1).
W 1 and dW 2 can be set. In the above two cases, the asymmetric shape control term not used in the asymmetric shape control means is treated as a symmetric asymmetric shape control term.

【0021】次に非対称形状制御項群の中から任意に選
ぶ2つの非対称形状制御項dW1′,dW2′の他に残り
の2つの非対称形状制御項dW3′,dW4′を加えた全
部の非対称形状制御項及び3つの非対称形状制御手段を
用いる各場合について説明する。この場合も、前記2つ
の非対称形状制御項及び3つの非対称形状制御項を用い
る各場合と同様の考え方により、式(15),(17)に相
当して次式(19)が得られる。
Next, in addition to two asymmetric shape control terms dW 1 ′ and dW 2 ′ arbitrarily selected from the asymmetric shape control terms, the remaining two asymmetric shape control terms dW 3 ′ and dW 4 ′ are added. Each case using all the asymmetric shape control terms and three asymmetric shape control means will be described. Also in this case, the following equation (19) is obtained corresponding to equations (15) and (17) based on the same concept as in each case using the two asymmetric shape control terms and the three asymmetric shape control terms.

【数12】 ここにdW4は非対称形状制御項dW4′の制御量であ
り、nはdW4と△εeとが示す線形関係おけるdW4
対する△εeの傾きを示す係数であり、rはdW4と△ε
qとが示す線形関係おけるdW4に対する△εqの傾きを
示す係数である。
(Equation 12) Here, dW 4 is a control amount of the asymmetric shape control term dW 4 ′, n is a coefficient indicating a gradient of △ εe with respect to dW 4 in a linear relationship indicated by dW 4 and △ εe, and r is dW 4 and △ εe. ε
This is a coefficient indicating the slope of △ εq with respect to dW 4 in the linear relationship indicated by q.

【0022】いま式(19)においてdW3,dW4を任意
の制御量に設定し、伸び率差△εe及び△εqをそれぞれ
目標値△εe0及び△εq0と置いて制御量dW1,dW2
ついて解けば、式(16),(18)に対応して制御式(2
0)を得る。
[0022] dW 3, sets dW 4 to arbitrary control amount, the control amount dW 1 elongation difference △ .epsilon.e and △ Ipushironq respectively at the target value △ .epsilon.e 0 and △ εq 0 In Now formula (19), Solving for dW 2 , the control equation (2) corresponds to equations (16) and (18).
0).

【数13】 従って、前記3つの非対称形状制御項による制御手段を
用いる場合と同様に係数a〜h,k,mと共に係数n,
rについても圧延荷重,板幅等圧延条件の関数として予
め求めておき、式(20)に従って制御量dW1,dW2
設定することが出来る。
(Equation 13) Therefore, similarly to the case of using the control means based on the three asymmetric shape control terms, the coefficients a to h, k, and m and the coefficients n,
r can also be determined in advance as a function of rolling conditions such as rolling load and strip width, and control amounts dW 1 and dW 2 can be set according to equation (20).

【0023】圧延後における金属帯の所定の断面が金属
帯を片伸びさせないためのものである場合は、圧延前後
の金属帯の断面は相似である。そのような断面に限りな
く近付くためには、操作側と駆動側との伸び率差が小さ
い程好ましい。従って、制御式(16),(18)及び(2
0)において、目標値△εe0及び△εq0は共に0となる
ように制御量dW1,dW2をセットアップ時に設定する
ことによって圧延開始当初から片伸びなく圧延すること
が出来る。
When the predetermined cross section of the metal band after rolling is for preventing the metal band from being partially stretched, the cross sections of the metal band before and after the rolling are similar. In order to approach such a cross section as much as possible, it is preferable that the difference in elongation between the operation side and the drive side is as small as possible. Therefore, the control equations (16), (18) and (2)
In (0), by setting the control amounts dW 1 and dW 2 at the time of set-up so that both the target values Δεe 0 and Δεq 0 become 0, it is possible to perform rolling without eccentricity from the beginning of rolling.

【0024】以上、本発明方法を6重圧延機を使用する
場合について説明したが、4重圧延機やクラスタ圧延機
など少なくともワークロールとバックアップロールとを
備えた圧延機なら同様の制御方法を用いることができ
る。例えば4重圧延機について本発明方法を適用する場
合は、dWb,dIb,dP及びdδのうち適用可能な非
対称形状制御項はdWbとdPとの2つだけであるから
制御式(16)を用い、制御量dW1,dW2としてそれぞ
れdWb,dPを用いた次式によれば良い。
In the above, the method of the present invention has been described for the case of using a six-high rolling mill, but the same control method is used for a rolling mill having at least a work roll and a backup roll, such as a four-high rolling mill or a cluster rolling mill. be able to. For example, when the method of the present invention is applied to a quadruple rolling mill, the control expression (16) is used because dWb, dIb, dP, and dδ have only two applicable asymmetric shape control terms, dWb and dP. The following equations using dWb and dP as the control amounts dW 1 and dW 2 may be used.

【数14】 また多段圧延機において、中間ロールやバックアップロ
ールを複数本備えている場合は、dP,dIb,dδに
ついてはそれぞれdP(最上部のバックアップロールに
かかる操作側と駆動側の圧力差)、dIb(ワークロー
ルと接触する中間ロールの操作側と駆動側のベンディン
グ力差、dδ(ワークロールと接触する上下中間ロール
のシフト位置差)とし、dWb,dIb,dP,dδのう
ち任意の2〜4手段を用い、式(16),(18),(20)
に従って制御量dW1,dW2を設定すればよい。以上の
ようにしてセットアップ制御を行って圧延を開始した後
は、例えば前記したように圧延機出側にその板幅方向に
複数に分割した部分の金属帯の各部分の張力を測定する
ことによってその部分の形状を求める形状検出器を設置
しておいてそれにより得られる圧延後の形状情報によっ
て圧延条件を修正しながら圧延するなどの既知技術によ
り圧延を続ければ良い。
[Equation 14] When the multi-high rolling mill is provided with a plurality of intermediate rolls and backup rolls, dP, dIb, and dδ are respectively dP (pressure difference between the operation side and the drive side of the uppermost backup roll) and dIb (workpiece). The bending force difference between the operation side and the drive side of the intermediate roll that contacts the roll, dδ (shift position difference between the upper and lower intermediate rolls that contact the work roll), and any two to four means out of dWb, dIb, dP, and dδ Equations (16), (18), (20)
The control amounts dW 1 and dW 2 may be set according to the following. After performing the set-up control as described above and starting rolling, for example, by measuring the tension of each part of the metal band of the part divided into a plurality in the sheet width direction on the rolling mill exit side as described above. Rolling may be continued by a known technique such as setting a shape detector for determining the shape of the portion and rolling while correcting rolling conditions based on the obtained shape information after rolling.

【0025】[0025]

【実施例】以下に本発明方法を6重圧延機による圧延の
セットアップに適用した実施例によって具体的に説明す
る。使用した6重圧延機は、ロール諸元をロール径,ロ
ール胴長,チョック間距離の順で括弧内に示す標準的な
ワークロール(135mm,850mm,1075mm)、中間ロール
(300mm,850mm,1660mm)、及びバックアップロール
(630mm,850mm,1475mm)を図11と同じロール構成に
備えていて、非対称形状制御項群dWb,dIb,dP,
dδの制御可能なものであった。このような6重圧延機
を使用して、△He=30μm,△Hq=7μmである板幅
600mmの普通鋼クラウン材を、圧延機の入側板厚0.6mm,
出側板厚0.36mm,圧延荷重170トンの圧延条件で圧延す
る場合について、セットアップ時に本発明方法により非
対称形状制御項の制御量を設定した場合、圧延の初期に
おける普通鋼帯の全幅に亘って伸び率を測定した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to an embodiment in which the method is applied to a rolling setup by a six-high rolling mill. The six-high rolling mill used was a standard work roll (135mm, 850mm, 1075mm), and intermediate rolls (300mm, 850mm, 1660mm) whose roll specifications are shown in parentheses in the order of roll diameter, roll body length, and chock distance. ) And backup rolls (630 mm, 850 mm, 1475 mm) in the same roll configuration as in FIG. 11, and the asymmetric shape control terms dWb, dIb, dP,
dδ was controllable. By using such a six-high rolling mill, a sheet width of ΔHe = 30 μm and ΔHq = 7 μm
600mm ordinary steel crown material is added to the 0.6mm
In the case of rolling under the rolling condition of 0.36 mm in exit side thickness and 170 ton rolling load, when the control amount of the asymmetric shape control term is set by the method of the present invention at the time of setup, the elongation over the entire width of the ordinary steel strip at the beginning of rolling is performed. The rate was measured.

【0026】(イ) 2つの非対称形状制御項を用いる場
合:非対称形状制御項群の中から任意に選んだ圧下力差
dP(その制御量をdW1とする)と上下中間ロールの
シフト位置差dδ(その制御量をdW2とする)とによ
る非対称形状制御手段でセットアップ制御を行った。制
御式(16)の各係数の値は、上記圧延条件下において
は、a=4.9×10-6,b=−9.5×10-6,c=−2.9×10
-6,d=5.1×10-6,e=1.8×10-4,f=4.0×10-6,g
=0.5×10-4及びh=−3.0×10-6であった。ここで圧延
機出側の△εe及び△εqの目標値を△εe0=0及び△ε
q0=0として制御式(16)によりdW1=−0.04(ト
ン),dW2=−18.0(mm)を得、そのように圧下力差d
P,シフト位置差dδを設定してセットアップ制御をし
て圧延を開始した。この場合の圧延の初期における普通
鋼帯の伸び率を全幅に亘って図10に(イ)で示す。
[0026] (a) When using a two asymmetrical control term (and dW 1 the control amount) rolling force difference dP randomly selected from among the asymmetrical control section group and the shift position difference between the upper and lower intermediate rolls Setup control was performed by asymmetric shape control means based on dδ (the control amount is dW 2 ). Under the above rolling conditions, the values of the coefficients in the control formula (16) are as follows: a = 4.9 × 10 −6 , b = −9.5 × 10 −6 , c = −2.9 × 10
-6 , d = 5.1 × 10 -6 , e = 1.8 × 10 -4 , f = 4.0 × 10 -6 , g
= 0.5 × 10 −4 and h = −3.0 × 10 −6 . Here, the target values of △ εe and qεq on the rolling mill exit side are set to △ εe 0 = 0 and △ ε
Assuming that q 0 = 0, dW 1 = −0.04 (ton) and dW 2 = −18.0 (mm) are obtained by the control equation (16), and the rolling force difference d
P and shift position difference dδ were set, setup control was performed, and rolling was started. FIG. 10A shows the elongation percentage of the ordinary steel strip in the initial stage of rolling in this case over the entire width.

【0027】(ロ) 3つの非対称形状制御項を用いる場
合:上記(イ)の場合に非対称形状制御項とした圧下力差
dP及びシフト位置差dδにワークロールのベンディン
グ力差dWb(その制御量をdW3とする)を加えた3つ
の非対称形状制御項を用い、制御量dW3を任意な値の
dW3=−0.05(トン)に設定した。制御式(18)の各係
数の値は、a〜hは前記(イ)の場合と同じであるが、k
=−2.0×10-4,m=0.1×10-4であった。圧延機出側の
伸び率差△εe及び△εqの目標値を△εe0=0及び△ε
q0=0として制御式(18)によりdW1=0.00(トン),
dW2=−17.3(mm)を得、そのように圧下力差dP及び
シフト位置差dδをそれぞれ上記dW1及びdW2の値に
設定してセットアップ制御をして圧延を開始した。この
場合の圧延の初期における普通鋼帯の伸び率を全幅に亘
って図10に(ロ)で示す。
(B) When three asymmetric shape control terms are used: The rolling force difference dWb (working amount thereof) of the rolling force difference dP and the shift position difference dδ, which are the asymmetric shape control terms in the case of (a) above. the use of a three asymmetrical control term plus a dW 3), was set to dW 3 = -0.05 any value of the control amount dW 3 (tons). Regarding the values of the respective coefficients in the control equation (18), a to h are the same as those in the case of (a), but k
= −2.0 × 10 −4 and m = 0.1 × 10 −4 . The target values of the elongation difference △ εe and △ εq on the exit side of the rolling mill are △ εe 0 = 0 and △ ε
Assuming that q 0 = 0, dW 1 = 0.00 (ton) by control equation (18),
dW 2 = -17.3 (mm) was obtained. Thus, the rolling force difference dP and the shift position difference dδ were set to the values of the above dW 1 and dW 2 , and setup control was performed to start rolling. The elongation percentage of the ordinary steel strip in the initial stage of rolling in this case is shown in FIG.

【0028】(ハ) 4つ全部の非対称形状制御項を用い
る場合:上記(ロ)の場合のdP,dδ及びdWbに中間
ロールのベンディング力差dIb(その制御量をdW4
する)を加えた4つ全部の非対称形状制御項を用いて、
dWbの制御量dW3とdIbの制御量dW4とをそれぞれ
任意な値のdW3=0.03(Ton)及びdW4=0.03(トン)に
設定した。制御式(20)の各係数の値は、a〜mは(ロ)
の場合と同じであるが、n=−1.9×10-4,r=−0.6×
10-4であった。圧延機出側の伸び率差△εe及び△εqの
目標値を△εe0=0及び△εq0=0として制御式(20)
によりdW1=0.02(Ton),dW2=−17.7(mm)を得、そ
のように圧下力差dP及びシフト位置差dδをそれぞれ
上記dW1及びdW2の値に設定してセットアップ制御を
して圧延を開始した。この場合の圧延の初期における普
通鋼帯の伸び率を全幅に亘って図10に(ハ)で示す。
(C) When all four asymmetric shape control terms are used: The bending force difference dIb (the control amount is dW 4 ) of the intermediate roll is added to dP, dδ and dWb in the case of (b) above. Using all four asymmetric shape control terms,
The control amount dW 3 of dWb and the control amount dW 4 of dIb were set to dW 3 = 0.03 (Ton) and dW 4 = 0.03 (ton) of arbitrary values, respectively. The values of each coefficient of the control equation (20) are as follows:
Is the same as n, but n = −1.9 × 10 −4 , r = −0.6 ×
It was 10 -4 . The control expression (20) is set assuming that the target values of the elongation difference △ εe and △ εq at the exit side of the rolling mill are △ εe 0 = 0 and △ εq 0 = 0.
As a result, dW 1 = 0.02 (Ton) and dW 2 = -17.7 (mm) are obtained. Thus, the setup control is performed by setting the rolling force difference dP and the shift position difference dδ to the values of dW 1 and dW 2 respectively. Rolling was started. The elongation percentage of the ordinary steel strip in the initial stage of rolling in this case is shown in FIG.

【0029】(ニ) 比較のため、すべての非対称形状制
御項を0に設定してセットアップ制御したこと以外は上
記実施例(イ)〜(ハ)と同様にして圧延を開始して得た圧
延初期の伸び率を全幅に亘って図10に(ニ)で示す。
(D) For comparison, the rolling obtained by starting rolling in the same manner as in Examples (a) to (c) except that all asymmetric shape control terms were set to 0 and setup control was performed. The initial elongation rate is shown in FIG.

【0030】図10から、本発明方法による(イ),(ロ)
及び(ハ)のいずれの場合も伸び率差△εe,△εqの値は
ほぼ0.2×10-4以下となっていることが判る。これに対
して非対称形状制御手段をとらない場合は伸び率差△ε
e,△εqはほぼ0.7×10-4に達していることが判る。従
来の方法により非対称形状制御項の制御量を経験的に設
定するときは、上記の比較例よりも伸び率差△εe,△
εqが小さくなる場合はあるが、その程度は本発明方法
に比べて小さい上に一定しない。
FIG. 10 shows that the method (a) and (b) according to the method of the present invention.
In both cases (c) and (c), the values of the elongation difference 伸 び εe and △ εq are found to be approximately 0.2 × 10 −4 or less. On the other hand, when the asymmetric shape control means is not used, the elongation difference △ ε
It can be seen that e and △ εq have almost reached 0.7 × 10 -4 . When the control amount of the asymmetric shape control term is empirically set by the conventional method, the elongation difference △ εe, △
Although εq may be small, the degree is small and not constant as compared with the method of the present invention.

【0031】[0031]

【発明の効果】以上詳述した如く、本発明に係る片クラ
ウン金属帯の圧延におけるセットアップ制御方法は、片
クラウン材の圧延において伸び率差△εe及び△εqのそ
れぞれと板厚差△He及び△Hqのそれぞれとが線形関係
にあることを利用して非対称形状制御項dWb,dW
I,dP及びdδのうち任意の2つについて、その制御
量を合理的に導いた制御式により得てセットアップ制御
するように構成したことにより、圧延の初期から圧延機
出側の金属帯の断面形状を所定のものにすることが出来
る。従って、圧延機出側の金属帯の断面形状を入側のそ
れと相似にすることにより、圧延の初期から片伸び形状
を発生させることがないから、品質改善と共に歩留向上
が図れる。また片伸びに伴って生ずる板破断現象の発生
もなくなり、能率向上を計ることが出来る。このような
効果を有する本発明方法の工業的価値は非常に大きなも
のがある。
As described above in detail, the set-up control method in the rolling of a one-crown metal strip according to the present invention includes the following methods: Asymmetric shape control terms dWb, dW utilizing the fact that each of ΔHq has a linear relationship.
For any two of I, dP, and dδ, the control amount is obtained by a control formula derived rationally, and set up control is performed, so that the cross section of the metal strip on the exit side of the rolling mill from the beginning of rolling. The shape can be predetermined. Therefore, by making the cross-sectional shape of the metal strip on the exit side of the rolling mill similar to that on the entry side, a one-sided elongation shape is not generated from the initial stage of rolling, so that it is possible to improve the quality and the yield. Further, the occurrence of the plate breakage phenomenon caused by the one-side elongation is eliminated, and the efficiency can be improved. The industrial value of the method of the present invention having such effects is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金属帯の圧延における圧延機の入側と出側の板
厚分布,板厚差及び伸び率差の説明図である。
FIG. 1 is an explanatory diagram of a thickness distribution, a thickness difference, and an elongation difference between an entrance side and an exit side of a rolling mill in rolling of a metal strip.

【図2〜図5】板厚差△He及び△Hqのそれぞれと伸び
率差△εe及び△εqのそれぞれとの線形関係を示す各説
明図である。
FIGS. 2 to 5 are explanatory diagrams showing linear relationships between plate thickness differences ΔHe and ΔHq and elongation differences Δεe and Δεq, respectively.

【図6〜図9】非対称形状制御項群dWb,dWI,d
P及びdδのそれぞれと伸び率差△εe及び△εqのそれ
ぞれとの線形関係を示す各説明図である。
6 to 9 are asymmetric shape control term groups dWb, dWI, d
It is each explanatory drawing which shows the linear relationship of each of P and ddelta, and each of elongation rate difference (DELTA) e and (DELTA) (epsilon) q.

【図10】実施例及び比較例における全板幅に亘る伸び
率を板幅中央に対する伸び率差で示す図である。
FIG. 10 is a diagram showing the elongation percentage over the entire plate width in Examples and Comparative Examples as an elongation difference with respect to the center of the plate width.

【図11】6重圧延機による圧延状況を示す説明図であ
る。
FIG. 11 is an explanatory diagram showing a rolling state by a six-high rolling mill.

【符号の説明】[Explanation of symbols]

1 ワークロール 2 中間ロール 3 バックアップロール 4 金属帯 Wb ワークロールの操作側のベンディング力 Wb′ ワークロールの駆動側のベンディング力 Ib 中間ロールの操作側のベンディング力 Ib′ 中間ロールの駆動側のベンディング力 P バックアップロールの操作側にかゝる圧下力 P′ バックアップロールの駆動側にかゝる圧下力 δ 上中間ロールのシフト位置 δ′ 下中間ロールのシフト位置 L 圧延機出側の金属帯の板幅中央の位置 HeW 圧延機入側における金属帯の操作側の板側端部
の板厚 HqW 圧延機入側における金属帯の操作側のクォータ
部の板厚 HeD 圧延機入側における金属帯の駆動側の板側端部
の板厚 HqD 圧延機入側における金属帯の駆動側のクォータ
部の板厚 heW 圧延機出側における金属帯の操作側の板側端部
の板厚 hqW 圧延機出側における金属帯の操作側のクォータ
部の板厚 heD 圧延機出側における金属帯の駆動側の板側端部
の板厚 hqD 圧延機出側における金属帯の駆動側のクォータ
部の板厚
DESCRIPTION OF SYMBOLS 1 Work roll 2 Intermediate roll 3 Backup roll 4 Metal band Wb Bending force on operation side of work roll Wb 'Bending force on driving side of work roll Ib Bending force on operation side of intermediate roll Ib' Bending force on driving side of intermediate roll P Rolling force applied to the operation side of the backup roll P 'Rolling force applied to the drive side of the backup roll δ Shift position of the upper intermediate roll δ' Shift position of the lower intermediate roll L Metal plate on the exit side of the rolling mill Center position of width HeW Thickness of plate side end of metal strip on operation side of metal strip at entry side of rolling mill HqW Thickness of quarter section on operation side of metal strip at entry side of rolling mill HeD Driving of metal strip at entry side of rolling mill HqD Thickness of the quarter on the driving side of the metal strip at the entry side of the rolling mill heW Thickness of the operation side of the metal strip at the exit side of the rolling mill HqW The thickness of the quarter part on the operation side of the metal strip on the exit side of the rolling mill heD The thickness of the driving side of the metal strip on the exit side of the rolling mill The thickness of the plate side end of the metal strip hqD The driving side of the metal strip on the exit side of the rolling mill Quarter thickness

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 板幅の一方の側端から他方の側端に向か
って板厚が漸減する両側非対称形状の片クラウン金属帯
を、4重圧延機以上の多段圧延機を使用して操作側と駆
動側とのワークロールのベンディング力差dWb,同じ
く中間ロールのベンディング力差dIb,同じくバック
アップロールの圧下力差dP及び上下中間ロールのシフ
ト位置差dδから成る非対称形状制御項群の一部又は全
部についての制御により所定の断面形状に圧延する際の
セットアップ制御において、圧延機出側の金属帯の板幅
中央より操作側及び駆動側のそれぞれに等距離にある両
側の板側端部及び両側のクォータ部の伸び率に関し、板
側端部同士間の伸び率差△εe及びクォータ部同士間の
伸び率差△εqがそれぞれ目標値△εe0及び△εq0とな
るように、前記非対称形状制御項群の中から任意の2つ
の非対称形状制御項dW1′及びdW2′を選んでその制
御量dW1及びdW2を、下記の式 【数1】 ここで△He:圧延機入側の金属帯の板幅中央より操作
側及び駆動側のそれぞれに等距離にある板側端部同士間
の板厚差、 △Hq:圧延機入側の金属帯の板幅中央より操作側及び
駆動側のそれぞれに等距離にあるクォータ部同士間の板
厚差、 a:△Heと△εeとが示す線形関係における△Heに対
する△εeの傾きを示す係数、 b:△Hqと△εeとが示す線形関係における△Hqに対
する△εeの傾きを示す係数、 c:△Heと△εqとが示す線形関係における△Heに対
する△εqの傾きを示す係数、 d:△Hqと△εqとが示す線形関係における△Hqに対
する△εqの傾きを示す係数、 e:dW1と△εeとが示す線形関係におけるdW1に対
する△εeの傾きを示す係数、 f:dW2と△εeとが示す線形関係におけるdW2に対
する△εeの傾きを示す係数、 g:dW1と△εqとが示す線形関係におけるdW1に対
する△εqの傾きを示す係数、 h:dW2と△εqとが示す線形関係におけるdW2に対
する△εqの傾きを示す係数、 に従って設定することを特徴とする片クラウン金属帯の
圧延におけるセットアップ制御方法。
1. An asymmetrical single-sided metal strip having a plate thickness gradually decreasing from one side end to the other side end of a sheet width is formed on an operation side by using a multi-high rolling mill of four or more rolling mills. Or a part of the asymmetrical shape control term group consisting of the bending force difference dWb of the work roll between the work roll and the drive side, the bending force difference dIb of the intermediate roll, the rolling force difference dP of the backup roll, and the shift position difference dδ of the upper and lower intermediate rolls. In the set-up control when rolling to a predetermined cross-sectional shape by the control of all, in the plate width end of the metal strip on the rolling mill side, both plate side ends and both sides equidistant to each of the operation side and the drive side from the center of the plate width the respect elongation quota portions, so that elongation difference △ Ipushironq each target value △ .epsilon.e 0 and △ εq 0 between each other elongation difference △ .epsilon.e and quarter portion between the plate-side ends, the asymmetric shape System The control amount dW 1 and dW 2 Select any two asymmetrical control term dW 1 'and dW 2' from the term group of the formula ## EQU1 ## The following Here, ΔHe: difference in plate thickness between plate-side end portions equidistant from the center of the width of the metal band on the entry side of the rolling mill to the operation side and the drive side, respectively, ΔHq: metal band on the entry side of the rolling mill A thickness difference between the quarter portions at equal distances from the center of the width of the plate to the operation side and the drive side, respectively: a: a coefficient indicating a gradient of △ εe with respect to △ He in a linear relationship indicated by △ He and △ e; b: a coefficient indicating the slope of △ εe with respect to △ Hq in the linear relation indicated by △ Hq and △ εe, c: a coefficient indicating the slope of △ εq with respect to △ He in the linear relation indicated by △ He and △ εq, d: △ Hq and △ Ipushironq and the coefficient showing the inclination of △ Ipushironq for △ Hq in the linear relationship shown, e: dW 1 and △ .epsilon.e a coefficient that indicates the inclination of △ .epsilon.e for dW 1 in the linear relation shown is, f: dW 2 coefficient indicating the slope of △ .epsilon.e for dW 2 in the linear relation shown by the the △ .epsilon.e, g: W 1 and △ Ipushironq and the coefficient showing the inclination of △ Ipushironq for dW 1 in the linear relation shown, h: dW 2 and △ Ipushironq and the coefficient showing the inclination of △ Ipushironq for dW 2 in the linear relation shown, be set according to A setup control method in rolling of a single crown metal strip, characterized in that:
【請求項2】 請求項1に記載の片クラウン金属帯の圧
延におけるセットアップ制御方法において、任意に選ぶ
2つの非対称形状制御項dW1′,dW2′の他に、更に
任意に上記2つの非対称形状制御項とは別の1つの非対
称形状制御項dW3′を選んで任意な制御量dW3に設定
し、前記2つの非対称形状制御項の制御量dW1及びd
2を、下記の式 【数2】 ここで k:dW3と△εeとが示す線形関係におけるdW3に対
する△εeの傾きを示す係数、 m:dW3と△εqとが示す線形関係におけるdW3に対
する△εqの傾きを示す係数、 に従って設定することを特徴とする片クラウン金属帯の
圧延におけるセットアップ制御方法。
2. The method according to claim 1, wherein the two asymmetric shape control terms dW 1 ′ and dW 2 ′ are arbitrarily selected in addition to the two asymmetric shape control terms dW 1 ′ and dW 2 ′. Another asymmetric shape control term dW 3 ′ other than the shape control term is selected and set to an arbitrary control amount dW 3 , and the control amounts dW 1 and dW of the two asymmetric shape control terms are set.
W 2 is calculated by the following equation: Here k: dW 3 and △ .epsilon.e and the coefficient showing the inclination of △ .epsilon.e for dW 3 in the linear relationship shown, m: dW 3 and △ Ipushironq a coefficient that indicates the inclination of △ Ipushironq for dW 3 in the linear relationship indicated, A setup control method in rolling of a single crown metal strip, characterized by setting according to the following.
【請求項3】 請求項1に記載の片クラウン金属帯の圧
延におけるセットアップ制御方法において、任意に選ぶ
2つの非対称形状制御項dW1′,dW2′以外の残りの
2つの非対称形状制御項dW3′及びdW4′のそれぞれ
について任意な制御量dW3及びdW4を設定し、前記2
つの制御量dW1及びdW2を、下記の式 【数3】 ここで k:dW3と△εeとが示す線形関係におけるdW3に対
する△εeの傾きを示す係数、 m:dW3と△εqとが示す線形関係におけるdW3に対
する△εqの傾きを示す係数、 n:dW 4 と△εeとが示す線形関係におけるdW 4 に対
する△εeの傾きを示す係数、 r:dW 4 と△εqとが示す線形関係におけるdW 4 に対
する△εqの傾きを示す係数、 に従って設定することを特徴とする片クラウン金属帯の
圧延におけるセットアップ制御方法。
3. The setup control method for rolling a single crown metal strip according to claim 1, wherein the remaining two asymmetric shape control terms dW other than the two asymmetric shape control terms dW 1 ′ and dW 2 ′ arbitrarily selected. Arbitrary control amounts dW 3 and dW 4 are set for each of 3 ′ and dW 4 ′, and
The two control variables dW 1 and dW 2 are calculated by the following equation: Here k: dW 3 and △ .epsilon.e and the coefficient showing the inclination of △ .epsilon.e for dW 3 in the linear relationship shown, m: dW 3 and △ Ipushironq a coefficient that indicates the inclination of △ Ipushironq for dW 3 in the linear relationship indicated, n: dW 4 and △ .epsilon.e and the coefficient showing the inclination of △ .epsilon.e for dW 4 in the linear relationship shown, r: dW 4 and △ Ipushironq a coefficient that indicates the inclination of △ Ipushironq for dW 4 in the linear relationship shown is set according to, A setup control method in rolling of a single crown metal strip.
JP3040660A 1991-02-13 1991-02-13 Setup control method in rolling of single crown metal strip Expired - Lifetime JP2756871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3040660A JP2756871B2 (en) 1991-02-13 1991-02-13 Setup control method in rolling of single crown metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3040660A JP2756871B2 (en) 1991-02-13 1991-02-13 Setup control method in rolling of single crown metal strip

Publications (2)

Publication Number Publication Date
JPH04258306A JPH04258306A (en) 1992-09-14
JP2756871B2 true JP2756871B2 (en) 1998-05-25

Family

ID=12586690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3040660A Expired - Lifetime JP2756871B2 (en) 1991-02-13 1991-02-13 Setup control method in rolling of single crown metal strip

Country Status (1)

Country Link
JP (1) JP2756871B2 (en)

Also Published As

Publication number Publication date
JPH04258306A (en) 1992-09-14

Similar Documents

Publication Publication Date Title
US4311030A (en) Method and apparatus for controlling temper-rolled profile of cold rolled steel strip after continuous annealing
JP4847111B2 (en) Multistage rolling mill and control method of multistage rolling mill
JP2756871B2 (en) Setup control method in rolling of single crown metal strip
JP2962867B2 (en) Setup control method in rolling of single crown metal strip
US4856313A (en) Method of controlling strip crown in planetary rolling
JPH105838A (en) Method for preventing edge crack in cold rolling process
JPH0631323A (en) Method for feedback control in rolling of metallic belt of single-side crown
KR100478084B1 (en) Rolling method with excellent width and thickness quality
JP2962910B2 (en) Shape control method in rolling of single crown metal strip
JP3190432B2 (en) Setup control method in rolling of metal strip
JP2761797B2 (en) Crown control method in cold rolling by tandem mill
SU1242267A1 (en) Method of rolling strips
JP3541973B2 (en) Edge drop control method in cold rolling
JP2981140B2 (en) Cold rolling of steel strip
JP2519103B2 (en) Cold rolling method for electrical steel sheet
JP3327212B2 (en) Cold rolling method with reduced edge drop
JP2761796B2 (en) Crown control method in cold rolling
JP3392969B2 (en) Cold rolling of steel strip
JPH0796123B2 (en) Prevention method of steel strip shape defect during rolling by cluster type multi-high rolling mill
JPH07185622A (en) Feedback shape control method in rolling of one-side crown metallic hoop
JPH0687005A (en) Cold rolling method
JPH06521A (en) Setup control method in rolling of steel strip having offset crown
JP2021164926A (en) Method for rolling thick steel plate and method for producing the thick steel plate
JPS61140303A (en) Tandem mill installation
JPH0234241B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980210