JP2962910B2 - Shape control method in rolling of single crown metal strip - Google Patents

Shape control method in rolling of single crown metal strip

Info

Publication number
JP2962910B2
JP2962910B2 JP3339533A JP33953391A JP2962910B2 JP 2962910 B2 JP2962910 B2 JP 2962910B2 JP 3339533 A JP3339533 A JP 3339533A JP 33953391 A JP33953391 A JP 33953391A JP 2962910 B2 JP2962910 B2 JP 2962910B2
Authority
JP
Japan
Prior art keywords
difference
elongation
rolling mill
rolling
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3339533A
Other languages
Japanese (ja)
Other versions
JPH05177225A (en
Inventor
敦 相沢
健治 原
一成 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP3339533A priority Critical patent/JP2962910B2/en
Publication of JPH05177225A publication Critical patent/JPH05177225A/en
Application granted granted Critical
Publication of JP2962910B2 publication Critical patent/JP2962910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、両側非対称形状の片ク
ラウン金属帯を所定の断面形状に圧延する際の形状制御
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the shape of a single crown metal strip having asymmetrical shapes on both sides when the metal strip is rolled into a predetermined sectional shape.

【0002】[0002]

【従来の技術】金属帯の圧延は古くから一般に左右(駆
動側と操作側)対称な条件で行われてきたが、近年次の
ような事情から左右非対称な条件で圧延する必要が起こ
ってきている。その事情とは、一旦中間厚さにまで圧延
した広幅の金属帯(以下、材で示すことがある)を長手
方向にスリットして狭幅材とし、それを更に圧延するケ
ースが最近増えていることである。一般に圧延材の板厚
は幅の中央部分が最も厚くて両側端に向かってほぼ対称
的に漸減しており、そして例えば広幅材の幅の真中で左
右にスリットする場合には、このようにして得られるス
リット材は板幅の側端から他方の側端に向かって板厚が
漸減する片クラウンの板厚分布となっている。このよう
な片クラウン材を左右対称な条件で圧延すると、板厚の
厚い側の伸びが大で、板厚の薄い側の伸びが小となるい
わゆる片伸びを発生し易い。そこでこのような片クラウ
ン材を圧延する場合、片伸びにならないような断面形
状、つまり圧延前と相似の断面形状になるように、左右
非対称な圧延条件が必要となってくるのである。
2. Description of the Related Art Rolling of metal strips has long been generally performed under symmetric conditions (drive side and operation side) for a long time. In recent years, however, it has become necessary to perform rolling under asymmetric conditions under the following circumstances. I have. The situation is that a wide metal strip (hereinafter, sometimes referred to as “material”) once rolled to an intermediate thickness is slit in the longitudinal direction into a narrow width material, and the number of cases where the material is further rolled is increasing recently. That is. In general, the thickness of the rolled material is the thickest at the center of the width and gradually decreases symmetrically toward both side edges, and, for example, when slitting left and right in the middle of the width of the wide material, this way. The obtained slit material has a one-crown plate thickness distribution in which the plate thickness gradually decreases from the side end of the plate width to the other side end. When such a single crown material is rolled under symmetrical conditions, so-called single elongation in which the elongation on the thicker side is large and the elongation on the thinner side is small tends to occur. Therefore, when such a piece crown material is rolled, asymmetrical rolling conditions are required so that the sectional shape does not become one-sided, that is, the sectional shape is similar to that before rolling.

【0003】このような圧延状況を図面により説明す
る。図20は6重圧延機による圧延状況を示す説明図で
ある。圧延による片伸び形状の発生を防止する左右非対
称な圧延条件として、図20に示すようにワークロール
1の操作側と駆動側とのベンディング力Wb,Wb’,中
間ロール2の操作側と駆動側とのベンディング力Ib,
Ib’,バックアップロール3の操作側と駆動側とにか
かる圧下力P,P’,上側中間ロール2の操作側及び下
側中間ロール2の駆動側それぞれにおけるシフト位置
(本発明においてはこれを単に上下中間ロールのシフト
位置と言う)δ,δ’にそれぞれ差をつけることが採用
されており(このような方法を非対称形状制御手段と言
う)、これによりワークロール1のたわみや傾きを変
え、操作側と駆動側との伸び率が等しくなるように上記
各圧延条件における差を制御して金属帯4を圧延するの
である。
[0003] Such a rolling situation will be described with reference to the drawings. FIG. 20 is an explanatory diagram showing a rolling state by a six-high rolling mill. As shown in FIG. 20, bending forces Wb and Wb 'between the operation side and the drive side of the work roll 1 and the operation side and the drive side of the intermediate roll 2 are shown in FIG. Bending force Ib,
Ib ', the rolling forces P and P' applied to the operation side and the drive side of the backup roll 3, and the shift position on each of the operation side of the upper intermediate roll 2 and the drive side of the lower intermediate roll 2 (in the present invention, this is simply referred to as It is adopted to make a difference between δ and δ ′ (referred to as a shift position of the upper and lower intermediate rolls) (such a method is referred to as asymmetrical shape control means), thereby changing the deflection and inclination of the work roll 1, The metal strip 4 is rolled by controlling the difference in each of the above-mentioned rolling conditions so that the elongation percentages on the operation side and the drive side become equal.

【0004】各ロールの圧延条件について上記のような
操作側と駆動側との差の値を経験的に設定するときは、
制御精度が悪く、片伸びの発生を防ぐことは困難であっ
た。そこで圧延機出側に形状検出器を設置してそれによ
り得られる圧延後の金属帯の形状情報から、圧延機出側
形状の非対称成分を修正するのに最適な操作側と駆動側
とのワークロール1のベンディング力差dWb,バック
アップロール3にかかる圧下力差dPを算出して形状制
御する方法が特開昭56−59525号公報に開示され
ている。この形状検出器を使用する非対称形状制御方法
は、片伸び形状の修正に大きな効果があった。しかしな
がら、片クラウン材の圧延においては、圧延機入側にお
ける(即ち圧延前の)板幅方向の板厚分布を充分に考慮
する必要があるにも拘らず、この圧延機入側の板厚分布
と圧延機出側(即ち圧延後の)形状との関係が明らかに
されていないため、セットアップ(圧延開始に当って行
う条件設定)時には前記した駆動側と操作側とのワーク
ロール1のベンディング力差dWb,中間ロール2のベ
ンディング力差dIb,バックアップロール3にかかる
圧下力差dP及び上下中間ロール2のシフト位置差dδ
(以下において、これらdWb,dIb,dP及びdδを
一括して非対称形状制御項と言うことがある)、及び当
然のことながら圧延対象材に作用させる各ロールの押圧
力を示すものとして、駆動側と操作側とのワークロール
1の平均ベンディング力〈Wb〉,中間ロール2の平均
ベンディング力〈Ib〉及び上下中間ロール2の平均シ
フト位置〈δ〉(以下において、これら〈Wb〉,〈I
b〉及び〈δ〉を一括して対称形状制御項と言うことが
ある)を経験的に設定しているのが現状である。そのた
め、圧延の初期において金属帯4の片伸び,中伸び,耳
伸び等の形状不良が発生するなどの問題があった。また
圧延開始後、圧延材をリールで巻き取るときに、片クラ
ウンという形状に起因してリールの巻取り量が増すに従
って操作側と駆動側とで巻き径に差が生じて、圧延機か
らリール巻取り位置までの距離が異なってくる。このた
め板幅方向に張力変動が生じ、板幅方向の張力分布より
形状を求める形状検出器からの形状情報が実形状と異な
ることになり、有効な制御ができないという問題点があ
った。
When empirically setting the above-mentioned difference between the operating side and the driving side for the rolling conditions of each roll,
The control accuracy was poor, and it was difficult to prevent the occurrence of one-sided elongation. Therefore, a work detector between the operation side and the drive side that is optimal for correcting the asymmetric component of the shape of the rolling mill exit side from the shape information of the metal strip after rolling by installing a shape detector on the rolling mill exit side Japanese Patent Application Laid-Open No. 56-59525 discloses a method of calculating the bending force difference dWb of the roll 1 and the rolling force difference dP applied to the backup roll 3 to control the shape. The asymmetric shape control method using this shape detector has a great effect on correcting the one-sided extension shape. However, in the rolling of the single crown material, the thickness distribution on the entry side of the rolling mill (that is, before the rolling) must be sufficiently considered in spite of the necessity of sufficiently considering the thickness distribution on the entry side. The relationship between the shape of the work roll 1 on the drive side and the operation side during the setup (setting of conditions for starting the rolling) is not clear because the relationship between the shape of the work roll 1 and the shape on the rolling mill exit side (that is, after rolling) is not clear. The difference dWb, the bending force difference dIb of the intermediate roll 2, the rolling force difference dP applied to the backup roll 3, and the shift position difference dδ of the upper and lower intermediate rolls 2.
(Hereinafter, these dWb, dIb, dP, and dδ may be collectively referred to as an asymmetric shape control term), and of course, the pressing force of each roll acting on the material to be rolled is indicated on the drive side. And the operation side, the average bending force <Wb> of the work roll 1, the average bending force <Ib> of the intermediate roll 2, and the average shift position <δ> of the upper and lower intermediate rolls 2 (hereinafter, these <Wb>, <Ib>
(b> and <δ> may be collectively referred to as a symmetric shape control term) at present. Therefore, there were problems such as the occurrence of shape defects such as one-sided elongation, medium elongation, and elongation of the metal band 4 in the initial stage of rolling. Also, after the start of rolling, when the rolled material is wound on a reel, a difference in winding diameter occurs between the operating side and the drive side as the winding amount of the reel increases due to the shape of a single crown, and the roll is rolled from the rolling mill. The distance to the winding position differs. For this reason, a tension fluctuation occurs in the plate width direction, and the shape information from the shape detector for obtaining the shape from the tension distribution in the plate width direction is different from the actual shape, and there is a problem that effective control cannot be performed.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記従来技術
の問題点を解消し、圧延機入側における板幅方向の板厚
分布を充分に考慮したセットアップ制御と共に、圧延後
における有効な形状制御を行って、圧延開始のときから
圧延終了時まで形状不良のない圧延を行うこと可能とさ
せることを課題とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides not only a setup control in which a thickness distribution in the width direction at the entry side of the rolling mill is sufficiently considered, but also an effective shape control after rolling. To perform rolling without shape defects from the start of rolling to the end of rolling.

【0006】[0006]

【課題を解決するための手段】本発明者らは、圧延機入
側における板幅方向の板厚分布を考慮したセットアップ
制御及び圧延開始後のリール巻取り時の板幅方向の張力
変動を考慮した片クラウン金属帯の圧延における形状制
御方法を構成すべく種々検討を行った結果、金属帯の板
幅中央より操作側及び駆動側に向かって等距離にある両
側の板側端部及び両側のクォータ部のそれぞれにおける
伸び率及び板厚について、圧延機出側における板側端部
同士間の伸び率差△εe,クォータ部同士間の伸び率差
△εq,板幅中央の伸び率と両側の板側端部の平均伸び
率との差△εe’,板幅中央の伸び率と両側のクォータ
部の平均伸び率との差△εq’のそれぞれと、圧延機入
側における板側端部同士間の板厚差△He及びクォータ
部同士間の板厚差△Hqとの間に線形の関係が成り立
ち、これによってセットアップにおける圧延機入側の板
厚分布を考慮した非対称形状制御項及び対称形状制御項
の制御量を設定出来ること及び圧延開始後においては形
状検出器の板幅方向の張力変動分を補正してそれに基づ
いて上記各制御項の制御量を常時補正しながら設定する
ことによって圧延終了まで有効に形状制御が出来ること
を究明して本発明を完成したのである。
SUMMARY OF THE INVENTION The present inventors have considered setup control taking into account the thickness distribution in the strip width direction on the entry side of the rolling mill, and consideration of tension fluctuation in the strip width direction at the time of reel winding after the start of rolling. As a result of various investigations to configure a shape control method in the rolling of the single crown metal strip, the plate side ends and both sides which are equidistant from the center of the width of the metal strip toward the operation side and the drive side. Regarding the elongation and thickness at each of the quarters, the elongation difference △ εe between the plate-side ends on the exit side of the rolling mill, the elongation difference △ εq between the quarters, The difference △ εe 'between the average elongation at the plate-side end and the difference △ εq' between the elongation at the center of the plate width and the average elongation at both quarters, and the difference between the plate-side ends at the rolling mill entry side Between the thickness difference between He and the thickness difference between the quarters ΔHq A linear relationship is established, whereby it is possible to set the control amount of the asymmetric shape control term and the symmetric shape control term in consideration of the thickness distribution on the entry side of the rolling mill in the setup, and after the start of rolling, the width direction of the shape detector. Thus, the present invention was completed by investigating that the shape control can be effectively performed until the end of rolling by correcting the tension variation of the above and setting the control amount of each of the above-mentioned control items while constantly correcting it.

【0007】即ち本発明は、前記伸び率差△εe,△ε
q,△εe’及び△εq’のそれぞれと前記板厚差△He及
び△Hqとが線形関係にあることを利用して、セットア
ップにおいては、△εe,△εq,△εe’及び△εq’が
それぞれ目標値△εe0,△εq0,△εe0’及び△εq0
となるように非対称形状制御項群dWb,dIb,dP及
びdδの中から任意の二つ及び対称形状制御項群〈W
b〉,〈Ib〉及び〈δ〉の中から任意の二つについてそ
の制御量を合理的に導いて設定し、圧延開始後において
は、圧延機入側の板幅方向の板厚分布と圧延機出側の板
形状とリール巻取り前の板幅方向の通板位置分布とを連
続的に測定し、上記任意に選んだ各制御項の制御量を、
巻取り時に片クラウンに起因して生じる板幅方向の張力
変動分についてこれを常時補正しながら連続的に設定し
て板形状を制御する片クラウン金属帯の圧延における形
状制御方法であって、次のように構成されている。
That is, according to the present invention, the elongation difference Δεe, Δε
Using the fact that each of q, △ εe ′ and △ εq ′ and the plate thickness differences △ He and △ Hq are in a linear relationship, in setup, △ εe, △ εq, △ εe ′ and △ εq ′ Are the target values △ εe 0 , △ εq 0 , △ εe 0 ′ and △ εq 0 ′, respectively.
Any two of the asymmetric shape control term groups dWb, dIb, dP and dδ and the symmetric shape control term group <W
b>, <Ib> and <δ>, the control amount is rationally derived and set for any two, and after the start of rolling, the thickness distribution in the width direction on the entry side of the rolling mill and the rolling Continuously measure the plate shape on the machine-out side and the passing position distribution in the plate width direction before reel winding, the control amount of each arbitrarily selected control item,
A shape control method in rolling of a one-crown metal strip, in which a tension change in a sheet width direction caused by a one-crown at the time of winding is continuously set while continuously correcting the tension to control a plate shape, It is configured as follows.

【0008】両側非対称形状の片クラウン金属帯を、6
重圧延機以上の多段圧延機を使用して圧延しながらリー
ルに巻き取るに当り、セットアップ時に金属帯幅方向両
側の板側端部同士間の伸び率差△εe及び金属帯幅方向
両側のクォータ部同士間の伸び率差△εqがそれぞれ目
標値△εe0及び△εq0となるようにワークロールの操作
側と駆動側とのベンディング力差dWb,同じく中間ロ
ールのベンディング力差dIb,同じくバックアップロ
ールの圧下力差dP及び上下中間ロールのシフト位置差
dδから成る非対称形状制御項群の中から任意の二つの
非対称形状制御項群を選んでその制御量dW1及びdW2
を、下記の式
[0008] A single-sided metal band with asymmetrical shape on both sides is
When rolling up a reel while rolling using a multi-high rolling mill or higher, the elongation difference Δεe between the plate side edges on both sides in the metal band width direction and the quarter on both sides in the metal band width direction during setup. elongation difference between the parts between △ Ipushironq each target value △ .epsilon.e 0 and △ bending force difference Ipushironq 0 become as the operation side of the work rolls and the drive side DWB, also the intermediate roll bending force difference DIB, also the backup Any two asymmetric shape control term groups are selected from the asymmetric shape control term groups consisting of the roll rolling force difference dP and the shift position difference dδ of the upper and lower intermediate rolls, and the control amounts dW 1 and dW 2 are selected.
With the following formula

【0009】[0009]

【数3】 ここで、 △He:圧延機入側の金属帯の板幅中央より操作側及び
駆動側のそれぞれに等距離にある板側端部同士間の板厚
差 △Hq:圧延機入側の金属帯の板幅中央より操作側及び
駆動側のそれぞれに等距離にあるクォータ部同士間の板
厚差 に従って設定すると共に、板幅中央の伸び率と前記両側
の板側端部の平均伸び率との差△εe’及び板幅中央の
伸び率と前記両側のクォータ部の平均伸び率との差△ε
q’がそれぞれ目標値△εe0’及び△εq0’となるよう
に、ワークロールの操作側と駆動側との平均ベンディン
グ力〈Wb〉,同じく中間ロールの平均ベンディング力
〈Ib〉及び上下中間ロールの平均シフト位置〈δ〉か
ら成る対称形状制御項群の中から任意の二つの対称形状
制御項を選んでその制御量〈W1〉及び〈W2〉を、下記
の式
(Equation 3) Here, ΔHe: difference in plate thickness between plate-side end portions equidistant from the center of the width of the metal band on the entry side of the rolling mill to each of the operation side and the driving side ΔHq: metal band on the entry side of the rolling mill The thickness is set in accordance with the thickness difference between the quarter portions which are equidistant to the operation side and the drive side from the center of the plate width, and the elongation percentage at the center of the plate width and the average elongation percentage at the plate side ends on both sides are set. Difference Δεe ′ and the difference Δε between the elongation at the center of the plate width and the average elongation at the quarters on both sides.
The average bending force <Wb> between the operation side and the drive side of the work roll, the average bending force <Ib> of the intermediate roll, and the upper and lower middle so that q ′ becomes the target values △ εe 0 ′ and △ εq 0 ′, respectively. Any two symmetrical shape control terms are selected from a group of symmetrical shape control terms consisting of the average shift position <δ> of the roll, and their control amounts <W 1 > and <W 2 > are expressed by the following equations.

【0010】[0010]

【数4】 に従って設定して圧延を開始した後、圧延機入側の板幅
方向の板厚分布と、圧延機出側の板形状と、リール巻取
り前の板幅方向の通板位置分布とを連続的に測定し、リ
ール巻取り時に片クラウンに起因して生じる板幅方向の
張力変動分を補正した板側端部同士間及びクォータ部同
士間それぞれの伸び率差△εe,△εqと、板幅中央の伸
び率と両側の板側端部の平均伸び率及び両側のクォータ
部の平均伸び率それぞれとの差△εe’及び△εq’と
を、次の8個の式により算出し、
(Equation 4) After starting the rolling by setting according to the following, the thickness distribution in the width direction on the entry side of the rolling mill, the shape of the sheet on the exit side of the rolling mill, and the passing position distribution in the width direction before the reel winding are continuously performed. And elongation difference △ εe, △ εq between the plate side ends and between the quarters, corrected for the tension fluctuation in the plate width direction caused by one crown during reel winding. The difference △ εe ′ and △ εq ′ between the center elongation and the average elongation of the plate side edges on both sides and the average elongation of both quarters are calculated by the following eight equations,

【0011】dεe=−ln(LeW/LeD) dεq=−ln(LqW/LqD) dεe’=−ln(LeW/Lc)/2−ln(LeD/L
c)/2 dεq’=−ln(LqW/Lc)/2−ln(LqD/L
c)/2 △εe=△εe2−dεe △εq=△εq2−dεq △εe’=△εe2’−dεe’ △εq’=△εq2’−dεq’ ここで、 dεe:圧延機出側の板側端部同士間の張力変動量差に
対応する伸び率差 dεq:クォータ部同士間の張力変動量差に対応する伸
び率差 dεe’:板幅中央の張力変動量と両側の板側端部の平
均の張力変動量の差に対応する伸び率差 dεq’:板幅中央の張力変動量と両側のクォータ部の
平均の張力変動量の差に対応する伸び率差 Lc,LeW,LqW,LeD,LqD:それぞれ板幅中
央,操作側の板側端部,操作側のクォータ部,駆動側の
板側端部及び駆動側のクォータ部における圧延機からリ
ール巻取り位置までの距離 △εe2:圧延機出側に設置した形状検出器により直接得
られる圧延機出側の板側端部同士間の伸び率差 △εq2:圧延機出側に設置した形状検出器により直接得
られる圧延機出側のクォータ部同士間の伸び率差 △εe2’:圧延機出側に設置した形状検出器により直接
得られる圧延機出側の板幅中央の伸び率と両側の板側端
部の平均伸び率との差 △εq2’:圧延機出側に設置した形状検出器により直接
得られる圧延機出側の板幅中央の伸び率と両側のクォー
タ部の平均伸び率との差 板側端部同士間及びクォータ部同士間それぞれの伸び率
差の目標値△Ee0及び△Eq0と、板幅中央の伸び率と両
側の板側端部の平均伸び率及び両側のクォータ部の平均
伸び率それぞれとの差の目標値△Ee0’及び△Eq0’と
を、次の4個の式 △Ee0=△εe0+β×(△εe0−△εe) △Eq0=△εq0+β×(△εq0−△εq) △Ee0’=△εe0’+β×(△εe0’−△εe’) △Eq0’=△εq0’+β×(△εq0’−△εq’) ここで β:補正の調整に用いる係数 により得て前記式(A)及び(B)にそれぞれ代入して、非
対称形状制御項の制御量及び対称形状制御項の制御量を
常時補正しながら設定して板形状を制御することを特徴
とする。上記式(A)及び(B)の式における各係数である
a,b,c,d,e,f,g,h,a’,b’,c’,
d’,e’,f’,g’,h’,k’及びm’について
は以下において説明する。
Dεe = −ln (LeW / LeD) dεq = −ln (LqW / LqD) dεe ′ = − ln (LeW / Lc) / 2−ln (LeD / L
c) / 2 dεq ′ = − ln (LqW / Lc) / 2−ln (LqD / L
c) / 2 △ εe = △ εe 2 -dεe △ εq = △ εq 2 -dεq △ εe '= △ εe 2' -dεe '△ εq' = △ εq 2 '-dεq' here, dεe: exits the rolling mill Dεq: Elongation difference corresponding to the tension fluctuation difference between the quarter parts dεe ′: Tension fluctuation at the center of the plate width and the plates on both sides Elongation difference dεq ′ corresponding to the difference in average tension fluctuation at the side end dεq ′: Elongation difference Lc, LeW, corresponding to the difference between the tension fluctuation at the center of the plate width and the average tension fluctuation at the quarters on both sides LqW, LeD, LqD: distances from the rolling mill to the reel winding position at the plate width center, the operation side plate side end, the operation side quarter portion, the drive side plate side end, and the drive side quarter portion, respectively. .epsilon.e 2: rolling mill stretching out index difference between the plate-side ends of the installation shape detector by directly obtained the delivery side of the rolling mill on the side △ εq 2: on the delivery side of the rolling mill Elongation difference between the delivery side of the rolling mill of the quota portions obtained directly by location shape detector △ .epsilon.e 2 ': rolling mill exit was placed in side shape detector by the rolling mill outlet side of the plate width central obtained directly Difference between the elongation percentage and the average elongation percentage at both ends of the strip side Δεq 2 ': The elongation percentage at the center of the strip width at the exit side of the rolling mill and the quarter on both sides directly obtained by the shape detector installed on the exit side of the rolling mill The difference between the average elongation rate of the part and the target values 伸 び Ee 0 and △ Eq 0 of the difference in the elongation rate between the plate side ends and between the quarter parts, a target value of the difference between the respective average growth rate of the average growth rate and both quota portions △ Ee 0 'and △ Eq 0', the next four formula △ Ee 0 = △ εe 0 + β × (△ εe 0 − △ εe) △ Eq 0 = △ εq 0 + β × (△ εq 0 − △ εq) △ Ee 0 '= △ εe 0 ' + β × (△ εe 0 '− △ εe') △ Eq 0 '= △ εq 0 '+ Β × (△ εq 0 '- △ εq') where beta: by substituting each of the formula obtained by a factor used to adjust the correction (A) and (B), the control amount of the asymmetrical control term and the control amount of the symmetrical control term Is set while constantly correcting to control the plate shape. The coefficients a, b, c, d, e, f, g, h, a ', b', c ', which are the respective coefficients in the above equations (A) and (B).
d ', e', f ', g', h ', k', and m 'are described below.

【0012】以下に、本発明に係る片クラウン金属帯の
圧延における形状制御方法を図面によって具体的に説明
する。図1は金属帯の圧延における圧延機の入側と出側
の板厚分布,板厚差及び伸び率差の説明図、図2〜図5
は板厚差△He及び△Hqのそれぞれと伸び率差△εe及
び△εqのそれぞれとの線形関係を示す各説明図、図6
〜図9は非対称形状制御項群dWb,dWI,dP及び
dδのそれぞれと伸び率差△εe及び△εqのそれぞれと
の線形関係を示す各説明図、図10〜図13は板厚差△
He及び△Hqのそれぞれと伸び率差△εe’及び△εq’
のそれぞれとの線形関係を示す各説明図、図14〜図1
6は対称形状制御項群〈Wb〉,〈Ib〉及び〈δ〉のそ
れぞれと伸び率差△εe’及び△εq’のそれぞれとの線
形関係を示す各説明図、図17は本発明の一実施例の実
施状況を説明するための概略説明図、図18は実施例及
び比較例における最大急峻度の推移を示す図、図19は
板幅方向において圧延機からリール巻取り位置までの距
離が異なることを説明するための説明図である。
Hereinafter, a method for controlling the shape of a single crown metal strip according to the present invention in rolling will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram of sheet thickness distribution, sheet thickness difference and elongation difference between the entrance side and the exit side of a rolling mill in rolling of a metal strip, and FIGS.
FIG. 6 is an explanatory diagram showing a linear relationship between the plate thickness differences ΔHe and ΔHq and the elongation differences Δεe and Δεq, respectively.
9 are explanatory diagrams showing a linear relationship between each of the asymmetric shape control terms dWb, dWI, dP, and dδ and each of the elongation differences Δεe and Δεq, and FIGS.
He and ΔHq and elongation difference Δεe ′ and Δεq ′
FIGS. 14 to 1 are explanatory diagrams showing a linear relationship with each of FIGS.
6 is an explanatory diagram showing a linear relationship between each of the symmetric shape control term groups <Wb>, <Ib>, and <δ> and each of the elongation differences eεe ′ and △ εq ′, and FIG. FIG. 18 is a schematic explanatory view for explaining the state of implementation of the embodiment, FIG. 18 is a diagram showing the transition of the maximum steepness in the embodiment and the comparative example, and FIG. 19 is a diagram in which the distance from the rolling mill to the reel winding position in the sheet width direction is different. It is explanatory drawing for demonstrating a different thing.

【0013】以下、6重圧延機を例にして説明する。先
ず、本発明方法においては図1に示すように、圧延機出
側の金属帯の板幅中央の位置(図1中の線L)より操作
側及び駆動側(図面では板厚の厚い方を操作側としてい
るが、これに拘束されない)に向かってそれぞれに等距
離にある両側の板側端部及び両側のクォータ部のそれぞ
れの板厚を次の各記号で表わす。即ち、圧延機入側にお
ける操作側の板側端部の板厚をHeW,クォータ部の板
厚をHqWとすると共に、同じく駆動側の板側端部の板
厚をHeD,クォータ部の板厚をHqD,板幅中央の板厚
をHcとし、圧延機出側における操作側の板側端部の板
厚をheW,クォータ部の板厚をhqWとすると共に、同
じく駆動側の板側端部の板厚をheD,クォータ部の板
厚をhqD,板幅中央の板厚をhcとする。本発明におい
て板側端部とは、圧延された金属帯の板厚が一般に板端
から約20mmの位置より板側端側で急減するので、板側端
から20mmの位置とする。またクォータ部は板幅中央と板
側端との間の中点とする。
Hereinafter, a six-high rolling mill will be described as an example. First, in the method of the present invention, as shown in FIG. 1, the operation side and the driving side (in the drawing, the thicker the sheet thickness) than the center position (line L in FIG. 1) of the metal strip on the exit side of the rolling mill. The thicknesses of the plate-side ends on both sides and the quarter parts on both sides, which are equidistant from each other toward the operation side (but are not restricted thereto), are represented by the following symbols. That is, the plate thickness at the operation-side plate side at the entry side of the rolling mill is HeW, the plate thickness at the quarter portion is HqW, the plate thickness at the drive-side plate side is HeD, and the plate thickness at the quarter portion is the same. Is HqD, the plate thickness at the center of the plate width is Hc, the plate thickness at the operation side plate side at the rolling mill exit side is heW, the plate thickness at the quarter portion is hqW, and the plate side end at the drive side is the same. Is heD, the thickness of the quarter portion is hqD, and the thickness at the center of the width is hc. In the present invention, the plate-side end is a position 20 mm from the plate-side end because the thickness of the rolled metal strip generally decreases sharply from a position about 20 mm from the plate end to the plate-side end. The quota part is the midpoint between the center of the plate width and the end on the plate side.

【0014】前記の各記号を使用して、圧延機出側の板
側端部同士間の伸び率差△εe,同じくクォータ部同士
間の伸び率差△εq,板幅中央の伸び率と金属帯幅方向
両側の板側端部の平均伸び率との差△εe’及び板幅中
央の伸び率と両側のクォータ部の平均伸び率との差△ε
q’のそれぞれと、圧延機入側の板側端部同士間の板厚
差△He及び同じくクォータ部同士間の板厚差△Hqそれ
ぞれとの関係、また伸び率差△εe及び△εqのそれぞれ
と非対称形状制御項のdWb,dIb,dP及びdδの
それぞれとの関係、更に伸び率差△εe’及び△εq’の
それぞれと対称形状制御項〈Wb〉,〈Ib〉及び
〈δ〉のそれぞれとの関係を考察して制御量を求める前
記式(A)及び(B)を誘導する。先ず、圧延機入側におけ
る板側端部同士間の板厚差△He及びクォータ部同士間
の板厚差△Hqは次の式で表わされる。 △He=HeW−HeD‥‥(1) △Hq=HqW−HqD‥‥(2) また伸び率差△εe,△εq,△εe’及び△εq’は次式
で表わされる。 △εe=−ζ{ln(heW/HeW)−ln(heD/HeD)}‥‥(3) △εq=−ζ{ln(hqW/HqW)−ln(hqD/HqD)}‥‥(4) △εe’=−ζ{ln(heW/HeW)−ln(hc/Hc)}/2 −ζ{ln(heD/HeD)−ln(hc/Hc)}/2‥‥(5) △εq’=−ζ{ln(hqW/HqW)−ln(hc/Hc)}/2 −ζ{ln(hqD/HqD)−ln(hc/Hc)}/2‥‥(6) (ここでζは操作側と駆動側とにおける圧延方向の歪差
と板厚方向の歪差との比である。)
Using the above symbols, the elongation difference 率 εe between the plate-side ends on the exit side of the rolling mill, the elongation difference △ εq between the quarter portions, the elongation at the center of the sheet width and the metal The difference △ ε 'between the average elongation at the plate-side end on both sides in the band width direction and the difference △ ε between the elongation at the center of the plate width and the average elongation at the quarters on both sides
q ′, the relationship between the thickness difference ΔHe between the plate-side ends on the rolling mill entry side and the thickness difference ΔHq between the quarter portions, and the elongation differences Δεe and Δεq. The relationship between each of them and each of dWb, dIb, dP and dδ of the asymmetric shape control terms, and further, each of the elongation difference △ εe ′ and △ εq ′ and the symmetric shape control terms <Wb>, <Ib> and <δ> Expressions (A) and (B) for obtaining the control amount are derived by considering the relationship with each of them. First, the thickness difference ΔHe between the plate side ends at the entry side of the rolling mill and the thickness difference ΔHq between the quarter portions are expressed by the following equations. ΔHe = HeW−HeD ‥‥ (1) ΔHq = HqW−HqD ‥‥ (2) The elongation differences Δεe, Δεq, Δεe ′ and Δεq ′ are represented by the following equations. Δεe = −Δln (heW / HeW) −ln (heD / HeD)} ‥‥ (3) Δεq = −ζ {ln (hqW / HqW) −ln (hqD / HqD)} ‥‥ (4) Δεe ′ = − {ln (heW / HeW) −ln (hc / Hc)} / 2− {ln (heD / HeD) −ln (hc / Hc)} / 2 (5) Δεq ′ =-{Ln (hqW / HqW) -ln (hc / Hc)} / 2-{ln (hqD / HqD) -ln (hc / Hc)} / 2} (6) It is the ratio between the difference in strain in the rolling direction and the difference in strain in the plate thickness direction between the drive side and the drive side.)

【0015】式(3)〜(6)は次のように誘導される。即
ち、圧延方向の歪をε,板厚方向の歪をε′,板幅方向
の歪をε″とすると、圧延加工は塑性加工の1種である
から素材の体積一定の条件から次のような関係が成り立
つ。 ε+ε′+ε″=0‥‥(7) 操作側と駆動側とにおける圧延方向,板厚方向及び板幅
方向の歪差をそれぞれ△ε,△ε′及び△ε″とする
と、同様に次のような関係が成り立つ。 △ε+△ε′+△ε″=0‥‥(8) ここで、圧延の前後において板幅は殆ど変化しないとし
て板幅方向の歪差ε″を考慮しない場合には△ε=−△
ε′となるが、板幅方向の歪差を考慮して圧延方向と板
厚方向の歪差の比をζとすると △ε=−ζ△ε′‥‥(9) となる。また、板厚方向の歪は真歪(対数歪)で一般式
ln(h/H)と表わされるから、式(9)の関係と合わせ
ると、式(3)〜(6)が得られる。
Equations (3) to (6) are derived as follows. That is, assuming that the strain in the rolling direction is ε, the strain in the plate thickness direction is ε ′, and the strain in the plate width direction is ε ″, rolling is one type of plastic working. Ε + ε ′ + ε ″ = 0 ‥‥ (7) Assuming that the strain differences in the rolling direction, sheet thickness direction and sheet width direction between the operating side and the driving side are △ ε, △ ε ′ and △ ε ″, respectively. Similarly, the following relationship holds: Δε + △ ε ′ + △ ε ″ = 0 = (8) Here, assuming that the sheet width hardly changes before and after rolling, the strain difference ε ″ in the sheet width direction is calculated. If not considered, △ ε = − △
ε ′, where Δ 比 = − 圧 延 ε ′ ‥‥ (9) where Δ is the ratio of the strain difference in the rolling direction and the thickness direction in consideration of the strain difference in the sheet width direction. Further, since the strain in the thickness direction is a true strain (logarithmic strain) and is represented by the general formula ln (h / H), the formulas (3) to (6) are obtained by combining with the relationship of the formula (9).

【0016】多くの圧延条件で検討した結果、非対称形
状制御手段を用いない場合、伸び率差△εe及び△εqそ
れぞれと板厚差△He及び△Hqそれぞれとの間に線形の
関係が成り立つことが判明した。従って伸び率差△εe
及び△εqは次式のように表わされる。 △εe=a△He+b△Hq+k1‥‥(10) △εq=c△He+d△Hq+k2‥‥(11) ここで、k1,k2は常数項
As a result of examination under many rolling conditions, it was found that a linear relationship is established between the elongation differences Δεe and Δεq and the plate thickness differences ΔHe and ΔHq when the asymmetric shape control means is not used. There was found. Therefore, the elongation difference △ εe
And △ εq are represented by the following equations. Δεe = a △ He + b △ Hq + k 1 ‥‥ (10) Δεq = c △ He + d △ Hq + k 2 ‥‥ (11) where k 1 and k 2 are constant terms

【0017】ここで上記係数a,b,c,dの意味を図
2〜図5により説明する。上記各図及び後に説明する図
6〜図16に示すデータは、後記実施例に使用した6重
圧延機と同じものを使用して得たデータである。式(1
0)において△Hqを一定すると、図2に示すように△ε
eと△Heとは線形関係にあり、aは△Heに対する△εe
の傾きを示す係数である。また、式(10)において△H
eを一定すると、図3に示すように△εeと△Hqとは線
形関係にあり、bは△Hqに対する△εeの傾きを示す係
数である。式(11)においても上記と同様であり、c及
びdは図4及び図5に示すようにそれぞれ△Heに対す
る△εqの傾き及び△Hqに対する△εqの傾きを示す係
数である。
Here, the meaning of the coefficients a, b, c and d will be described with reference to FIGS. The data shown in each of the above figures and FIGS. 6 to 16 described later are data obtained by using the same six-rolling mill used in the examples described later. Equation (1
0), when △ Hq is constant, as shown in FIG.
e and △ He are in a linear relationship, and a is △ εe for △ He
Is a coefficient indicating the slope of Also, in equation (10), ΔH
When e is constant, as shown in FIG. 3, △ e and 関係 Hq are in a linear relationship, and b is a coefficient indicating the slope of △ e with respect to △ Hq. The same applies to equation (11), where c and d are coefficients indicating the slope of Δεq with respect to ΔHe and the slope of Δεq with respect to ΔHq, respectively, as shown in FIGS. 4 and 5.

【0018】式(10)及び式(11)において、非対称形
状制御手段を用いない場合に板厚差△He及び△Hqを共
に0とすると、圧延機入側の板厚分布は左右対称となる
から、圧延機出側形状も左右対称(即ち、△εe=0,
△εq=0)となる。従って定数項k1,k2はいずれも
0であり、式(10)及び(11)は △εe=a△He+b△Hq‥‥(12) △εq=c△He+d△Hq‥‥(13) となる。これらをまとめて次のように行列表示する。
In Equations (10) and (11), when the thickness difference ΔHe and ΔHq are both set to 0 when the asymmetrical shape control means is not used, the thickness distribution on the rolling mill entry side becomes bilaterally symmetric. From the above, the rolling mill outlet side shape is also symmetrical (that is, Δεe = 0,
Δεq = 0). Therefore, the constant terms k 1 and k 2 are both 0, and the equations (10) and (11) are as follows: Δεe = a △ He + b △ Hq ‥‥ (12) Δεq = c △ He + d △ Hq ‥‥ (13) Becomes These are collectively displayed as a matrix as follows.

【数5】 (Equation 5)

【0019】次に、上記のように非対称形状制御手段を
用いないで金属帯を圧延する場合に対して、非対称形状
制御手段を用いたときの影響を考察して適切な制御量を
求める。多くの圧延条件についての検討により、伸び率
差△εe及び△εqのそれぞれは非対称形状制御項群dW
b,dIb,dP及びdδのいずれとの間にも線形関係を
有することが判明した。それらの線形関係についての各
例は、dWbとの関係は図6に、dIbとの関係は図7
に、dPとの関係は図8に、そしてdδとの関係は図9
にそれぞれ示す如くである。
Next, in the case where the metal strip is rolled without using the asymmetrical shape control means as described above, an appropriate control amount is obtained by considering the effect of using the asymmetrical shape control means. Examination of many rolling conditions shows that each of the elongation differences △ εe and △ εq is asymmetric shape control term group dW
It was found that there was a linear relationship with any of b, dIb, dP and dδ. In each example of the linear relationship, the relationship with dWb is shown in FIG. 6, and the relationship with dIb is shown in FIG.
FIG. 8 shows the relationship with dP, and FIG. 9 shows the relationship with dδ.
Respectively.

【0020】非対称形状制御項群の中から任意に二つの
制御項dW1とdW2とを選び、そのそれぞれと伸び率差
△εe及び△εqのそれぞれとの間に成立する直線関係に
おいて、dW1に対する△εeの傾き(前記aの場合の傾
きと同じ意味)を示す係数をeとし、dW2に対する△
εeの傾きを示す係数をfとし、dW1に対する△εqの
傾きを示す係数をgとし、dW2に対する△εqの傾きを
示す係数をhとする。
Two control terms dW 1 and dW 2 are arbitrarily selected from the group of asymmetrical shape control terms, and dW 1 and dW 2 are determined in a linear relationship established between each of them and each of the elongation differences Δεe and Δεq. Let e be a coefficient indicating the slope of △ εe with respect to 1 (the same meaning as the slope in the case of a), and △ with respect to dW 2
A coefficient indicating the slope of ee is denoted by f, a coefficient indicating the slope of △ εq with respect to dW 1 is denoted by g, and a coefficient indicating the slope of △ εq with respect to dW 2 is denoted by h.

【0021】各非対称形状制御手段の影響は加算して考
えることが出来る。即ち、適用する非対称形状制御項の
制御量をそれぞれdW1,dW2(符号の繁雑を避けるた
め、制御量に制御項と同じ符号を使用する。以下におい
て同じ)とすれば、式(12)及び式(13)は次式のよう
になる。 △εe=a△He+b△Hq+edW1+fdW2‥‥(15) △εq=c△He+d△Hq+gdW1+hdW2‥‥(16) これらをまとめて次のように行列表示する。
The influence of each asymmetric shape control means can be considered by adding. That is, assuming that the control amounts of the asymmetric shape control terms to be applied are dW 1 and dW 2 , respectively (the same signs as the control terms are used for the control amounts in order to avoid complication of the codes; the same applies to the following), Expression (12) And equation (13) are as follows. Δεe = a △ He + b △ Hq + edW 1 + fdW 2 ‥‥ (15) Δεq = c △ He + d △ Hq + gdW 1 + hdW 2 ‥‥ (16) These are collectively displayed as a matrix as follows.

【数6】 (Equation 6)

【0022】式(17)において、伸び率差△εe,△εq
をそれぞれ目標値△εe0,△εq0と置いて制御量d
1,dW2について解けば、前記した式(A)である制御
式(18)を得る。
In equation (17), the elongation difference △ εe, △ εq
Are set as target values △ εe 0 and △ εq 0 respectively, and the control amount d
By solving for W 1 and dW 2 , the control equation (18), which is the above equation (A), is obtained.

【数7】 従って、係数a,b,c,d,e,f,g,hを圧延荷
重,板幅等圧延条件の関数として予め求めておき、式
(18)に従ってdW1,dW2を設定することが出来る。
(Equation 7) Therefore, the coefficients a, b, c, d, e, f, g, and h are determined in advance as a function of rolling conditions such as rolling load and strip width, and
According to (18), dW 1 and dW 2 can be set.

【0023】また、いずれの対称形状制御項の制御量
(〈Wb〉,〈Ib〉及び〈δ〉)も固定されている場
合、伸び率差△εe’及び△εq’それぞれと板厚差△H
e及び△Hqそれぞれとの間に線形の関係が成り立つこと
が判明した。従って、伸び率差△εe’及び△εq’は次
式のように表わされる。 △εe’=a’△He+b’△Hq+e’‥‥(19) △εq’=c’△He+d’△Hq+f’‥‥(20) ここで、e’及びf’は常数項であって△Heと△Hqと
を共に零とした場合のそれぞれ△εe’及び△εq’であ
る。
When the control amounts (<Wb>, <Ib> and <δ>) of any of the symmetric shape control terms are fixed, the elongation differences Δεe ′ and Δεq ′ and the sheet thickness difference Δ H
It has been found that a linear relationship holds between e and ΔHq. Therefore, the elongation difference △ εe ′ and △ εq ′ are expressed by the following equations. Δεe ′ = a ′ △ He + b ′ △ Hq + e ′ ‥‥ (19) Δεq ′ = c ′ △ He + d '△ Hq + f ′ ‥‥ (20) where e ′ and f ′ are constant terms and ΔHe △ εe ′ and △ εq ′ when both 場合 Hq and △ Hq are zero.

【0024】ここで上記係数a’,b’,c’及びd’
の意味を図10〜図13により説明する。式(19)にお
いて△Hqを一定にすると、図10に示すように△εe’
と△Heとが線形関係にあり、a’は△Heに対する△ε
e’の傾きを示す係数である。また式(19)において△
Heを一定にすると、図11に示すように△εe’と△H
qとが線形関係にあり、b’は△Hqに対する△εe’の
傾きを示す係数である。式(20)においても上記と同様
にして、c’及びd’は図12及び図13に示すように
それぞれ△Heに対する△εq’の傾き及び△Hqに対す
る△εq’の傾きを示す係数である。式(19)及び式(2
0)をまとめて次のように行列表示する。
Here, the coefficients a ', b', c 'and d'
Will be described with reference to FIGS. Assuming that 一定 Hq is constant in equation (19), as shown in FIG.
And △ He are in a linear relationship, and a ′ is △ ε for △ He
This is a coefficient indicating the slope of e '. In equation (19), △
When He is kept constant, as shown in FIG.
and q have a linear relationship, and b 'is a coefficient indicating the slope of △ e' with respect to △ Hq. Similarly, in equation (20), c ′ and d ′ are coefficients indicating the slope of Δεq ′ with respect to ΔHe and the slope of Δεq ′ with respect to ΔHq, respectively, as shown in FIGS. . Equation (19) and Equation (2)
0) are displayed in a matrix as follows.

【数8】 (Equation 8)

【0025】次に、上記のようにいずれの対称形状制御
項の制御量も固定されている場合に対して、この制御量
を変化させたときの影響を考慮して適切な制御量を求め
る。多くの圧延条件についての検討により、伸び率差△
εe’及び△εq’のそれぞれは対称形状制御項群〈W
b〉,〈Ib〉及び〈δ〉のいずれとの間にも線形関係を
有することが判明した。それらの線形関係についての各
例は、〈Wb〉との関係は図14に、〈Ib〉との関係は
図15に、そして〈δ〉との関係は図16にそれぞれ示
す如くである。
Next, for the case where the control amounts of all the symmetric shape control terms are fixed as described above, an appropriate control amount is determined in consideration of the effect of changing the control amount. After examining many rolling conditions, the elongation difference
Each of εe ′ and △ εq ′ is a symmetric shape control term group <W
It has been found that there is a linear relationship between any of <b>, <Ib> and <δ>. In each example of the linear relationship, the relationship with <Wb> is shown in FIG. 14, the relationship with <Ib> is shown in FIG. 15, and the relationship with <δ> is shown in FIG.

【0026】対称形状制御項群の中から任意に二つの制
御項〈W1〉と〈W2〉とを選び、そのそれぞれと伸び率
差△εe’及び△εq’のそれぞれとの間に成立する直線
関係において、〈W1〉に対する△εe’の傾き(前記
a’の場合の傾きと同じ意味)を示す係数をg’とし、
〈W2〉に対する△εe’の傾きを示す係数をh’とし、
〈W1〉に対する△εq’の傾きを示す係数をk’とする
と共に〈W2〉に対する△εq’の傾きを示す係数をm’
とする。
Any two control terms <W 1 > and <W 2 > are arbitrarily selected from the symmetrical shape control term group, and are established between each of them and each of the elongation difference △ εe ′ and △ εq ′. In the linear relationship, a coefficient indicating the slope of △ εe ′ with respect to <W 1 > (same meaning as the slope in the case of a ′) is g ′,
H ′ is a coefficient indicating the slope of △ εe ′ with respect to <W 2 >
A coefficient indicating the slope of △ εq ′ with respect to <W 1 > is defined as k ′, and a coefficient indicating the slope of △ εq ′ with respect to <W 2 > is defined as m ′.
And

【0027】各対称形状制御手段の影響もまた加算して
考えることが出来る。即ち、適用する対称形状制御項の
制御量をそれぞれ〈W1〉,〈W2〉とすれば、式(19)
及び式(20)は次式のようになる。 △εe’=a’△He+b’△Hq+e’+g’〈W1〉+h’〈W2〉‥‥(22) △εq’=c’△He+d’△Hq+f’+k’〈W1〉+m’〈W2〉‥‥(23) これらをまとめて次のように行列表示する。
The effect of each symmetric shape control means can also be considered in addition. That is, if the control amounts of the applied symmetric shape control terms are <W 1 > and <W 2 >, respectively, the equation (19)
And equation (20) are as follows. Δεe ′ = a′ΔHe + b′ΔHq + e ′ + g ′ <W 1 > + h ′ <W 2 > ‥‥ (22) Δεq ′ = c ′ △ He + d ′ △ Hq + f ′ + k ′ <W 1 > + m ′ < W 2 > ‥‥ (23) These are collectively displayed as a matrix as follows.

【数9】 (Equation 9)

【0028】式(24)において、伸び率差△εe’及び
△εq’をそれぞれ目標値△εe0’及び△εq0’と置い
て、制御量〈W1〉,〈W2〉について解けば前記した式
(B)である制御式(25)を得る。
In equation (24), if the elongation difference △ εe ′ and △ εq ′ are set as target values △ εe 0 ′ and △ εq 0 ′, respectively, and the control variables <W 1 > and <W 2 > are solved. The above formula
The control formula (25) that is (B) is obtained.

【数10】 従って、係数a’,b’,c’,d’,e’,f’,
g’,h’,k’,m’を圧延荷重,板幅等圧延条件の
関数として予め求めておいて、式(25)に従って
〈W1〉,〈W2〉を設定することが出来る。
(Equation 10) Therefore, the coefficients a ', b', c ', d', e ', f',
g ′, h ′, k ′, and m ′ can be determined in advance as a function of rolling conditions such as rolling load and strip width, and <W 1 > and <W 2 > can be set according to equation (25).

【0029】以上の非対称形状制御項の制御量と対称形
状制御項の制御量とをそれぞれ求めて設定することによ
り、圧延の初期における形状不良を発生させることのな
いようにセットアップ制御を行うことが出来るのであ
る。
By obtaining and setting the control amount of the asymmetric shape control term and the control amount of the symmetric shape control term, setup control can be performed so as not to cause a shape defect at the beginning of rolling. You can.

【0030】このようにして圧延が開始された後も、本
発明方法においては圧延機入側における板幅方向の板厚
分布と圧延機出側の板形状とを連続的に測定することに
よって、非対称形状制御項と対称形状制御項とを連続的
に設定して圧延を続けるのであるが、その際、圧延材が
リールに巻き取られるに従って片クラウンに起因して生
じる板幅方向の張力変動分について、目標値とする伸び
率差△εe0,△εq0,△εe0’及び△εq0’を以下に説
明するように補正して非対称形状制御項の制御量及び対
称形状制御項の制御量の設定値を常時補正することによ
って、より目標形状に近い金属帯の製造が可能となるの
である。圧延機出側の板形状は形状検出器により形状情
報として得られる。この形状情報に基づいて非対称形状
制御項の制御量及び対称形状制御項の制御量の設定値を
補正する方法について具体的に説明する。
Even after the rolling is started in this way, in the method of the present invention, by continuously measuring the thickness distribution in the width direction on the entrance side of the rolling mill and the shape of the sheet on the exit side of the rolling mill, Rolling is continued by setting the asymmetrical shape control term and the symmetrical shape control term continuously. At this time, as the rolled material is wound on a reel, the tension fluctuation in the sheet width direction caused by the single crown occurs. , The target values of the elongation rate differences △ εe 0 , △ εq 0 , △ εe 0 ′, and △ εq 0 ′ are corrected as described below to control the control amount of the asymmetric shape control term and the control of the symmetric shape control term. By constantly correcting the set value of the quantity, it becomes possible to manufacture a metal strip closer to the target shape. The plate shape on the exit side of the rolling mill is obtained as shape information by a shape detector. A method of correcting the set values of the control amount of the asymmetric shape control term and the control amount of the symmetric shape control term based on the shape information will be specifically described.

【0031】片クラウン金属帯を図19に示すようにリ
ール5で巻き取るときには、圧延機からリール巻取り位
置までの距離が操作側と駆動側とで異なることにより板
幅方向の張力変動を生じる。圧延機出側の板側端部同士
間の張力変動量差に対応する伸び率差dεe及びクォー
タ部同士間の張力変動量差に対応する伸び率差dεq
と、板幅中央の張力変動量と両側の板側端部の平均の張
力変動量との差に対応する伸び率差dεe’と、板幅中
央の張力変動量と両側のクォータ部の平均の張力変動量
との差に対応する伸び率差dεq’とは次式で表わされ
る。
As shown in FIG. 19, when the one-crown metal band is wound on the reel 5, the distance from the rolling mill to the reel winding position is different between the operation side and the drive side, so that a tension variation in the sheet width direction occurs. . Elongation difference dεe corresponding to the difference in tension fluctuation between the plate side ends on the rolling mill exit side and elongation difference dεq corresponding to the difference in tension fluctuation between the quarters.
And the elongation difference dεe ′ corresponding to the difference between the amount of tension fluctuation at the center of the plate width and the average amount of tension fluctuation at the plate side edges on both sides, and the average of the amount of tension fluctuation at the plate width center and the average of the quarter portions on both sides. The elongation percentage difference dεq ′ corresponding to the difference with the tension fluctuation amount is expressed by the following equation.

【0032】 dεe=−ln(LeW/LeD)‥‥(26) dεq=−ln(LqW/LqD)‥‥(27) dεe’=−ln(LeW/Lc)/2−ln(LeD/Lc)/2‥‥(28) dεq’=−ln(LqW/Lc)/2−ln(LqD/Lc)/2‥‥(29) (Lc,LeW,LqW,LeD及びLqDはそれぞれ板幅
中央,操作側の板側端部,操作側のクォータ部,駆動側
の板側端部及び駆動側のクォータ部における圧延機から
リール巻取り位置までの距離を示す。)
Dεe = −ln (LeW / LeD) ‥‥ (26) dεq = −ln (LqW / LqD) ‥‥ (27) dεe ′ = − ln (LeW / Lc) / 2-ln (LeD / Lc) / 2 ‥‥ (28) dεq ′ = − ln (LqW / Lc) / 2−ln (LqD / Lc) / 2 ‥‥ (29) (Lc, LeW, LqW, LeD and LqD are the center of the sheet width, respectively. It indicates the distance from the rolling mill to the reel winding position at the side plate side end, the operation side quarter section, the drive side plate side end, and the drive side quarter section.)

【0033】従って、圧延機出側の板側端部同士間の伸
び率差△εe,クォータ部同士間の伸び率差△εq,板幅
中央の伸び率と両側の板側端部の平均伸び率との差△ε
e’及び板幅中央の伸び率と両側のクォータ部の平均伸
び率との差△εq’は、圧延機出側に設置した形状検出
器により直接得られる圧延機出側の板側端部同士間の伸
び率差△εe2,クォータ部同士間の伸び率差△εq2,板
幅中央の伸び率と両側の板側端部の平均伸び率との差△
εe2’及び板幅中央の伸び率と両側のクォータ部の平均
伸び率との差△εq2’と、前記張力変動量差に対応する
各伸び率dεe,dεq,dεe’及びdεq’との差とし
て次式で表わされる。 △εe=△εe2−dεe‥‥(30) △εq=△εq2−dεq‥‥(31) △εe’=△εe2’−dεe’‥‥(32) △εq’=△εq2’−dεq’‥‥(33)
Accordingly, the elongation difference Δεe between the plate-side ends on the exit side of the rolling mill, the elongation difference Δεq between the quarter portions, the elongation at the center of the sheet width, and the average elongation at both sheet-side ends. Difference from rate と ε
e ′ and the difference △ εq ′ between the elongation at the center of the strip width and the average elongation at the quarters on both sides are the difference between the sheet-side ends on the rolling mill exit side directly obtained by the shape detector installed on the rolling mill exit side. the difference between the elongation index difference △ .epsilon.e 2, elongation difference between the quarter portions △ εq 2, sheet width center of elongation and opposite sides of the plate-side end average growth rate of between △
εe 2 ′ and the difference △ εq 2 ′ between the elongation at the center of the sheet width and the average elongation at the quarter portions on both sides, and the elongation dεe, dεq, dεe ′ and dεq ′ corresponding to the difference in the amount of tension fluctuation. The difference is expressed by the following equation. △ εe = △ εe 2 −dεe ‥‥ (30) △ εq = △ εq 2 −dεq ‥‥ (31) △ εe '= △ εe 2 ' −dεe '‥‥ (32) △ εq' = △ εq 2 ' −dεq ′ ‥‥ (33)

【0034】次に、前記目標値△εe0,△εq0,△ε
e0’及び△εq0’のそれぞれと、上記式(30)〜(33)
で示される△εe,△εq,△εe’及び△εq’のそれぞ
れとを比較することによって、式(18),(25)に適用
される目標値△εe0,△εq0,△εe0’及び△εq0
(以下、これを△Ee0,△Eq0,△Ee0’及び△Eq0
と書き改める)は次式のように補正される。 △Ee0=△εe0+β×(△εe0−△εe)‥‥(34) △Eq0=△εq0+β×(△εq0−△εq)‥‥(35) △Ee0’=△εe0’+β×(△εe0’−△εe’)‥‥(36) △Eq0’=△εq0’+β×(△εq0’−△εq’)‥‥(37) この場合、△εe0等は圧延終了品としての目標値であ
り、△Ee0等は制御項の制御量を得るために式(18),
(25)に適用されるものである。
Next, the target values △ εe 0 , △ εq 0 , △ ε
e 0 ′ and △ εq 0 ′ and the above equations (30) to (33)
By comparing with each of △ εe, △ εq, 'εe ′ and △ εq ′, the target values △ εe 0 , △ εq 0 , △ εe 0 applied to equations (18) and (25) 'And △ εq 0 '
(Hereinafter, these are referred to as △ Ee 0 , △ Eq 0 , △ Ee 0 ′ and △ Eq 0
Is rewritten as follows: ΔEe 0 = △ εe 0 + β × (△ εe 0 − △ εe) ‥‥ (34) △ Eq 0 = △ εq 0 + β × (△ εq 0 − △ εq) ‥‥ (35) △ Ee 0 '= △ εe 0 '+ β × (△ εe 0' - △ εe ') ‥‥ (36) △ Eq 0' = △ εq 0 '+ β × (△ εq 0' - △ εq ') ‥‥ (37) In this case, △ εe 0 etc. is a target value as a finished rolled product, and △ Ee 0 etc. are obtained by using equations (18),
This applies to (25).

【0035】ここで、βは補正の調整に用いる係数であ
って、0≦β≦1のの範囲の値を取る。この補正係数β
は、目標伸び率差△εe0,△εq0,△εe0’及び△ε
q0’と実測形状△εe,△εq,△εe’及び△εq’がこ
となる場合に、板クラウン計により計測される板厚分布
に基づいた形状制御手段の設定値と、形状検出器及び変
位計により得られる張力変動分を補正した形状情報のど
ちらに重みを置くかを示す係数であり、この補正係数β
が大きい程後者に重みを置くことを示す。この補正係数
βは実験により適正な設定値が得られる。
Here, β is a coefficient used for adjusting the correction, and takes a value in the range of 0 ≦ β ≦ 1. This correction coefficient β
Are the target elongation differences △ εe 0 , △ εq 0 , △ εe 0 ′ and △ ε
When q 0 ′ and the measured shapes △ εe, △ εq, △ εe ′ and △ εq ′ are different, the setting value of the shape control means based on the thickness distribution measured by the sheet crown meter, the shape detector and This is a coefficient indicating which of the shape information obtained by correcting the tension variation obtained by the displacement meter is weighted, and the correction coefficient β
It means that the larger the value is, the more the latter is weighted. As the correction coefficient β, an appropriate set value can be obtained by an experiment.

【0036】また、Lc,LeW,LqW,LeD,LqD
の各長さは、デフレクターロール6とリール5の間に変
位計を設置し、板幅方向の通板位置の分布を測定するこ
とにより、圧延機,デフレクターロール6及びリール5
の位置関係より算出出来る。変位計としては、例えば接
触方式であればリニアエンコーダ,ポテンションメータ
などがあり、非接触方式であれば光マイクロ,渦流セン
サーなどがある。なお、形状検出器としては金属帯の幅
方向に分割されて配置されていてそれぞれの部分で金属
帯に作用している張力をロードセルで検出する検出器が
示される。
Also, Lc, LeW, LqW, LeD, LqD
By setting a displacement meter between the deflector roll 6 and the reel 5 and measuring the distribution of the threading position in the strip width direction, the rolling mill, the deflector roll 6 and the reel 5
Can be calculated from the positional relationship of Examples of the displacement meter include a linear encoder and a potentiometer for a contact type, and an optical micro and an eddy current sensor for a non-contact type. Note that, as the shape detector, a detector which is divided and arranged in the width direction of the metal band and detects the tension acting on the metal band at each portion by a load cell is shown.

【0037】このようにして式(34)及び式(35)を制
御式(18)に、また式(36)及び式(37)を制御式(2
5)にそれぞれ代入して常時上記各式中の目標値を補正
しながら非対称形状制御項の制御量及び対称形状制御項
の制御量を連続的に設定することにより、圧延終了まで
目標形状に近い金属帯に圧延することが可能となるので
ある。
Thus, the equations (34) and (35) are converted to the control equation (18), and the equations (36) and (37) are converted to the control equation (2).
5) by continuously setting the control amount of the asymmetric shape control term and the control amount of the symmetric shape control term while constantly correcting the target value in each of the above equations, so that the target shape is close to the target shape until the end of rolling. Rolling into a metal strip becomes possible.

【0038】圧延後において金属帯の片伸び等の形状不
良を発生させないためには、圧延前後の金属帯の断面は
可能な限り相似であるべきである。そのような断面に限
りなく近付くためには、操作側と駆動側との伸び率差が
小さい程好ましい。従って、セットアップ時に制御式
(18)において、目標値△εe0及び△εq0が共に零とな
るように制御量dW1,dW2を設定し、制御式(25)に
おいて目標値△εe0'及び△εq0'が共に零となるように
制御量〈W1〉,〈W2〉を設定することによって圧延開
始当初から圧延終了まで片伸び,中伸び,耳伸び等の形
状不良を発生させずに圧延することが出来る。
In order to prevent shape defects such as elongation of the metal strip after rolling, the cross sections of the metal strip before and after rolling should be as similar as possible. In order to approach such a cross section as much as possible, it is preferable that the difference in elongation between the operation side and the drive side is as small as possible. Therefore, the control expression during setup
In (18), the control amounts dW 1 and dW 2 are set so that both the target values △ εe 0 and △ εq 0 become zero, and in the control equation (25), the target values △ εe 0 ′ and △ εq 0 ′ are By setting the control variables <W 1 > and <W 2 > so that both become zero, rolling can be performed from the beginning of rolling to the end of rolling without causing any shape defects such as unilateral elongation, medium elongation, and ear elongation. I can do it.

【0039】以上、本発明方法を6重圧延機を使用する
場合について説明したが、6重圧延より多段の圧延機に
おいても同様な制御方法を用いることが出来る。このよ
うな多段圧延機において、中間ロールやバックアップロ
ールを複数本備えている場合には、dP,dIb,dδ
についてはそれぞれdP(最上部のバックアップロール
にかかる操作側と駆動側の圧下力差)、dIb(ワーク
ロールと接触する中間ロールの操作側と駆動側のベンデ
ィング力差)、dδ(ワークロールと接触する上下中間
ロールのシフト位置差)とし、dWb,dIb,dP,d
δのうち任意の2手段を用い、制御式(18)に従って制
御量dW1,dW2を設定し、〈Wb〉,〈Ib〉,〈δ〉
についてはそれぞれ〈Wb〉(ワークロールの操作側と
駆動側との平均ベンディング力)、〈Ib〉(ワークロ
ールと接触する中間ロールの操作側と駆動側の平均ベン
ディング力)、〈δ〉(ワークロールと接触する上下中
間ロールの平均シフト位置)とし、〈Wb〉,〈Ib〉,
〈δ〉のうち任意の2手段を用い、制御式(25)に従っ
て制御量〈W1〉,〈W2〉を設定すればよい。
Although the method of the present invention has been described using a six-high rolling mill, the same control method can be used in a multi-high rolling mill rather than a six-high rolling mill. When such a multi-high rolling mill is provided with a plurality of intermediate rolls and backup rolls, dP, dIb, dδ
About dP (difference in rolling force between the operating side and the driving side on the uppermost backup roll), dIb (bending force difference between the operating side and the driving side of the intermediate roll in contact with the work roll), dδ (contact with the work roll) DWb, dIb, dP, d
The control amounts dW 1 and dW 2 are set according to the control equation (18) using any two means of δ, and <Wb>, <Ib>, <δ>
For <Wb> (average bending force between the operation side and drive side of the work roll), <Ib> (average bending force between the operation side and drive side of the intermediate roll in contact with the work roll), and <δ> (workpiece <Wb>, <Ib>, <Wb>, <Ib>,
What is necessary is just to set the control amounts <W 1 > and <W 2 > according to the control formula (25) using any two means of <δ>.

【0040】[0040]

【実施例】以下に本発明方法の実施例について説明す
る。使用した圧延機は、ロール諸元をロール径,ロール
胴長,チョック間距離の順で括弧内に示す標準的なワー
クロール(135mm,850mm,1075mm)、中間ロール(300m
m,850mm,1660mm)及びバックアップロール(630mm,8
50mm,1475mm)で構成された図20と同じロール構成の
6重圧延機で、非対称形状制御項群dWb,dIb,d
P,dδ及び対称形状制御項群〈Wb〉,〈Ib〉,
〈δ〉の制御可能なものであった。
Embodiments of the method of the present invention will be described below. The rolling mill used was a standard work roll (135mm, 850mm, 1075mm) and an intermediate roll (300m) whose roll specifications are shown in parentheses in the order of roll diameter, roll body length, and chock distance.
m, 850 mm, 1660 mm) and backup roll (630 mm, 8
50 mm, 1475 mm) with the same roll configuration as in FIG. 20 and asymmetric shape control terms dWb, dIb, d
P, dδ and symmetric shape control terms <Wb>, <Ib>,
<Δ> was controllable.

【0041】このような6重圧延機を使用して板幅600m
mの普通鋼の片クラウン材を圧延機の入側板厚0.6mm,出
側板厚0.36mm,圧延荷重170トンの圧延条件で圧延す
る場合において、非対称形状制御項群の中から任意に選
んだワークロールのベンディング力差dWb(その制御
量をdW1とする)及び中間ロールのベンディング力差
dIb(その制御量をdW2とする)による非対称形状制
御手段と、対称形状制御項群の中から任意に選んだワー
クロールの平均ベンディング力〈Wb〉(その制御量を
〈W1〉とする)及び中間ロールの平均ベンディング力
〈Ib〉(その制御量を〈W2〉とする)による対称形状
制御手段とで制御を行った。
Using such a six-high rolling mill, a sheet width of 600 m
work selected from asymmetric shape control terms when rolling a single crown material of ordinary steel with a thickness of 0.6 mm, a thickness of exit side of 0.36 mm and a rolling load of 170 ton in a rolling mill. roll bending force difference dWb asymmetric shape control means according to (a control amount and dW 1) and the intermediate roll bending force difference DIB (the control amount and dW 2), any out of the symmetrical control term group the average bending force of the selected work roll in <Wb> (the control amount is set to <W 1>) and the average bending force of the intermediate roll <Ib> (the control amount is set to <W 2>) by symmetrical control Control was performed by means.

【0042】以下、本実施例の手順を図17によって具
体的に説明する。圧延機入側に設置された板クラウン計
8により板幅方向の板厚分布を測定し、測定した情報を
計算機11に送り、板幅方向の板厚分布を4次式で近似
することにより△He,△Hqを算出する。また、設定盤
7からの圧延荷重,板幅等の圧延情報により、計算機1
1で係数a〜h及びa’〜m’が算出される。そして、
計算機11で△He,△Hq及び係数a〜hにより制御式
(18)からdW1及びdW2が算出され、△He,△Hq及び
係数a’〜m’により制御式(25)から〈W1〉及び
〈W2〉が算出される。dW1,dW2,〈W1〉及び〈W
2〉から操作側と駆動側のワークロールベンディング力
及び中間ロールベンディング力が算出され、ワークロー
ルベンディング力指令装置12,13及び中間ロールベ
ンディング力指令装置14,15に送られ、操作側と駆
動側のワークロールベンダー16,17及び中間ロール
ベンダー18,19に出力されてセットアップ制御がな
された状態で圧延が開始される。
Hereinafter, the procedure of this embodiment will be specifically described with reference to FIG. The sheet thickness distribution in the sheet width direction is measured by a sheet crown meter 8 installed on the entrance side of the rolling mill, the measured information is sent to the computer 11, and the sheet thickness distribution in the sheet width direction is approximated by a quartic equation. He and △ Hq are calculated. In addition, the computer 1 uses the rolling information such as the rolling load and the sheet width from the setting panel 7 to calculate
The coefficients a to h and a 'to m' are calculated by one. And
The control formula is calculated by the computer 11 using △ He, △ Hq and the coefficients a to h.
(18) dW 1 and dW 2 are calculated from, △ He, △ Hq and controlled by the coefficient A'~m 'from (25) <W 1> and <W 2> is calculated. dW 1 , dW 2 , <W 1 > and <W
2 > The work roll bending force and the intermediate roll bending force on the operation side and the drive side are calculated, and are sent to the work roll bending force command devices 12 and 13 and the intermediate roll bending force command devices 14 and 15, and the operation side and the drive side are calculated. Are output to the work roll benders 16 and 17 and the intermediate roll benders 18 and 19, and the rolling is started in a state where the setup control is performed.

【0043】圧延開始後も板クラウン計8により板幅方
向の板厚分布が連続して計測される。これと併行して、
デフレクターロール6とリール5との間に設置された変
位計10により板幅方向の通板位置の分布が連続的に測
定され、計算機11で圧延機,デフレクターロール6及
びリール5の位置関係からLc,LeW,LqW,LeD,
LqDが算出され、式(26)〜(29)によりdεe,dε
q,dεe’,dεq’が算出され、圧延機出側に設置さ
れた形状検出器9の連続的な測定により得られる形状情
報に基づいて式(34)〜(37)によって△εe0,△ε
q0,△εe0’及び△εq0’が補正されて△Ee0,△E
q0,△Ee0’及び△Eq0’が得られ、それにより制御式
(18)から算出されるdW1及びdW2と制御式(25)か
ら算出される〈W1〉及び〈W2〉とが常時補正されて、
ワークロールベンディング力指令装置12,13及び中
間ロールベンディング力指令装置14,15に送られ、
操作側と駆動側のワークロールベンダー16,17及び
中間ロールベンダー18,19に出力され、操作側と駆
動側のワークロールベンディング力及び中間ロールベン
ディング力が常時修正されるのである。
After the start of rolling, the sheet thickness distribution in the sheet width direction is continuously measured by the sheet crown meter 8. At the same time,
The distribution of the threading position in the sheet width direction is continuously measured by a displacement gauge 10 installed between the deflector roll 6 and the reel 5, and a computer 11 calculates Lc from the positional relationship between the rolling mill, the deflector roll 6 and the reel 5. , LeW, LqW, LeD,
LqD is calculated, and dεe, dε is calculated according to equations (26) to (29).
q, dεe ′, dεq ′ are calculated, and based on the shape information obtained by continuous measurement of the shape detector 9 installed on the exit side of the rolling mill, {εe 0 , △ ε
q 0 , △ εe 0 ′ and △ εq 0 ′ are corrected to △ Ee 0 , △ E
q 0 , △ Ee 0 ′ and △ Eq 0 ′ are obtained, whereby the control equation
DW 1 and dW 2 calculated from (18) and <W 1 > and <W 2 > calculated from control formula (25) are constantly corrected,
It is sent to the work roll bending force command devices 12 and 13 and the intermediate roll bending force command devices 14 and 15,
The output is output to the work roll benders 16 and 17 on the operation side and the drive side and the intermediate roll benders 18 and 19, and the work roll bending force and the intermediate roll bending force on the operation side and the drive side are constantly corrected.

【0044】前述したように本発明方法を用いて実際に
形状制御を行った本実施例の場合における最大急俊度
(板幅方向における急俊度の最大値)の推移を図18
(イ)に示す。また比較のため、従来通りワークロールの
ベンディング力差dWb,中間ロールのベンディング力
差dIb,ワークロールの平均ベンディング力〈Wb〉及
び中間ロールの平均ベンディング力〈Ib〉を経験的に
設定し、形状検出器により得られる形状情報を補正せず
に形状制御を行った場合における最大急峻度の推移を図
18(ロ)に示す。本発明方法による(イ)の場合には、圧
延開始時より最大急峻度は0.3%以内に保たれているこ
とが判る。これに対して従来法である(ロ)の場合には、
圧延開始時及びリールで巻き取るときの張力変動が大き
くなる圧延後半において最大急峻度が大きくなり、1%
以上になっている。
FIG. 18 shows the transition of the maximum steepness (the maximum value of the steepness in the sheet width direction) in the case of the present embodiment in which the shape control is actually performed using the method of the present invention as described above.
It is shown in (a). For comparison, as before, the bending force difference dWb of the work roll, the bending force difference dIb of the intermediate roll, the average bending force <Wb> of the work roll, and the average bending force <Ib> of the intermediate roll were empirically set, and FIG. 18B shows the transition of the maximum steepness when the shape control is performed without correcting the shape information obtained by the detector. In case (a) according to the method of the present invention, it can be seen that the maximum steepness is kept within 0.3% from the start of rolling. On the other hand, in the case of the conventional method (b),
The maximum steepness increases in the latter half of rolling when the tension fluctuation at the start of rolling and when winding on a reel increases, and 1%
That's all.

【0045】[0045]

【発明の効果】以上に詳述した如く本発明に係る片クラ
ウン金属帯の圧延における形状制御方法は、片クラウン
材の圧延において伸び率差△εe,△εq,△εe’及び
△εq’のそれぞれと板厚差△He及び△Hqのそれぞれ
とが線形関係にあることを利用して非対称形状制御項d
Wb,dIb,dP及びdδのうち任意の二つ及び対称形
状制御項〈Wb〉,〈Ib〉及び〈δ〉のうち任意の二つ
について、その制御量を合理的に導いた制御式により得
てセットアップ制御して圧延を開始し、圧延開始後も片
クラウンに起因するリール巻取り時の板幅方向の張力変
動について前記制御量を常時補正しながら圧延するよう
に構成したことにより、圧延の初期から終了まで圧延機
出側の金属帯の断面形状を所定のものにすることが出来
る。従って、圧延機出側の金属帯の断面形状を入側のそ
れと相似にすることにより、圧延の初期から片伸び,中
伸び,耳伸び等の形状不良を発生させることがないか
ら、品質改善と共に歩留向上が図れる。また形状不良に
伴って生じる板破断現象の発生もなくなり、能率向上を
図ることが出来る。このような効果を有する本発明方法
の工業的価値は非常に大きなものがある。
As described above in detail, the shape control method in the rolling of a single crown metal strip according to the present invention is characterized in that the elongation differences △ εe, △ εq, △ εe ′ and △ εq ′ are reduced in the rolling of the single crown material. Using the fact that each of them and each of the plate thickness differences ΔHe and ΔHq are in a linear relationship, an asymmetric shape control term d is used.
For any two of Wb, dIb, dP, and dδ and any two of the symmetric shape control terms <Wb>, <Ib>, and <δ>, the control amount is obtained by a control formula that rationally derived. The rolling is started by controlling the setup, and the rolling is performed while always correcting the control amount with respect to the tension fluctuation in the sheet width direction at the time of reel winding caused by the one crown even after the rolling is started. From the initial stage to the end, the cross-sectional shape of the metal strip on the exit side of the rolling mill can be made predetermined. Therefore, by making the cross-sectional shape of the metal strip on the exit side of the rolling mill similar to that on the entry side, shape defects such as single elongation, medium elongation, and ear elongation do not occur from the initial stage of rolling. The yield can be improved. Further, the occurrence of a plate breakage phenomenon caused by the shape defect is eliminated, and the efficiency can be improved. The industrial value of the method of the present invention having such effects is very large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金属帯の圧延における圧延機の入側と出側の板
厚分布,板厚差及び伸び率差の説明図である。
FIG. 1 is an explanatory diagram of a thickness distribution, a thickness difference, and an elongation difference between an entrance side and an exit side of a rolling mill in rolling of a metal strip.

【図2〜図5】板厚差△He及び△Hqのそれぞれと伸び
率差△εe及び△εqのそれぞれとの線形関係を示す各説
明図である。
FIGS. 2 to 5 are explanatory diagrams showing linear relationships between plate thickness differences ΔHe and ΔHq and elongation differences Δεe and Δεq, respectively.

【図6〜図9】非対称形状制御項群dWb,dIb,dP
及びdδのそれぞれと伸び率差△εe及び△εqのそれぞ
れとの線形関係を示す各説明図である。
6 to 9 are asymmetric shape control term groups dWb, dIb, dP
FIG. 4 is an explanatory diagram showing a linear relationship between each of the elongation differences Δεe and Δεq and each of the elongation differences Δεe and Δεq.

【図10〜図13】板厚差△He及び△Hqのそれぞれと
伸び率差△εe’及び△εq’のそれぞれとの線形関係を
示す各説明図である。
FIGS. 10 to 13 are explanatory diagrams showing a linear relationship between each of the plate thickness differences ΔHe and ΔHq and each of the elongation differences Δεe ′ and Δεq ′.

【図14〜図16】対称形状制御項群〈Wb〉,〈Ib〉
及び〈δ〉のそれぞれと伸び率差△εe’及び△εq’の
それぞれとの線形関係を示す各説明図である。
14 to 16 are symmetric shape control term groups <Wb>, <Ib>
And <δ> are each an explanatory diagram showing a linear relationship between each of elongation differences Δεe ′ and Δεq ′.

【図17】本発明の一実施例の実施状況を説明するため
の概略説明図である。
FIG. 17 is a schematic explanatory diagram for explaining an implementation state of one embodiment of the present invention.

【図18】実施例及び比較例における最大急峻度の推移
を示す図である。
FIG. 18 is a diagram showing transition of the maximum steepness in the example and the comparative example.

【図19】板幅方向において圧延機からリール巻取り位
置までの距離が異なることを説明するための説明図であ
る。
FIG. 19 is an explanatory diagram for explaining that a distance from a rolling mill to a reel winding position is different in a sheet width direction.

【図20】6重圧延機による圧延状況を示す説明図であ
る。
FIG. 20 is an explanatory diagram showing a rolling state by a six-high rolling mill.

【符号の説明】[Explanation of symbols]

1 ワークロール 2 中間ロール 3 バックアップロール 4 金属帯 5 リール 6 デフレクターロール 7 設定盤 8 板クラウン計 9 形状検出器 10 変位計 11 計算機 12,13 ワークロールベンディング力指令装置 14,15 中間ロールベンディング力指令装置 16,17 ワークロールベンダー 18,19 中間ロールベンダー Wb ワークロールの操作側のベンディング力 Wb’ ワークロールの駆動側のベンディング力 Ib 中間ロールの操作側のベンディング力 Ib’ 中間ロールの駆動側のベンディング力 P バックアップロールの操作側にかかる圧下力 P’ バックアップロールの駆動側にかかる圧下力 δ 上中間ロールのシフト位置 δ’ 下中間ロールのシフト位置 L 圧延機出側の金属帯の板幅中央の位置 HeW 圧延機入側における金属帯の操作側の板側端部
の板厚 HqW 圧延機入側における金属帯の操作側のクォータ
部の板厚 HeD 圧延機入側における金属帯の駆動側の板側端部
の板厚 HqD 圧延機入側における金属帯の駆動側のクォータ
部の板厚 heW 圧延機出側における金属帯の操作側の板側端部
の板厚 hqW 圧延機出側における金属帯の操作側のクォータ
部の板厚 heD 圧延機出側における金属帯の駆動側の板側端部
の板厚 hqD 圧延機出側における金属帯の駆動側のクォータ
部の板厚 Lc 板幅中央における圧延機からリール巻取り位置ま
での距離 LeW 操作側の板側端部における圧延機からリール巻
取り位置までの距離 LqW 操作側のクォータ部における圧延機からリール
巻取り位置までの距離 LeD 駆動側の板側端部における圧延機からリール巻
取り位置までの距離 LqD 駆動側のクォータ部における圧延機からリール
巻取り位置までの距離
DESCRIPTION OF SYMBOLS 1 Work roll 2 Intermediate roll 3 Backup roll 4 Metal strip 5 Reel 6 Deflector roll 7 Setting board 8 Sheet crown meter 9 Shape detector 10 Displacement meter 11 Computer 12,13 Work roll bending force command device 14,15 Intermediate roll bending force command Apparatus 16, 17 Work roll bender 18, 19 Intermediate roll bender Wb Bending force on operation side of work roll Wb 'Bending force on driving side of work roll Ib Bending force on operation side of intermediate roll Ib' Bending on driving side of intermediate roll Force P Rolling force on the operation side of the backup roll P 'Rolling force on the drive side of the backup roll δ Shift position of the upper intermediate roll δ' Shift position of the lower intermediate roll L Center of the width of the metal strip on the exit side of the rolling mill Position HeW Metal strip on the rolling mill entry side The thickness of the metal strip on the entry side of the metal strip on the operation side HqW The thickness of the quarter section on the operation side of the metal strip on the entry side of the rolling mill HeD The thickness of the driving side of the metal strip on the entry side of the metal strip on the entry side of the rolling mill HqD Thickness of the quarter part on the driving side of the metal strip at the side heW Thickness of the end of the metal side on the operation side of the metal strip on the exit side of the rolling mill hqW Thickness of the quarter part on the operation side of the metal strip on the exit side of the rolling mill heD The thickness of the driving side of the metal strip at the exit side of the rolling mill on the strip side hqD The thickness of the quarter section on the driving side of the metal strip at the exit side of the rolling mill Lc The distance from the rolling mill to the reel winding position at the center of the strip width LeW Distance from the rolling mill to the reel winding position at the plate side end on the operating side LqW Distance from the rolling mill to the reel winding position at the quarter section on the operating side LeD Roll from the rolling mill at the plate side end on the drive side Distance to picking position Distance from the rolling mill in the quarter portion of qD drive side to the reel winding position

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 両側非対称形状の片クラウン金属帯を、
6重圧延機以上の多段圧延機を使用して圧延しながらリ
ールに巻き取るに当り、セットアップ時に金属帯幅方向
両側の板側端部同士間の伸び率差△εe及び金属帯幅方
向両側のクォータ部同士間の伸び率差△εqがそれぞれ
目標値△εe0及び△εq0となるようにワークロールの操
作側と駆動側とのベンディング力差dWb,同じく中間
ロールのベンディング力差dIb,同じくバックアップ
ロールの圧下力差dP及び上下中間ロールのシフト位置
差dδから成る非対称形状制御項群の中から任意の二つ
の非対称形状制御項群を選んでその制御量dW1及びd
2を、下記の式 【数1】 ここで、 △He:圧延機入側の金属帯の板幅中央より操作側及び
駆動側のそれぞれに等距離にある板側端部同士間の板厚
差 △Hq:圧延機入側の金属帯の板幅中央より操作側及び
駆動側のそれぞれに等距離にあるクォータ部同士間の板
厚差 a:△Heと△εeとが示す線形関係における△Heに対
する△εeの傾きを示す係数 b:△Hqと△εeとが示す線形関係における△Hqに対
する△εeの傾きを示す係数 c:△Heと△εqとが示す線形関係における△Heに対
する△εqの傾きを示す係数 d:△Hqと△εqとが示す線形関係における△Hqに対
する△εqの傾きを示す係数 e:dW1と△εeとが示す線形関係におけるdW1に対
する△εeの傾きを示す係数 f:dW2と△εeとが示す線形関係におけるdW2に対
する△εeの傾きを示す係数 g:dW1と△εqとが示す線形関係におけるdW1に対
する△εqの傾きを示す係数 h:dW2と△εqとが示す線形関係におけるdW2に対
する△εqの傾きを示す係数 に従って設定すると共に、板幅中央の伸び率と前記両側
の板側端部の平均伸び率との差△εe’及び板幅中央の
伸び率と前記両側のクォータ部の平均伸び率との差△ε
q’がそれぞれ目標値△εe0’及び△εq0’となるよう
に、ワークロールの操作側と駆動側との平均ベンディン
グ力〈Wb〉,同じく中間ロールの平均ベンディング力
〈Ib〉及び上下中間ロールの平均シフト位置〈δ〉か
ら成る対称形状制御項群の中から任意の二つの対称形状
制御項を選んでその制御量〈W1〉及び〈W2〉を、下記
の式 【数2】 ここで、 a’:△Heと△εe’とが示す線形関係における△He
に対する△εe’の傾きを示す係数 b’:△Hqと△εe’とが示す線形関係における△Hq
に対する△εe’の傾きを示す係数 c’:△Heと△εq’とが示す線形関係における△He
に対する△εq’の傾きを示す係数 d’:△Hqと△εq’とが示す線形関係における△Hq
に対する△εq’の傾きを示す係数 e’:△Heと△Hqとを共に零とした場合の△εe’の
値 f’:△Heと△Hqとを共に零とした場合の△εe’の
値 g’:〈W1〉と△εe’とが示す線形関係における〈W
1〉に対する△εe’の傾きを示す係数 h’:〈W2〉と△εe’とが示す線形関係における〈W
2〉に対する△εe’の傾きを示す係数 k’:〈W1〉と△εq’とが示す線形関係における〈W
1〉に対する△εq’の傾きを示す係数 m’:〈W2〉と△εq’とが示す線形関係における〈W
2〉に対する△εq’の傾きを示す係数 に従って設定して圧延を開始した後、圧延機入側の板幅
方向の板厚分布と、圧延機出側の板形状と、リール巻取
り前の板幅方向の通板位置分布とを連続的に測定し、リ
ール巻取り時に片クラウンに起因して生じる板幅方向の
張力変動分を補正した板側端部同士間及びクォータ部同
士間それぞれの伸び率差△εe,△εqと、板幅中央の伸
び率と両側の板側端部の平均伸び率及び両側のクォータ
部の平均伸び率それぞれとの差△εe’及び△εq’と
を、次の8個の式により算出し、 dεe=−ln(LeW/LeD) dεq=−ln(LqW/LqD) dεe’=−ln(LeW/Lc)/2−ln(LeD/L
c)/2 dεq’=−ln(LqW/Lc)/2−ln(LqD/L
c)/2 △εe=△εe2−dεe △εq=△εq2−dεq △εe’=△εe2’−dεe’ △εq’=△εq2’−dεq’ ここで、 dεe:圧延機出側の板側端部同士間の張力変動量差に
対応する伸び率差 dεq:クォータ部同士間の張力変動量差に対応する伸
び率差 dεe’:板幅中央の張力変動量と両側の板側端部の平
均の張力変動量の差に対応する伸び率差 dεq’:板幅中央の張力変動量と両側のクォータ部の
平均の張力変動量の差に対応する伸び率差 Lc,LeW,LqW,LeD,LqD:それぞれ板幅中
央,操作側の板側端部,操作側のクォータ部,駆動側の
板側端部及び駆動側のクォータ部における圧延機からリ
ール巻取り位置までの距離 △εe2:圧延機出側に設置した形状検出器により直接得
られる圧延機出側の板側端部同士間の伸び率差 △εq2:圧延機出側に設置した形状検出器により直接得
られる圧延機出側のクォータ部同士間の伸び率差 △εe2’:圧延機出側に設置した形状検出器により直接
得られる圧延機出側の板幅中央の伸び率と両側の板側端
部の平均伸び率との差 △εq2’:圧延機出側に設置した形状検出器により直接
得られる圧延機出側の板幅中央の伸び率と両側のクォー
タ部の平均伸び率との差 板側端部同士間及びクォータ部同士間それぞれの伸び率
差の目標値△Ee0及び△Eq0と、板幅中央の伸び率と両
側の板側端部の平均伸び率及び両側のクォータ部の平均
伸び率それぞれとの差の目標値△Ee0’及び△Eq0’と
を、次の4個の式 △Ee0=△εe0+β×(△εe0−△εe) △Eq0=△εq0+β×(△εq0−△εq) △Ee0’=△εe0’+β×(△εe0’−△εe’) △Eq0’=△εq0’+β×(△εq0’−△εq’) ここで、 β:補正の調整に用いる係数 により得て前記式(A)及び(B)にそれぞれ代入して、非
対称形状制御項の制御量及び対称形状制御項の制御量を
常時補正しながら設定して板形状を制御することを特徴
とする片クラウン金属帯の圧延における形状制御方法。
1. A single crown metal band having an asymmetric shape on both sides,
In winding up on a reel while rolling using a multi-high rolling mill of six or more rolling mills, the elongation difference 率 εe between the plate side ends on both sides in the metal band width direction and the The bending force difference dWb between the operation side and the driving side of the work roll, the bending force difference dIb between the intermediate rolls, and the like so that the elongation difference △ εq between the quarter portions becomes the target values △ εe 0 and △ εq 0 respectively. Any two asymmetrical shape control terms are selected from the asymmetrical shape control terms consisting of the rolling force difference dP of the backup roll and the shift position difference dδ of the upper and lower intermediate rolls, and their control amounts dW 1 and dW.
W 2 is calculated by the following equation: Here, ΔHe: difference in plate thickness between plate-side end portions equidistant from the center of the width of the metal band on the entry side of the rolling mill to each of the operation side and the driving side ΔHq: metal band on the entry side of the rolling mill The thickness difference between the quarter portions equidistant from the center of the width of the plate to the operation side and the drive side, respectively: a: A coefficient indicating the slope of △ εe with respect to △ He in the linear relationship indicated by △ He and △ εe b: A coefficient indicating the slope of △ εe with respect to △ Hq in the linear relationship indicated by HHq and △ εe c: A coefficient indicating the slope of △ εq with respect to △ He in the linear relationship indicated by △ He and △ εq d: coefficient indicating the slope of △ Ipushironq for △ Hq in the linear relation shown by the εq e: dW 1 and △ .epsilon.e a coefficient indicating the slope of △ .epsilon.e for dW 1 in the linear relation shown by f: indicated and dW 2 and △ .epsilon.e coefficient indicating the slope of △ .epsilon.e for dW 2 in linear relation g: dW 1 and △ Ipushironq and Coefficient indicating the slope of △ Ipushironq for dW 1 in the linear relation shown h: dW 2 and △ Ipushironq with and are set in accordance with the coefficient indicating the slope of △ Ipushironq for dW 2 in the linear relation shown, the the sheet width center of elongation The difference △ εe ′ between the average elongation at the plate side ends on both sides and the difference △ ε between the elongation at the center of the plate width and the average elongation at the quarters on both sides
The average bending force <Wb> between the operation side and the drive side of the work roll, the average bending force <Ib> of the intermediate roll, and the upper and lower middle so that q ′ becomes the target values △ εe 0 ′ and △ εq 0 ′, respectively. Any two symmetric shape control terms are selected from a group of symmetric shape control terms consisting of the average shift position <δ> of the roll, and their control amounts <W 1 > and <W 2 > are expressed by the following equation: Here, a ′: △ He in the linear relationship indicated by △ He and △ εe ′
Coefficient b 'indicating the slope of △ εe' with respect to △ Hq in the linear relationship indicated by △ Hq and △ εe '
A coefficient indicating the slope of △ εe ′ with respect to c ′: △ He in the linear relationship indicated by △ He and △ εq ′
D ': a coefficient indicating the slope of △ εq ′ with respect to △ Hq in the linear relationship indicated by △ Hq and △ εq'
E ′: the value of △ εe ′ when both △ He and △ Hq are zero f ′: the coefficient of △ εe ′ when both △ He and △ Hq are zero Value g ′: <W 1 > in the linear relationship indicated by <W 1 > and △ εe ′
1> 'coefficient indicating the slope of the h' △ .epsilon.e for: <W 2> and △ .epsilon.e 'and <W in the linear relationship indicated
2> 'coefficient indicating the slope of k' △ .epsilon.e for: <W 1> and △ Ipushironq 'and <W in the linear relationship indicated
1> 'coefficient indicating the slope of m' △ εq for: <W 2> and △ Ipushironq 'and <W in the linear relationship indicated
After rolling is started by setting according to the coefficient indicating the slope of △ εq 'to 2 >, the sheet thickness distribution in the sheet width direction on the rolling mill entry side, the sheet shape on the rolling mill exit side, and the sheet before reel winding Continuous measurement of the distribution of the passing position in the width direction and the elongation between the plate-side ends and between the quarters, corrected for the fluctuation in tension in the width direction caused by one crown during reel winding. The rate differences εe and △ εq, and the differences △ εe ′ and △ εq ′ between the elongation at the center of the sheet width, the average elongation at the side edges of both sides, and the average elongation at the quarters on both sides, respectively, are as follows: Dεe = −ln (LeW / LeD) dεq = −ln (LqW / LqD) dεe ′ = − ln (LeW / Lc) / 2−ln (LeD / L
c) / 2 dεq ′ = − ln (LqW / Lc) / 2−ln (LqD / L
c) / 2 △ εe = △ εe 2 -dεe △ εq = △ εq 2 -dεq △ εe '= △ εe 2' -dεe '△ εq' = △ εq 2 '-dεq' here, dεe: exits the rolling mill Dεq: Elongation difference corresponding to the tension fluctuation difference between the quarter parts dεe ′: Tension fluctuation at the center of the plate width and the plates on both sides Elongation difference dεq ′ corresponding to the difference in average tension fluctuation at the side end dεq ′: Elongation difference Lc, LeW, corresponding to the difference between the tension fluctuation at the center of the plate width and the average tension fluctuation at the quarters on both sides LqW, LeD, LqD: distances from the rolling mill to the reel winding position at the plate width center, the operation side plate side end, the operation side quarter portion, the drive side plate side end, and the drive side quarter portion, respectively. .epsilon.e 2: rolling mill stretching out index difference between the plate-side ends of the installation shape detector by directly obtained the delivery side of the rolling mill on the side △ εq 2: on the delivery side of the rolling mill Elongation difference between the delivery side of the rolling mill of the quota portions obtained directly by location shape detector △ .epsilon.e 2 ': rolling mill exit was placed in side shape detector by the rolling mill outlet side of the plate width central obtained directly Difference between the elongation percentage and the average elongation percentage at both ends of the strip side Δεq 2 ': The elongation percentage at the center of the strip width at the exit side of the rolling mill and the quarter on both sides directly obtained by the shape detector installed on the exit side of the rolling mill The difference between the average elongation rate of the part and the target values 伸 び Ee 0 and △ Eq 0 of the difference in the elongation rate between the plate side ends and between the quarter parts, a target value of the difference between the respective average growth rate of the average growth rate and both quota portions △ Ee 0 'and △ Eq 0', the next four formula △ Ee 0 = △ εe 0 + β × (△ εe 0 − △ εe) △ Eq 0 = △ εq 0 + β × (△ εq 0 − △ εq) △ Ee 0 '= △ εe 0 ' + β × (△ εe 0 '− △ εe') △ Eq 0 '= △ εq 0 '+ Β × (△ εq 0 '- △ εq') where, beta: by substituting each of the obtained by a factor used to adjust the correction equation (A) and (B), the control amount and the control of the symmetrical shape control section asymmetrical control term A shape control method in rolling of a single crown metal strip, characterized in that the sheet shape is controlled by setting while constantly correcting the amount.
JP3339533A 1991-11-29 1991-11-29 Shape control method in rolling of single crown metal strip Expired - Lifetime JP2962910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3339533A JP2962910B2 (en) 1991-11-29 1991-11-29 Shape control method in rolling of single crown metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3339533A JP2962910B2 (en) 1991-11-29 1991-11-29 Shape control method in rolling of single crown metal strip

Publications (2)

Publication Number Publication Date
JPH05177225A JPH05177225A (en) 1993-07-20
JP2962910B2 true JP2962910B2 (en) 1999-10-12

Family

ID=18328379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3339533A Expired - Lifetime JP2962910B2 (en) 1991-11-29 1991-11-29 Shape control method in rolling of single crown metal strip

Country Status (1)

Country Link
JP (1) JP2962910B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102371277B (en) * 2010-08-19 2014-08-27 上海梅山钢铁股份有限公司 Method for reducing hole generation rate during rolling of tinning sheet
CN107175260B (en) * 2016-03-11 2019-10-25 宝山钢铁股份有限公司 Wedge-shaped base width control method based on fixed-width side press

Also Published As

Publication number Publication date
JPH05177225A (en) 1993-07-20

Similar Documents

Publication Publication Date Title
JP2799275B2 (en) Plating equipment and its operation method
JP2962910B2 (en) Shape control method in rolling of single crown metal strip
RU2374021C2 (en) Flattening machine with adjusted center-to-center distance
DE69623343T2 (en) ROLLING MILL, ROLLING METHOD AND ROLLING MACHINE
JPH0631323A (en) Method for feedback control in rolling of metallic belt of single-side crown
JPH0521653B2 (en)
JP2962867B2 (en) Setup control method in rolling of single crown metal strip
JP3587579B2 (en) Metal strip profile control method in tandem cold rolling mill
JP4227686B2 (en) Edge drop control method during cold rolling
JP3045465B2 (en) Control method of thickness of stainless steel sheet
JPH08215728A (en) Method and device for controlling edge drop of metallic strip in tandem cold rolling mill
JP2752589B2 (en) Shape control method and apparatus for continuous rolling mill
JPH07185622A (en) Feedback shape control method in rolling of one-side crown metallic hoop
JP3252751B2 (en) Strip width control method in cold tandem rolling
RU2156667C1 (en) System for automatically controlling thickness of strip in reversing cold rolling mill
JP4164306B2 (en) Edge drop control method in cold rolling
JP2761797B2 (en) Crown control method in cold rolling by tandem mill
JPH06521A (en) Setup control method in rolling of steel strip having offset crown
JPH0679322A (en) Method for controlling plate crown in rolling of single-sided crown strip metal by tandem mill
JP2541989B2 (en) Temper rolling method in continuous annealing equipment
JP3218598B2 (en) Thickness control method for leading and trailing edges of material in tandem rolling mill
SU854467A1 (en) Method of rolling thin and thinnest band
JPS63108916A (en) Manufacturing device for cut sheet
RU2466808C1 (en) Casting-rolling plant for sheet cold rolling from aluminium and its alloys
JP3302411B2 (en) Strip crown control method in rolling of single crown metal strip

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990727