JP2752201B2 - Electrical analysis method - Google Patents

Electrical analysis method

Info

Publication number
JP2752201B2
JP2752201B2 JP1322192A JP32219289A JP2752201B2 JP 2752201 B2 JP2752201 B2 JP 2752201B2 JP 1322192 A JP1322192 A JP 1322192A JP 32219289 A JP32219289 A JP 32219289A JP 2752201 B2 JP2752201 B2 JP 2752201B2
Authority
JP
Japan
Prior art keywords
sample
detection electrode
chamber
analysis
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1322192A
Other languages
Japanese (ja)
Other versions
JPH03181850A (en
Inventor
修 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Zosen KK
Original Assignee
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Zosen KK filed Critical Mitsui Zosen KK
Priority to JP1322192A priority Critical patent/JP2752201B2/en
Publication of JPH03181850A publication Critical patent/JPH03181850A/en
Application granted granted Critical
Publication of JP2752201B2 publication Critical patent/JP2752201B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気分析方法に係り、特に電圧、電流また
は電気量の変化をもとに被定量物質を絶対定量すること
ができる電気分析方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to an electric analysis method, and in particular, to an electric analysis method capable of absolutely quantifying a substance to be determined based on a change in a voltage, a current, or an amount of electricity. It is about.

〔従来の技術〕[Conventional technology]

電気化学分析は、最近いわゆるバイオセンサや液体ク
ロマトグラフ検出器などにおいて、その利用分野が拡大
されており、この方法を用いた検出器としては、試料液
中に検出部である電極を浸漬させるもの、検出極内に試
料液を強制的に流動させるもの、電解液に直接試料を投
入するもの等がある。
Electrochemical analysis has recently been used in so-called biosensors and liquid chromatograph detectors, and the field of application has been expanded. As a detector using this method, an electrode that is a detection unit is immersed in a sample liquid. And those in which a sample solution is forced to flow in a detection electrode, and those in which a sample is directly introduced into an electrolytic solution.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、電気分析において電解液を検出極中で
流動させたり、干渉成分が十分にマスキングされていな
いときは、バックグランドレベルが高くなったり、S/N
比が低下する傾向にあり、上記の分析方法では十分な検
出感度や精度が得られない場合もあった。
However, when the electrolyte flows in the detection electrode in electroanalysis or when the interference component is not sufficiently masked, the background level increases or the S / N
The ratio tends to decrease, and in some cases, the above analysis methods may not provide sufficient detection sensitivity and accuracy.

最近では電気化学分析に対する期待が大きく、分析時
間の短縮化および分析精度の高度化が強く要求されるよ
うになり、上記従来技術では充分に対応できなくなって
きている。
In recent years, expectations for electrochemical analysis have been high, and there has been a strong demand for shortening the analysis time and improving the analysis accuracy.

本発明の目的は、上記従来技術の課題を解決し、応答
時間が短く、高精度で、しかも操作性に優れた電気分析
方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an electric analysis method having a short response time, high accuracy, and excellent operability.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、上記従来技術の欠点の改良を試みて鋭
意研究を重ねた結果、電気分析用検出器の検出極に透過
膜をあてることにより、流体の連続分析では検出極内に
試料を流れによる乱れを作らず、またサンプルを投与す
る形の分析においてはフィルター効果により妨害成分を
除去するという効果も生じるので、検出器のバックグラ
ンドレベルが低下し、またS/N比が向上し、高感度、高
精度の分析が迅速にできることを見出し、本発明に到達
した。
The present inventors have conducted intensive studies in an attempt to improve the above-mentioned disadvantages of the conventional technique, and as a result, by applying a permeable membrane to the detection electrode of the detector for electroanalysis, the sample is placed in the detection electrode in continuous fluid analysis. In the analysis in which the sample is administered, there is also an effect of removing interfering components by a filter effect, so that the background level of the detector is reduced, and the S / N ratio is improved, The present inventors have found that high-sensitivity, high-precision analysis can be performed quickly, and have reached the present invention.

すなわち本発明は、導電性多孔体からなる検出極を有
する検出極室と、対極を有する対極室とがイオン透過性
の隔膜を介して隣接する電解槽内の前記検出極室の多孔
体に電解液を含浸させ、これに透過膜を通過させた一定
量の試料を供給して電解し、検出極における電圧、電流
または電気量のうち少なくとも1つ以上を測定すること
により、試料中の被定量物質を絶対定量することを特徴
とする。
That is, the present invention provides a method of electrolyzing a porous body of a detection electrode chamber in an electrolytic cell in which a detection electrode chamber having a detection electrode made of a conductive porous body and a counter electrode chamber having a counter electrode are adjacent to each other via an ion-permeable diaphragm. The sample is impregnated with the solution, and a certain amount of the sample that has passed through the permeable membrane is supplied and electrolyzed. By measuring at least one of the voltage, current, and electric quantity at the detection electrode, the amount of the sample in the sample is determined. It is characterized by absolute quantification of substances.

電気分析において、被定量物質を電解したときの電気
的な変化量、すなわち電圧、電流または電気量の変化
は、電解された物質の量に関係するので、電解時の電気
的な変化量を計測することにより、前記被定量物質を定
量することができる。
In electrical analysis, the amount of electrical change when a substance to be measured is electrolyzed, that is, the change in voltage, current, or amount of electricity is related to the amount of the electrolyzed substance, so the amount of electrical change during electrolysis is measured. By doing so, the substance to be quantified can be quantified.

本発明に用いる電気分析用検出器は、イオン透過性の
隔膜としてイオン交換膜、微多孔膜等を用いる。バック
グランドレベルを低下させ、安定した定量を行うために
は、イオン交換膜である方が好ましいが、検出器の電気
抵抗を大幅に低下させる必要があるときなどは、単なる
多孔性の隔膜が好ましい。
The detector for electrical analysis used in the present invention uses an ion-exchange membrane, a microporous membrane, or the like as an ion-permeable diaphragm. In order to reduce the background level and perform stable quantification, it is preferable to use an ion-exchange membrane, but when it is necessary to greatly reduce the electric resistance of the detector, a simple porous membrane is preferable. .

また検出極材としては、表面に炭素よりも重い元素が
ESCA(光電子分光分析法)で測定される表面元素数比が
1.5%以上存在する、炭素質もしくはグラファイト質の
カーボン繊維の集合体、または多孔状カーボンを用いる
ことが好ましい。前記電極表面に共存させる元素は、周
期律表のV族、VI族、VII族元素などの元素の酸化物や
炭化物などとして前記検出極表面に導入される。これに
より、試料の分散性が向上するとともに、電解反応にお
ける検出極と被電解物質との電子移動反応も速やかに行
なわれる。
As a detection electrode material, an element heavier than carbon is
Surface element number ratio measured by ESCA (photoelectron spectroscopy)
It is preferable to use an aggregate of carbonaceous or graphite carbon fibers or porous carbon which is present at 1.5% or more. The element coexisting on the electrode surface is introduced to the detection electrode surface as an oxide or carbide of an element such as a group V, VI, or VII element of the periodic table. As a result, the dispersibility of the sample is improved, and the electron transfer reaction between the detection electrode and the substance to be electrolyzed in the electrolytic reaction is rapidly performed.

検出器の検出極においては、通常、集電用の金属網か
らリード線が取出されるが、比較的小電流しか流れない
分析においては、検出極をそのまま延長してセルの外部
に出して集電するか、またはカーボン繊維を並べたもの
を集電用クロスおよびリード線とすることもできる。
At the detection electrode of the detector, the lead wire is usually taken out from the metal net for current collection. However, in the analysis in which only a relatively small current flows, the detection electrode is extended as it is to be taken out of the cell and collected. A current collector or an array of carbon fibers may be used as a current collecting cloth and a lead wire.

検出極室に供給する試料を透過させる透過膜は、特定
成分透過膜であり、被定量物質により使い分けられる。
被定量物質が血液などの液体サンプルの場合、透過膜と
して例えば多孔体フィルタ膜、除蛋白機能付フィルタ
膜、浸透膜などが、またガス試料および一部の液体試料
の場合、例えば半透膜、イオン交換膜、セルロース濾過
膜、合成樹脂膜などが用いられる。
The permeable membrane that allows the sample to be supplied to the detection electrode chamber to pass therethrough is a specific component permeable membrane, and is used properly depending on the substance to be measured.
When the substance to be quantified is a liquid sample such as blood, the permeable membrane is, for example, a porous filter membrane, a filter membrane with a protein removing function, a permeable membrane, or the like.In the case of a gas sample and some liquid samples, for example, a semipermeable membrane, An ion exchange membrane, a cellulose filtration membrane, a synthetic resin membrane or the like is used.

本発明に用いられる電気分析用検出器において、透過
膜を介して検出極に隣接する一定容量の試料室を設ける
場合は、該試料室に試料の流入口および流出口を設ける
ことも好ましい。これにより、試料を連続供給して該試
料中の被定量物質を連続分析することができ、または連
続供給を一時停止し、静止状態で校正のための絶対定量
を行うことができる。
In the detector for electric analysis used in the present invention, when a fixed-volume sample chamber is provided adjacent to the detection electrode via the permeable membrane, it is preferable to provide an inlet and an outlet for the sample in the sample chamber. As a result, the sample can be continuously supplied and the substance to be quantified in the sample can be continuously analyzed, or the continuous supply can be temporarily stopped and the absolute quantification for calibration can be performed in a stationary state.

本電気分析用検出器において、前記透過膜とこれに対
面する試料室の壁面との間隔(以下、試料室の高さとい
うことがある)は、3mm以内、好ましくは2mmとする。間
隔が3mmよりも広くなると検出感度が低くなり、校正安
定性が悪くなる場合が多い。
In the present detector for electrical analysis, the distance between the permeable membrane and the wall surface of the sample chamber facing the permeable membrane (hereinafter, sometimes referred to as the height of the sample chamber) is within 3 mm, preferably 2 mm. When the interval is wider than 3 mm, the detection sensitivity is lowered and the calibration stability is often deteriorated.

第1表は、断面積が50φの円形からなる検出器の試料
室の高さを変化させて水道水中の残留塩素およびガス中
のオゾンを定量したときの検出器の検出感度、および校
正安定性を示すものである。
Table 1 shows the detector sensitivity and the calibration stability when the residual chlorine in tap water and ozone in gas were determined by changing the height of the sample chamber of a detector having a circular cross section of 50φ. It shows.

ところで、単に所要時間が長くなるだけで系の安定し
たばらつきの小さい分析の場合は、試料室の高さを4mm
以上にしてもさしつかえない。この場合、次に述べる方
法によって、分析所要時間の短縮を図ることができる。
By the way, in the case of analysis in which the required time is simply long and the system is stable and has small variations, the height of the sample chamber is set to 4 mm.
I can't help even with the above. In this case, the time required for analysis can be reduced by the method described below.

すなわち、検出極を流れる電流と電気量とのプロット
の外挿または検出極電流の対数と時間のブロットの外挿
によって、試料中の目的成分を絶対定量することができ
る。この方法はi(電流)−Q(電気量)プロットまた
はlogi−t(時間)プロットといわれる方法であり、時
間に対して指数関数的に電流が減少する場合には、この
プロットは直線になる。そしてバックグランド電流のレ
ベルまで電流が低下した所まで外挿したときの電気量
(logi−tプロットのときも電流の時間積分Q=∫i0
−αtdtによりQを求める、ここでi:初期電球、α:
係数)をもって目的成分の絶対定量を行うことができ
る。この外挿法を本発明の方法に適用すれば、電解終了
まで15〜20分も要する場合でも、2〜3分の分析時間で
済ませることもできる。このように、試料室内の試料交
換、数分の電解を繰り返し間歇的に絶対定量をしてゆく
ことも可能である。
That is, the target component in the sample can be absolutely quantified by extrapolation of a plot of the current flowing through the detection electrode and the amount of electricity, or extrapolation of the logarithm of the detection electrode current and time of the blot. This method is a method called an i (current) -Q (electric quantity) plot or a logi-t (time) plot. When the current decreases exponentially with time, the plot becomes a straight line. . The quantity of electricity extrapolated to the point where the current has dropped to the level of the background current (the time integral of the current Q = ∫i 0 · also in the logi-t plot)
Find Q by e− αt dt, where i: initial bulb, α:
Absolute quantification of the target component can be performed using the coefficient. If this extrapolation method is applied to the method of the present invention, the analysis time can be as short as 2-3 minutes even when it takes as long as 15-20 minutes to complete the electrolysis. In this way, it is also possible to repeat the sample exchange in the sample chamber and the electrolysis for several minutes to intermittently perform the absolute quantification.

本検出器の試料室の形状としては、例えば円筒体、立
方体もしくは直方体、またはこれらを複合させた形状が
あげられるが、特に限定されない。
Examples of the shape of the sample chamber of the present detector include, but are not limited to, a cylindrical body, a cubic body or a rectangular parallelepiped, or a shape in which these are combined.

上記した電気分析用検出器を用いた本発明の電気分析
方法は、検出極に電解液を含浸させた状態、すなわち電
解液が静止している状態で、特定物質の透過膜を通過さ
せた試料を電解して絶対定量を行なう。透過膜を通過さ
せた試料を電解することにより、目的成分である特定物
質だけが定量され、分析妨害物質の影響を避けることが
できる。また、電解液を非流動状態としたことにより、
バックグランドが極めて小さく、かつ安定し、分析感度
および分析精度が向上する。
The electroanalytical method of the present invention using the above-described electroanalytical detector includes a sample in which a detection electrode is impregnated with an electrolytic solution, that is, a sample in which the electrolytic solution is stationary and a specific substance is passed through a permeable membrane. Is electrolyzed to perform absolute quantification. By electrolyzing the sample that has passed through the permeable membrane, only the specific substance, which is the target component, is quantified, so that the influence of the interfering substance can be avoided. Also, by making the electrolyte non-fluid state,
The background is extremely small and stable, and analysis sensitivity and analysis accuracy are improved.

本発明に用いられる電解液としては、各種のpH緩衝液
などがあげられるが、これに例えばヨウ化カリウム等に
代表される酸化還元メディエータ(モリブデン酸イオン
などの金属酸化物イオン、フェリシアンイオン/フェロ
シアンイオン、アミノカルボン酸鉄などの錯化合物)、
酵素などを溶解または分散させたものも使用できる。
Examples of the electrolyte used in the present invention include various pH buffers and the like. Examples thereof include redox mediators such as potassium iodide (metal oxide ions such as molybdate ions, ferricyan ions / Complex compounds such as ferrocyanide ions and iron aminocarboxylates),
What dissolved or dispersed the enzyme etc. can also be used.

本発明の電気分析方法において試料が液体の場合は、
定量ピベットなどを用いて、一定量の試料を透過膜上に
滴下することにより投与することもできる。このとき検
出器の試料室は必要としない。
When the sample is a liquid in the electroanalytical method of the present invention,
It can also be administered by dropping a fixed amount of the sample on the permeable membrane using a quantitative pipette or the like. At this time, the sample chamber of the detector is not required.

液体試料または気体試料の試料中の目的成分を連続分
析する必要がある場合には、試料の流入口および流出口
を備えた試料室を有する電気分析用検出器が用いられ
る。この場合試料は、検出器の試料室に設けられた流入
口から所定の流量で連続的に導入され、該試料中の被定
量成分が透過膜を透過して連続的に検出極に達し、例え
ばボルタンメトリーまたはアンペロメトリーにより測定
される。測定後の試料は、試料室の試料出口から所定の
流量で流出する。すなわち、本分析方法によれば試料が
試料室内を流動している間に、試料中の目的成分の一部
または全部が透過膜を通して検出器に導入され、連続的
に定量される。この場合、連続分析中に一時的に試料の
流れを止め、これに基づく電流、電気量または電圧の変
化を測定し、被定量物質の濃度を求めることによって連
続供給時の測定値を校正することができる。
When it is necessary to continuously analyze a target component in a liquid sample or a gas sample, an electroanalytical detector having a sample chamber having an inlet and an outlet for the sample is used. In this case, the sample is continuously introduced at a predetermined flow rate from an inlet provided in the sample chamber of the detector, and the target component in the sample passes through the permeable membrane and continuously reaches the detection electrode. It is measured by voltammetry or amperometry. The sample after measurement flows out from the sample outlet of the sample chamber at a predetermined flow rate. That is, according to this analysis method, while the sample is flowing in the sample chamber, part or all of the target component in the sample is introduced into the detector through the permeable membrane, and is continuously quantified. In this case, temporarily stop the flow of the sample during continuous analysis, measure the change in current, electric quantity or voltage based on this, and calibrate the measurement value during continuous supply by obtaining the concentration of the substance to be determined. Can be.

本発明の電気分析方法において、被定量物質を絶対定
量する場合は、試料を前記試料室内に一時的に保持し、
その間の電気量または電流変化を測定することにより行
なわれる。この場合、試料供給ポンプは停止され、前記
試料室の入口およひ出口は、例えば弁、バルブ等の手段
で閉じられる等の処置がとられる。弁の代わりにキャピ
ラリを用いてもよい。この絶対定量法によれば、前記試
料室中の被定量物質を完全に反応させなくても、電流−
電気量曲線やlog(電流)−時間曲線が得られれば、そ
の外挿値により絶対定量することができるのは前述した
通りである。
In the electroanalytical method of the present invention, when the analyte is absolutely quantified, a sample is temporarily held in the sample chamber,
The measurement is performed by measuring a change in the amount of electricity or current during that time. In this case, the sample supply pump is stopped, and measures such as closing the inlet and outlet of the sample chamber by means such as a valve or a valve are taken. A capillary may be used instead of the valve. According to this absolute quantification method, even if the substance to be quantified in the sample chamber is not completely reacted, the current-
As described above, if an electric quantity curve or a log (current) -time curve is obtained, absolute quantification can be performed by extrapolated values.

本発明の電気分析方法において、試料液中の被定量物
質が検出極と直接電子移動反応を起こさない場合は、電
解液中に前述したようなヨウ素/ヨウ素イオンなどの酸
化還元メディエータ、酵素等の補助物質を共存させるこ
とが好ましい。これらの補助物質は、被定量物質を電極
反応活性物質に変換することができるので、酸化還元メ
ディエータとしては、ハロゲンイオン/ハロゲン系、ハ
イドロキノン類/キノン類系(例えばナフトキノンスル
ホン酸等)、多価金属イオン等が、また酵素としては、
例えばグルコースのように被定量物質と反応して過酸化
水素を発生させるものや酸素などを消費するもの、その
他、直接または酸化還元メディエータを介して、酸素等
の検出極に対する活物質を生成させるものがある。
In the electroanalytical method of the present invention, when the substance to be determined in the sample solution does not cause a direct electron transfer reaction with the detection electrode, a redox mediator such as iodine / iodine ion or an enzyme such as an enzyme described above is contained in the electrolytic solution. It is preferable that an auxiliary substance coexist. Since these auxiliary substances can convert a substance to be determined into an electrode reaction active substance, the oxidation-reduction mediators include halogen ions / halogens, hydroquinones / quinones (for example, naphthoquinonesulfonic acid, etc.), and polyvalent. Metal ions, etc., and as enzymes,
For example, a substance that generates hydrogen peroxide by reacting with a substance to be determined, such as glucose, or consumes oxygen, and another substance that generates an active material for a detection electrode such as oxygen directly or through a redox mediator. There is.

〔実施例〕〔Example〕

第1図は、本発明に用いる電気分析用検出器の一例を
示す断面図である。この電気分析用検出器は、隔膜1
と、該隔膜1を挟んで両側にそれぞれ設けられた、検出
極2を有する検出極室3および対極4を有する対極室5
と、前記検出極室3の試料投入面に設けられた透過膜7
と、該透過膜7を介して前記検出極室3に隣接する試料
室8と、該試料室8に設けられた試料の流入出用のキャ
ピラリ9および試料ポンプ10とから主として構成されて
いる。なお、6は検出極2または対極4から取出された
リード線である。
FIG. 1 is a sectional view showing an example of a detector for electrical analysis used in the present invention. This detector for electrical analysis is a diaphragm 1
And a detection electrode chamber 3 having a detection electrode 2 and a counter electrode chamber 5 having a counter electrode 4 provided on both sides of the diaphragm 1 respectively.
And a permeable membrane 7 provided on the sample input surface of the detection electrode chamber 3
And a sample chamber 8 adjacent to the detection electrode chamber 3 via the permeable membrane 7, a capillary 9 provided in the sample chamber 8 for inflow and outflow of a sample, and a sample pump 10. Reference numeral 6 denotes a lead wire extracted from the detection electrode 2 or the counter electrode 4.

このような構成において、試料ポンプ10によりキャピ
ラリ9を経て試料室8へ導入された試料中の被定量物質
は、透過膜7を通して検出極室3の検出極2に投与され
て電解され、このときの電圧、電流または電気量がリー
ド線6を経て取出されることにより定量される。一方、
被定量物質が除かれた前記試料は、入口と反対方向のキ
ャピラリ9を経て試料室8外へ排出される。
In such a configuration, the target substance in the sample introduced into the sample chamber 8 through the capillary 9 by the sample pump 10 is administered to the detection electrode 2 of the detection electrode chamber 3 through the permeable membrane 7 and electrolyzed. Is extracted through the lead wire 6 to determine the voltage, current or amount of electricity. on the other hand,
The sample from which the substance to be determined has been removed is discharged out of the sample chamber 8 through the capillary 9 in the direction opposite to the inlet.

次に、本発明を具体的実施例によりさらに詳細に説明
する。
Next, the present invention will be described in more detail with reference to specific examples.

実施例1 透過膜7として、0.025mm厚のアクチルセルロース系
薄膜を、電解液としてコレステロールオキシダーゼ(3
βヒドロキシステロイドオキシダーゼ)およびフェロシ
アン化カリウム(0.3M)を含むpH6クエン酸系緩衝液
を、検出極として、1:1硝酸中で約15分間煮沸して表面
酸化処理を行った、たて30mm、よこ20mm、厚さ3mmの炭
素室カーボンフェルトを用い、かつ第1図の電気分析用
検出器の試料室部分を省いた構成の検出器により血液中
のコレステロールの定量をした。10回の分析における定
量結果はすべて170〜185mg/dlの範囲に入る。極めて再
現性のよいものであった。また、1回の分析に要した時
間は短く、それぞれ約30秒であった。なお、コレステロ
ール測定キットによる分析値は180mg/dlであった。
Example 1 An actyl cellulose-based thin film having a thickness of 0.025 mm was used as the permeable membrane 7, and cholesterol oxidase (3
pH citrate buffer solution containing β-hydroxysteroid oxidase) and potassium ferrocyanide (0.3M) was used as a detection electrode and boiled in 1: 1 nitric acid for about 15 minutes to perform surface oxidation treatment. Cholesterol in blood was quantified using a 20 mm, 3 mm thick carbon chamber carbon felt detector with the sample chamber portion of the detector for electroanalysis shown in FIG. 1 omitted. All quantification results in the ten analyzes fall in the range of 170-185 mg / dl. The reproducibility was very good. The time required for one analysis was short, each about 30 seconds. The analysis value by the cholesterol measurement kit was 180 mg / dl.

本実施例によれば、透過膜としてアセチルセルロース
系の薄膜を用いたことにより、供試血液を直接透過膜7
上に投与しても、血清分だけが検出極3へ移行して分解
分析されるので、従来法における遠心分離等による前処
理が不要となり、短時間で素早くコレステロールを定量
することができた。
According to the present embodiment, the test blood is directly transferred to the permeable membrane 7 by using an acetylcellulose-based thin film as the permeable membrane.
Even when the solution was applied above, only the serum portion was transferred to the detection electrode 3 and analyzed by decomposition, so that pretreatment such as centrifugation in the conventional method was not required, and cholesterol could be quantified quickly in a short time.

比較例1 透過膜7を使用せずに供試血液を直接検出極2に投与
した以外は実施例1と同様に血液中のコレステロールの
定量を10回行なった。1回目の定量時間は約20秒と短か
かったが、回数を重ねるごとに長くなり、まもなく1分
を超えるようになった。また、定量値は大きくばらつ
き、その範囲は175〜230mg/dlであった。
Comparative Example 1 Cholesterol in blood was quantified 10 times in the same manner as in Example 1 except that the test blood was directly administered to the detection electrode 2 without using the permeable membrane 7. The first quantification time was as short as about 20 seconds, but became longer as the number of times increased, and soon exceeded 1 minute. In addition, the quantitative values varied greatly, and the range was 175 to 230 mg / dl.

実施例2 電解液として、酵素であるウリカーゼと、酸化還元メ
ディエータであるフェロシアン化カルウムを含むpH緩衝
液を用いた以外は実施例1と同様にして尿中の尿酸の定
量を20回連続で行なったところ、すべて6〜8mg/dlの安
定した分析値が得られた。なお、1回の分析時間は45〜
50秒であった。
Example 2 Quantification of uric acid in urine was continuously performed 20 times in the same manner as in Example 1 except that a pH buffer solution containing uricase as an enzyme and calium ferrocyanide as a redox mediator was used as an electrolytic solution. As a result, stable analytical values of 6 to 8 mg / dl were obtained. The time for one analysis is 45 ~
50 seconds.

比較例2 透過膜7をなくした以外は実施例2と同様にして同様
の定量を行なったところ、定量値の範囲は4〜9mg/dlと
ばらつき、安定した結果は得られなかった。
Comparative Example 2 The same quantification was performed in the same manner as in Example 2 except that the permeable membrane 7 was omitted, but the range of the quantification value varied from 4 to 9 mg / dl, and a stable result was not obtained.

実施例3 電解液として、フェロシアン化カリウムを溶解したpH
緩衝液を用いた以外は実施例1と同様にして還元性物質
である天然果汁(オレンジ)中のアスコルビン酸を10回
連続で電解したところ、すべて2.71〜2.92mク−ロンと
安定した値が得られた。また、1回の分析時間はいずれ
も60秒以内であった。
Example 3 As an electrolytic solution, a pH in which potassium ferrocyanide was dissolved was used.
When ascorbic acid in natural fruit juice (orange), which is a reducing substance, was electrolyzed 10 times continuously in the same manner as in Example 1 except that a buffer solution was used, all values were 2.71 to 2.92 m-cron and stable values were obtained. Obtained. In addition, each analysis time was within 60 seconds.

比較例3 透過膜7をなくした以外は実施例3と同様にして同様
の分析を行なったところ、電流ピークの形状は不規則に
なるとともに、バックグランドレベル(暗電流)の変動
が大きくなり、良好な結果はえられなかった。
Comparative Example 3 A similar analysis was performed in the same manner as in Example 3 except that the permeable membrane 7 was eliminated. As a result, the shape of the current peak became irregular and the fluctuation of the background level (dark current) became large. No good results were obtained.

実施例4 第1図に示す検出器の試料室8内の試料の流路を第2
図に示すような蛇行流路とした検出器により、透過膜7
としてポリ塩化ビニリデン薄膜を、電解液としてヨウ化
カリウムを含む3N−酢酸水溶液をそれぞれ用いて水道水
中の残留塩素の連続定量を行なった。試料室8内の試料
の流れを一時的に停止して1分間電流値の減少を観察
し、i−Q曲線(i:電流、Q:電気量)を作成し、外挿法
により試料室8内の一定量の試料中の被定量物質量を求
め、これと前記連続分析中の定量値をもとにして検出器
の構成を行なった。このようにして求めた残留塩素の濃
度は0.75〜0.90ppmと安定していた。並行して、オルト
トリジン法で求めた定量値との差は5〜8%と小さく、
信頼性の高いものであった。検出器の設置方向は、水平
または垂直のどの方向でもよく、設置方向によって分析
値が変化することはなかった。また本実施例において、
検出器を保温して恒温に保つことにより、分析の信頼性
をさらに向上させることができた。
Example 4 The sample flow path in the sample chamber 8 of the detector shown in FIG.
By means of a detector having a meandering channel as shown in FIG.
, A continuous quantification of residual chlorine in tap water was performed using a polyvinylidene chloride thin film and a 3N-acetic acid aqueous solution containing potassium iodide as an electrolyte. The flow of the sample in the sample chamber 8 was temporarily stopped, and a decrease in the current value was observed for one minute, an iQ curve (i: current, Q: electric quantity) was created, and the sample chamber 8 was extrapolated. The amount of the substance to be determined in a certain amount of the sample was determined, and the detector was configured based on this and the quantitative value during the continuous analysis. The concentration of residual chlorine thus obtained was stable at 0.75 to 0.90 ppm. In parallel, the difference from the quantitative value obtained by the ortho-tolidine method is as small as 5 to 8%,
It was reliable. The detector may be installed in any direction, horizontal or vertical, and the analysis value did not change depending on the installation direction. In this embodiment,
By keeping the detector warm and constant, the reliability of the analysis could be further improved.

実施例5 透過膜7としてフッ素樹脂薄膜を、電解液としてヨウ
化カリウムを含むpH7のリン酸ナトリウム系水溶液を用
いた以外は、実施例4と同様の条件でガス中のオゾンを
連続分析した。分析結果は0.1ppmから100ppmの範囲で95
%以上の再現性を示した。中性ヨウ化カリウムで吸収
し、滴定法によって求めた定量結果との差は10%以内で
あった。
Example 5 Ozone in gas was continuously analyzed under the same conditions as in Example 4 except that a fluororesin thin film was used as the permeable membrane 7 and a pH 7 aqueous sodium phosphate solution containing potassium iodide was used as the electrolytic solution. Analysis results ranged from 0.1 ppm to 100 ppm
% Reproducibility. Absorption with neutral potassium iodide and the difference from the quantitative results obtained by titration were within 10%.

本実施例によれば、センサとして流体中の目的成分を
監視することができる。
According to the present embodiment, a target component in a fluid can be monitored as a sensor.

実施例6 検出極の目付量を従来の400gm-2から620gm-2に変更
し、検出極の含浸液として1M-KCl、1M−KH2PO4水溶液を
用いた外は実施例4および5と同様にしてアルゴンガス
で脱気した純水中の溶存酸素を測定した。アルゴンガス
による脱気時間をそれぞれ30分、45分および60分であ
り、各検水を約5ml/minで検出器に送液し、試料室内が
十分に新しい検水で置換されたと考えられる時間(2
分)で送液を停止し、その直後より減少して行ゆく電流
を観察した。3分間の観察によって得たi−Qプロット
の外挿値より溶存酸素をもとめたところ、脱気30分後の
溶存酸素は16ppb、脱気45分後の溶存酸素は9ppb、脱気6
0分後の溶存酸素は5ppbであった。平行して行ったジチ
ゾン法(比色法)による定量では、脱気30分後、45分後
および60分後の溶存酸素は、それぞれ約20ppb、約10ppb
および10ppb以下であった。
Example 6 The basis weight of the detection electrode was changed from the conventional 400 gm -2 to 620 gm -2, and 1M-KCl and 1M-KH 2 PO 4 aqueous solution were used as the impregnation solution of the detection electrode. Similarly, the dissolved oxygen in pure water degassed with argon gas was measured. The degassing time with argon gas is 30 minutes, 45 minutes, and 60 minutes, respectively, and each sample is sent to the detector at about 5 ml / min, and the sample chamber is considered to have been sufficiently replaced with new sample. (2
Min), the liquid supply was stopped, and the current which decreased immediately after that was observed. Dissolved oxygen was determined from the extrapolated value of the iQ plot obtained by observation for 3 minutes, the dissolved oxygen after 30 minutes of deaeration was 16 ppb, the dissolved oxygen after 45 minutes of deaeration was 9 ppb, and the deaeration was 6
The dissolved oxygen at 0 minutes was 5 ppb. In parallel quantification by the dithizone method (colorimetric method), the dissolved oxygen after 30 minutes, 45 minutes and 60 minutes after degassing was about 20 ppb and about 10 ppb, respectively.
And less than 10 ppb.

〔発明の効果〕〔The invention's effect〕

本発明によれば、気体試料または液体試料中の被定量
物質を短時間で、かつ精度よく定量することができる。
また、本発明に用いる電気分析用検出器は、例えば臨床
検査用の高感度センサとして用いることも可能である。
ADVANTAGE OF THE INVENTION According to this invention, a to-be-quantitative substance in a gas sample or a liquid sample can be quantified accurately in a short time.
Further, the detector for electrical analysis used in the present invention can be used, for example, as a high-sensitivity sensor for clinical examination.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明に用いる電気分析用検出器の一例を示
す説明図、第2図は、本発明に用いる電気分析検出器の
試料室内の試料の流路を模式的に示す図である。 1……隔膜、2……検出極、4……対極、7……透過
膜、8……試料室、9……キャピラリ。
FIG. 1 is an explanatory diagram showing an example of a detector for electric analysis used in the present invention, and FIG. 2 is a diagram schematically showing a flow path of a sample in a sample chamber of the electric analysis detector used in the present invention. . 1 ... diaphragm, 2 ... detection electrode, 4 ... counter electrode, 7 ... transmission membrane, 8 ... sample chamber, 9 ... capillary.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性多孔体からなる検出極を有する検出
極室と、対極を有する対極室とがイオン透過性の隔膜を
介して隣接する電解槽内の前記検出極室の多孔体に電解
液を含浸させ、これに透過膜を通過させた一定量の試料
を供給して電解し、検出極における電圧、電流または電
気量のうち少なくとも1つ以上を測定することにより、
試料中の被定量物質を絶対定量することを特徴とする電
気分析方法。
1. A detection electrode chamber having a detection electrode made of a conductive porous body and a counter electrode chamber having a counter electrode are electrolyzed on a porous body of the detection electrode chamber in an adjacent electrolytic cell via an ion-permeable diaphragm. By impregnating the liquid, supplying a fixed amount of sample that has passed through the permeable membrane and electrolyzing it, and measuring at least one of the voltage, current or electric quantity at the detection electrode,
An electroanalytical method characterized by absolutely quantifying an analyte in a sample.
【請求項2】前記電解槽として、検出極を有する検出極
室と、対局を有する対局室とが隔膜を介して隣接し、か
つ前記検出極室の試料供給面に透過膜を挟んで前記検出
極室と反対側に設けられた、試料を保持する試料室を有
する電気分析用検出器を用いることを特徴とする請求項
(1)記載の電気分析方法。
2. A detection electrode room having a detection electrode and a game room having a game are adjacent to each other via a diaphragm as the electrolytic cell, and the detection is carried out with a permeable membrane interposed between sample supply surfaces of the detection electrode room. The method according to claim 1, wherein a detector for electroanalysis having a sample chamber for holding a sample, which is provided on a side opposite to the pole chamber, is used.
【請求項3】前記検出極室の試料供給面に設けられた透
過膜を通して検出極室に試料を連続供給し、該試料中の
被定量物質を連続分析するとともに、連続分析中の任意
の時点で前記試料の供給を停止してこれに基づく電流、
電気量または電圧の変化を測定し、被定量物質の濃度を
求めることによって連続供給時の測定値を校正すること
を特徴とする請求項(1)または(2)記載の電気分析
方法。
3. A sample is continuously supplied to the detection electrode chamber through a permeable membrane provided on a sample supply surface of the detection electrode chamber, and a substance to be determined in the sample is continuously analyzed, and at any time during the continuous analysis. The supply of the sample is stopped at a current based on this,
3. The electroanalytical method according to claim 1, wherein the change in the amount of electricity or the voltage is measured, and the measured value during continuous supply is calibrated by determining the concentration of the substance to be determined.
【請求項4】電解液として、試料中の被定量成分を電極
反応活性物質に変換するメディエータを含む電解液を用
いることを特徴とする請求項(1)ないし(3)のいず
れか記載の電気分析方法。
4. An electrolysis solution according to claim 1, wherein said electrolysis solution contains a mediator for converting a component to be determined in a sample into an electrode reaction active substance. Analysis method.
JP1322192A 1989-12-12 1989-12-12 Electrical analysis method Expired - Lifetime JP2752201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322192A JP2752201B2 (en) 1989-12-12 1989-12-12 Electrical analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322192A JP2752201B2 (en) 1989-12-12 1989-12-12 Electrical analysis method

Publications (2)

Publication Number Publication Date
JPH03181850A JPH03181850A (en) 1991-08-07
JP2752201B2 true JP2752201B2 (en) 1998-05-18

Family

ID=18140973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322192A Expired - Lifetime JP2752201B2 (en) 1989-12-12 1989-12-12 Electrical analysis method

Country Status (1)

Country Link
JP (1) JP2752201B2 (en)

Also Published As

Publication number Publication date
JPH03181850A (en) 1991-08-07

Similar Documents

Publication Publication Date Title
Huiliang et al. Flow potentiometric and constant-current stripping analysis for arsenic (V) without prior chemical reduction to arsenic (III): application to the determination of total arsenic in seawater and urine
CA1126337A (en) Flow-through electrochemical system
Zen et al. Square-wave voltammetric determination of uric acid by catalytic oxidation at a perfluorosulfonated ionomer/ruthenium oxide pyrochlore chemically modified electrode
Pihlar et al. Amperometric determination of cyanide by use of a flow-through electrode
EP0326421B1 (en) An electroanalytical method
Reeder et al. Electrochemical characterization of a microfabricated thick-film carbon sensor for trace determination of lead
WO1994002842A1 (en) Analytical method for the detection and measurement of paracetamol
Sulistyarti et al. On-line determination of cyanide in the presence of sulfide by flow injection with pervaporation
US5273631A (en) Method for continuously determining concentration of chloride ions and bromide ions contained in serum
Beinrohr et al. Calibrationless determination of mercury by flow-through stripping coulometry
Mohadesi et al. Adsorptive stripping voltammetric determination of cobalt (II) on the carbon paste electrode
US4409069A (en) Method of determining sulfur dioxide in gases and apparatus therefor
WO2009108440A1 (en) Voltammetric device having sample degassing system
JP2752201B2 (en) Electrical analysis method
JP2008505338A (en) Electrochemical detection method
EP0833149A1 (en) Method for measuring ion concentration
CN110243914B (en) All-solid-state electrochemical polymer sensor for measuring dissolved oxygen
Lewenstam Clinical analysis of blood gases and electrolytes by ion-selective sensors
Falck Amperometric oxygen electrodes
Herrmann et al. Miniaturized sensor module for in-situ control of waters
Buch-Rasmussen Determination of D-glucose in undiluted whole blood using chemically modified electrodes and segmented sample injection in a flow system
JPH0762665B2 (en) Coulometric analyzer
JPS6191558A (en) Biosensor
KR200334941Y1 (en) Chemical Oxygen Demand On Electrochemical Sensor By Using Metal Oxidation Electrode And Measurement System Use Thereof
CN116953040A (en) Method for detecting heavy metals in water