JP2751849B2 - Undiluted solution for developing solution - Google Patents

Undiluted solution for developing solution

Info

Publication number
JP2751849B2
JP2751849B2 JP7013026A JP1302695A JP2751849B2 JP 2751849 B2 JP2751849 B2 JP 2751849B2 JP 7013026 A JP7013026 A JP 7013026A JP 1302695 A JP1302695 A JP 1302695A JP 2751849 B2 JP2751849 B2 JP 2751849B2
Authority
JP
Japan
Prior art keywords
solution
conductivity
tank
developer
developing solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7013026A
Other languages
Japanese (ja)
Other versions
JPH0862852A (en
Inventor
俊元 中川
修 小川
光彦 佐野
信雄 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Nagase Sangyo KK
Hirama Rika Kenkyusho Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Nagase Sangyo KK
Hirama Rika Kenkyusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11821636&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2751849(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Plant Construction Co Ltd, Nagase Sangyo KK, Hirama Rika Kenkyusho Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP7013026A priority Critical patent/JP2751849B2/en
Publication of JPH0862852A publication Critical patent/JPH0862852A/en
Application granted granted Critical
Publication of JP2751849B2 publication Critical patent/JP2751849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Accessories For Mixers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は半導体製造工程などでポ
ジレジストを現像する際に用いられるアルカリ系現像液
を製造するための現像原液の希釈装置に関する。 【0002】 【従来の技術】半導体製造においては各種工程でホトエ
ッチングが繰り返され、ポジレジストが多用される。ポ
ジレジスト用の現像液はレジストの高解像力、正確な寸
法精度を得るための決め手として、レジストと同程度の
重要性をもつといわれている。ポジレジストの現像液材
料としてはリン酸ソーダ、カ性ソーダ、ケイ酸ソーダ、
またはその他の無機アルカリ等との混合物から成る無機
アルカリ水溶液や、アルカリメタルの汚染が心配される
場合にはメタルを含まないアミン系の有機アルカリ水溶
液、テトラメチルアンモニウムハイドロオキサイド(T
MAH)水溶液、トリメチルモノエタノールアンモニウ
ムハイドロオキサイド(コリン)水溶液等が用いられ
る。これらの現像液は使用するポジレジストに合わせ、
最高の解像力、画像のきれ、安定性を得るためにその組
成及び濃度を厳密に管理しなければならない。 【0003】特に、近年の半導体の高集積化に伴い、パ
ターン幅の微細化が要求され、ホトレジストの実効感度
のばらつきを小さくするために、現像液濃度の精度向上
が強く望まれている。 【0004】 【発明が解決しようとする課題】しかしながら、従来に
おいては、現像液は半導体製造工場で組成や濃度を調整
した上で用いることは設備、運転コストの面ばかりでな
く、組成及び濃度を十分に管理することがきわめて困難
であるという基本的問題があるため、まったく行われて
いないのが実情であった。 【0005】従って、半導体製造工場などの使用側(以
下、使用側という。)では、もっぱら現像液メーカ(以
下、供給側という。)で組成及び濃度を調整した現像液
を使用せざるを得なかった。供給側では所定の組成に調
合した現像原液を純水で希釈し、所望の濃度に調整した
現像液を容器に充填し、使用側に供給する。現像原液の
希釈倍率は、液組成及び原液濃度、ポジレジストの種
類、使用目的によて区々に異なることは当然であるが、
通常は5〜10倍前後である。このため、供給側で調整
した現像液の量は希釈倍率に応じて大幅に増大し、この
現像液を使用側へ運搬するための容器の準備、容器への
充填作業、運搬コストは膨大となり、これらの諸経費が
結果として現像液コストの相当な割合を占めるという問
題点があった。 【0006】また、供給側で調整した現像液が使用側で
使用されるまでには運搬、保管に相応の期間を要し、こ
の間に現像液が劣化するという問題点もあった。また、
現像液の希釈が半導体工場等の使用者側で行われなかっ
た理由の1つに、現像液は空気中の炭酸ガスを吸収しや
すいために、使用者側に希釈装置を設置しても、希釈操
作中や希釈した現像液の貯留中に炭酸ガスを吸収して濃
度が変化してしまうという問題があった。 【0007】本発明はこのような事情に鑑みてなされた
もので、前記従来技術の問題点を解消し、使用側におい
ても現像原液さえ入手すれば所望濃度の現像液を精度よ
く迅速に製造することができ、更には希釈操作中や希釈
した現像液の貯留中に炭酸ガスを吸収して濃度が変化す
ることのない現像原液希釈装置を提供することを目的と
する。 【0008】 【課題を解決する為の手段】本発明は前記目的を達成す
る為に、ホトレジストを用いて微細加工を行う加工用設
備に管路を介して所望濃度の現像液を送給するための現
像原液の希釈装置であって、ホトレジスト用アルカリ系
現像原液と純水とを受け入れて所定時間強制撹拌する撹
拌槽と、前記撹拌槽内の混合液の一部を抜き出しその導
電率を測定したのち撹拌槽内に戻す導電率測定手段と、
前記導電率測定手段からの出力信号にもとづき前記撹拌
槽に供給されるホトレジスト用アルカリ系現像原液また
は純水のいずれか一方の流量を制御する制御手段と、前
記撹拌槽からの混合液を前記加工用設備に前記管路を介
して送給する前に受け入れ貯留する貯留槽と、前記撹拌
槽と前記貯留槽を窒素ガスでシールする窒素ガスシール
手段と、を備えたことを特徴とする。 【0009】 【作用】本発明によれば、現像原液を純水によって希釈
し所望濃度の現像液を製造するにあたり、希釈した液の
導電率と濃度との間にきわめて密接な関係があることを
実験によって確認し、現像液の濃度をその導電率に基づ
いて調整、制御するようにした。これにより、所望濃度
の現像液を精度よく迅速に製造することができる。 【0010】また、現像原液と純水とを攪拌する攪拌槽
及び希釈した現像液を貯留する貯留槽を窒素ガスでシー
ルするようにしたので、攪拌槽と貯留槽のヘッドスペー
スの空気は窒素ガスに置換される。これにより、攪拌槽
での攪拌操作時に現像液の濃度に影響を与えないように
できると共に、希釈した現像液を貯留槽に貯留している
間も濃度変化がないようにできる。 【0011】 【実施例】第1図は本発明の実施例を示す装置系統図で
ある。本装置は現像原液を貯留する原液タンク10、添
加剤を貯留する添加剤タンク12、純水を供給する純水
供給配管14、ラインミキサ16、撹拌槽18、導電率
計20、製造した現像液を貯留する現像液タンク22、
これらの各機器を接続する配管類、電気計装類及び前記
攪拌槽18と前記現像液タンク22に窒素ガスを供給し
てシールする窒素シール用の管路64、66などによっ
て構成される。 【0012】原液タンク10には現像原液が貯留され液
面計24の指示により管路26から現像原液が補給され
る。添加剤タンク12も同様に液面計28の指示により
必要な添加剤が管路30から補給される。原液タンク1
0、添加剤タンク12内の現像原液、添加剤はそれぞれ
管路32、34からポンプ36、38によって連続的に
供給されポンプ40によって連続的に供給される純水と
前記配管14内で合流する。合流した現像原液、添加
剤、純水の混合液はラインミキサ16によって混合され
たのち、撹拌槽18に送られる。撹拌槽18は外筒42
と内筒44を備え、内筒44の中心軸には軸流プロペラ
46を備えた撹拌機48が挿入されている。従って、前
記ラインミキサ16から送れてきた混合液は撹拌機48
の回転により、まず軸流プロペラ46の作用によって内
筒44内を下向し、内筒44の下端近傍に設けた撹拌翼
50によって十分に混合撹拌された後、外筒42と内筒
44間の通路を上向流で通過し、以下、同様の繰り返し
によって撹拌槽18内で強制循環される。外筒、内筒間
の通路部分には混合液の一部を抜き出し、前記導電率計
20に導くための管路52が開口し、導電率計20を経
由した混合液は再び管路54から撹拌槽18に戻され
る。 【0013】また、撹拌槽18の所定位置には前記混合
液の強制循環作用の縁を切る邪魔板56が設けられ、こ
の邪魔板56の部位に管路58が接続されている。撹拌
槽18内の混合液は管路58からポンプ60によって、
現像液タンク22に送られ、この現像液タンク内で一
旦、貯留されたのち、管路62から半導体製造工程など
の使用側に送給される。 【0014】また、本発明に係るポジレジスト用のアル
カリ系現像液は外気と接触すると空気中の酸素や炭酸ガ
スを吸収したり反応を起こしてその性質が劣化する。こ
のため、原液タンク10、添加剤タンク12、撹拌槽1
8には管路64から圧力100〜200mmAq程度の
窒素ガスを供給し、窒素ガスシールを行う。同様に現像
液タンク22にも管路66から窒素ガスを供給し、窒素
ガスシールを図る。現像液タンク22用の窒素ガスは圧
力を1〜2kg/cm2とすることによって現像液を使用側
に送給するためのエネルギを現像液の水頭圧(すなわ
ち、窒素ガスの圧力と現像液の液面水頭圧を加算した
値)によって得る。このため、前記管路62にはポンプ
を設ける必要がなくなり、ポンプ駆動による現像液の脈
動供給の弊害を防止できる。また、現像液タンク22に
接続される管路類には現像液中への微細粒子の混入を防
止するため、それぞれフィルタ68、70、72を設け
る。 【0015】次に本実施例装置の制御系統について説明
する。導電率計20は第2図に示すように、混合液の通
過経路74に導電率測定用のフローセル76を配置した
ものであり、通過経路74内の混合液を温度調節計78
によって制御された加熱ユニット80によって一定の温
度(例えば30℃±0.1℃)にしたのち、フローセル
76によって導電率を測定する。溶液の導電率は第3図
に示すように同一濃度であっても溶液温度の上昇に伴っ
て導電率が大きい値を示すことが知られている。本発明
者の実験によれば本発明に係るアルカリ系の現像液にお
いても同様の傾向が認められており、実用的な濃度範囲
における導電率の温度係数(溶液温度が1℃変化したと
き、溶液の導電率が変化する割合)は約2%であること
が判明している。従って、本実施例装置では、被測定液
である混合液を予め一定の温度としたのち、導電率を測
定することによって、混合液の温度変動による測定誤
差、温度補償を最小限に抑えるようにした。フローセル
76からの出力信号は導電率調節計82に入力される。
導電率調節計82ではフローセル76からの入力信号に
対して温度補償を行って基準温度における混合液の導電
率を演算し、この値を記録計84に出力するとともに、
予め設定した目標値と比較する。混合液の導電率が目標
値を下廻る場合は現像原液用のポンプ36の流量を所定
量増加させ、逆に上廻る場合には上記ポンプ36の流量
を所定量減少させるように制御する。この間、純水用の
ポンプ40及び添加剤用のポンプ38は定流量運転され
ているので混合液の基準温度における導電率は第4図に
示すように、目標値を中心に上下限の許容値範囲内で推
移する。混合液の導電率と濃度とは第3図に示すように
一定温度下では完全な対応関係が認められる。従って、
混合液の導電率を一定(目標値)に維持することによっ
て、混合液の濃度を一定にすることができる。この濃度
を一定にした混合液は現像液タンク22に貯留されたの
ち、現像液として使用される。 【0016】混合液の導電率が第4図に示す上限許容値
または下限許容値を越えた場合には、導電率調節計82
から信号が発せられ、警報器86が作動する。警報器8
6の作動を複数段に構成し、重要度に応じて各種ポンプ
や配管系の弁を自動制御するようにしてもよい。撹拌槽
18には液面計88が設けられており、設定した高位、
低位の液面レベルに応じて、液面調節計90が作動し、
純水用ポンプ40、添加剤用ポンプ38及び現像原液ポ
ンプ36の稼動を制御する。 【0017】現像液タンク22には液面計92が設けら
れており、設定した高位、低位の液面レベルに応じて液
面調節計94が作動し、混合液用のポンプ60を制御す
る。本実施例では上記のように撹拌槽18の液面制御
と、現像液タンク22の液面制御とが独立しているが、
これに限らず両者の液面信号を重ねて取り込み各ポンプ
の稼動を制御することによって、装置運転の平滑化を図
るようにしてもよい。 【0018】上述した本実施例装置において、予め現像
液の濃度と基準温度における導電率の関係及び基準温度
付近の導電率の温度係数さえ、求めておけば所望濃度の
現像液を連続的に精度よく製造することができる。ポジ
レジスト用の現像液を必要とする半導体製造工場などに
おいては多量の純水を必要とするので純水製造装置は必
置とされる。従って、本発明において必要な希釈用の純
水は、比較的容易に入手できる。純水の導電率は周知の
ようにきわめて小さく、また、必要に応じて添加される
各種添加剤の量も現像原液の量に比べて無視できる程度
に少ないので、現像液の濃度と導電率との関係は、純水
の性状や添加剤の種類、添加量には実用上無関係に一義
的に定まる。このため、本実施例装置によって製造した
現像液の濃度は信頼性が高い。 現像原液と純水とは、
まずラインミキサ16によって十分に混合されたのち、
撹拌槽18内で強制循環される過程で再度の均一な混合
作用を受ける。また、撹拌槽18に供給される混合液は
撹拌槽内の内筒44を下向する間に滞留した循環混合混
合液と十分に混合された上で、内外筒間を上昇する。こ
の内外筒間を混合液が上昇する位置で、混合液の一部を
抜き出し導電率計20へ導くので、ラインミキサ16か
らの混合液が直接に導電率計20にバイパスすることが
ない。このため、導電率測定値は平滑化され、前記導電
率調節計82による制御がハンチングなどの不安定状態
になることを防止する。撹拌槽18における混合液の平
均滞留時間は本発明者の実験によれば5分間以上、好ま
しくは10〜30分間の範囲とするのがよい。10分間
以下であると導電率測定値が不安定になる傾向が強ま
り、結果として、前記制御系に悪影響する。30分間以
上であると撹拌槽の容量や強制循環のための動力が過大
になるなど主として経済的な不利を招く。 【0019】本実施例では、導電率測定用のセルを流通
型のフローセル76としているので、セルの検出端が常
に被測定液である混合液によって洗浄されることにな
り、長時間使用しても測定誤差を生じない。また、導電
率計20は被測定液を一定温度に予備加熱するようにし
ているので温度補償の幅が小さくて済む。このため、制
御系の単純化と即応性及び信頼性に寄与する。 【0020】前記実施例では、導電率調節計によって現
像原液の流量を制御するようにしたが、これとは逆に、
現像原液は定流量とし、純水の流量を制御するようにし
てもよい。更に、現像原液用のポンプを所定流量の大部
分を賄う定量ポンプと、微少流量の制御用ポンプの2台
に分け、導電率に基づく流量の制御はもっぱら制御用ポ
ンプによって木目細かく行うようにしてもよい。また、
前記実施例では、検出した混合液の導電率の値を直接に
用いて、現像原液の流量制御、警報、記録などするよう
に説明したが、これに限らず濃度と導電率の関係を導電
率調節計に付設したマイクロコンピュータにデータとし
て記憶させ、導電率を一旦、濃度に換算した上で入出力
制御するようにしてもよい。 【0021】 【発明の効果】本発明によれば、ホトレジスト用アルカ
リ系現像原液を純水で希釈して、現像液を製造するに当
たり、導電率測定手段を設け、現像液の濃度をその導電
率にもとづいて調整、制御するようにしたので、所望濃
度の現像液を精度よく迅速に、かつ連続的に製造するこ
とができる。この際、攪拌槽と貯留槽とを窒素ガスで窒
素シールするようにしたので、現像液の濃度の精度を更
に向上させることができる。 【0022】また、アルカリ系現像原液は空気中の炭酸
ガスを吸収して濃度が変動し易いが、本発明の場合、導
電率測定手段により導電率を介して現像液の濃度そのも
のを測定し、測定した現像液の濃度と目標濃度との偏差
をなくすように制御するようにしたので、アルカリ系現
像原液の濃度変動に関係なく正確な希釈を行うことがで
きる。また、攪拌槽と貯留槽を窒素ガスでシールするよ
うにしてので、希釈操作中や希釈した現像液の貯留中に
も現像液の濃度の変動を防止することができる。 【0023】このため、使用側では現像原液さえ入手で
きれば所望濃度の現像液を必要量だけ随時に製造でき、
現像液のコストの大幅な低減を達成できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for diluting an undiluted developing solution for producing an alkaline developing solution used in developing a positive resist in a semiconductor manufacturing process or the like. 2. Description of the Related Art In semiconductor manufacturing, photo-etching is repeated in various steps, and a positive resist is often used. It is said that a developer for a positive resist is as important as a resist as a decisive factor for obtaining high resolution and accurate dimensional accuracy of the resist. Sodium phosphate, sodium hydroxide, sodium silicate,
Or, an inorganic alkali aqueous solution composed of a mixture with other inorganic alkalis or the like, or an amine-based organic alkali aqueous solution containing no metal when there is a concern about alkali metal contamination, tetramethylammonium hydroxide (T
MAH) aqueous solution, trimethylmonoethanol ammonium hydroxide (choline) aqueous solution and the like are used. These developing solutions match the positive resist used,
Its composition and density must be strictly controlled in order to obtain the highest resolution, sharpness and stability of the image. In particular, with the recent increase in the degree of integration of semiconductors, finer pattern widths are required, and there is a strong demand for improving the accuracy of developer concentration in order to reduce the variation in the effective sensitivity of photoresist. [0004] However, in the prior art, the use of a developer after adjusting the composition and concentration in a semiconductor manufacturing plant is not only required in terms of equipment and operation costs, but also in terms of the composition and concentration. The basic problem was that it was extremely difficult to manage well, so it was not done at all. Therefore, on the use side (hereinafter, referred to as a use side) of a semiconductor manufacturing plant or the like, a developer whose composition and concentration are adjusted exclusively by a developer maker (hereinafter, referred to as a supply side) must be used. Was. On the supply side, the developing solution adjusted to a predetermined composition is diluted with pure water, and a developing solution adjusted to a desired concentration is filled in a container and supplied to the use side. The dilution ratio of the undiluted solution for development is naturally different depending on the solution composition and the concentration of the undiluted solution, the type of the positive resist, and the purpose of use.
Usually, it is about 5 to 10 times. For this reason, the amount of the developer adjusted on the supply side greatly increases in accordance with the dilution ratio, and preparation of a container for transporting the developer to the use side, work for filling the container, and transportation cost become enormous, There was the problem that these overheads accounted for a considerable proportion of the developer costs as a result. [0006] In addition, there is a problem in that the developer adjusted on the supply side requires a certain period of transportation and storage before it is used on the use side, and the developer deteriorates during this time. Also,
One of the reasons that the developer was not diluted by the user, such as a semiconductor factory, is that the developer easily absorbs carbon dioxide in the air. During the dilution operation or during the storage of the diluted developer, there is a problem that carbon dioxide gas is absorbed to change the concentration. The present invention has been made in view of such circumstances, and solves the above-mentioned problems of the prior art, so that a developer having a desired concentration can be quickly and accurately produced on the use side only by obtaining a developing stock solution. It is another object of the present invention to provide an undiluted developing solution diluting apparatus which does not change its concentration by absorbing carbon dioxide gas during a diluting operation or storing a diluted developing solution. [0008] In order to achieve the above object, the present invention is to supply a developing solution having a desired concentration through a pipeline to a processing facility for performing fine processing using a photoresist. A stirring device for receiving the alkaline developing solution for photoresist and pure water and forcibly stirring for a predetermined time, and extracting a part of the mixed solution in the stirring tank, and measuring its conductivity. Conductivity measuring means to return to the stirring tank afterwards,
A control means for controlling a flow rate of either an alkaline developing solution for photoresist or pure water supplied to the stirring tank based on an output signal from the conductivity measuring means, and processing the mixed solution from the stirring tank. And a storage tank for receiving and storing the liquid before being supplied to the facility through the pipe, and nitrogen gas sealing means for sealing the storage tank and the storage tank with nitrogen gas. According to the present invention, in producing a developing solution having a desired concentration by diluting an undiluted developing solution with pure water, there is a very close relationship between the conductivity and the concentration of the diluted solution. Confirmed by experiments, the concentration of the developer was adjusted and controlled based on the conductivity. As a result, a developer having a desired concentration can be accurately and rapidly produced. Further, since the stirring tank for stirring the developing solution and pure water and the storage tank for storing the diluted developing solution are sealed with nitrogen gas, the air in the head space of the stirring tank and the storage tank is filled with nitrogen gas. Is replaced by Thus, the concentration of the developer can be prevented from being affected during the stirring operation in the stirring tank, and the concentration can be prevented from changing while the diluted developer is stored in the storage tank. FIG. 1 is a system diagram showing an embodiment of the present invention. The apparatus includes a stock solution tank 10 for storing a stock solution for development, an additive tank 12 for storing an additive, a pure water supply pipe 14 for supplying pure water, a line mixer 16, a stirring tank 18, a conductivity meter 20, a manufactured developer, Developer tank 22, which stores
It is composed of pipes for connecting these devices, electric instrumentation, and nitrogen sealing pipes 64 and 66 for supplying and sealing nitrogen gas to the stirring tank 18 and the developer tank 22. An undiluted solution is stored in the undiluted solution tank 10, and the undiluted solution is replenished from a pipe 26 according to an instruction from a liquid level meter 24. The additive tank 12 is also supplied with necessary additives from the pipe line 30 in accordance with the instruction of the liquid level gauge 28. Stock solution tank 1
0, the undiluted developing solution and the additive in the additive tank 12 are continuously supplied from the pipes 32 and 34 by the pumps 36 and 38, respectively, and merge with the pure water continuously supplied by the pump 40 in the pipe 14. . The mixed solution of the undiluted developing solution, the additive and the pure water is mixed by the line mixer 16 and then sent to the stirring tank 18. The stirring tank 18 is an outer cylinder 42
A stirrer 48 having an axial propeller 46 is inserted into the center axis of the inner cylinder 44. Therefore, the mixed liquid sent from the line mixer 16 is stirred by the stirrer 48.
Of the inner cylinder 44 by the action of the axial flow propeller 46, and the mixture is sufficiently mixed and stirred by the stirring blade 50 provided near the lower end of the inner cylinder 44. , And is forcedly circulated in the stirring tank 18 by the same repetition. A part of the mixed liquid is extracted from the passage between the outer cylinder and the inner cylinder, and a conduit 52 for leading to the conductivity meter 20 is opened. It is returned to the stirring tank 18. A baffle plate 56 is provided at a predetermined position of the stirring tank 18 for cutting off the edge of the forced circulation of the mixed solution. A pipe 58 is connected to the baffle plate 56. The mixed liquid in the stirring tank 18 is supplied from a pipe 58 by a pump 60.
After being sent to the developing solution tank 22 and once stored in the developing solution tank, it is sent from a pipe 62 to a use side in a semiconductor manufacturing process or the like. Further, the alkaline developing solution for a positive resist according to the present invention absorbs oxygen or carbon dioxide in the air and reacts when it comes into contact with the outside air to deteriorate its properties. For this reason, the stock solution tank 10, the additive tank 12, the stirring tank 1
8 is supplied with a nitrogen gas having a pressure of about 100 to 200 mmAq from a pipe 64 to perform a nitrogen gas sealing. Similarly, a nitrogen gas is supplied to the developing solution tank 22 from a pipe 66 to seal the nitrogen gas. By setting the pressure of the nitrogen gas for the developer tank 22 to 1 to 2 kg / cm 2 , the energy for sending the developer to the use side is changed to the head pressure of the developer (that is, the pressure of the nitrogen gas and the pressure of the developer). (The value obtained by adding the liquid head pressure). For this reason, it is not necessary to provide a pump in the conduit 62, and it is possible to prevent the pulsation of the developer from being supplied by driving the pump. Further, filters 68, 70, and 72 are provided in pipes connected to the developer tank 22 in order to prevent fine particles from being mixed into the developer. Next, the control system of this embodiment will be described. As shown in FIG. 2, the conductivity meter 20 has a flow cell 76 for measuring the conductivity disposed in a passage 74 for the mixed solution.
After the heating unit 80 is controlled to a certain temperature (for example, 30 ° C. ± 0.1 ° C.), the conductivity is measured by the flow cell 76. As shown in FIG. 3, it is known that the conductivity of a solution shows a larger value as the solution temperature rises, even when the solution has the same concentration. According to the experiment of the present inventors, the same tendency was observed in the alkaline developer according to the present invention, and the temperature coefficient of conductivity in a practical concentration range (when the solution temperature changed by 1 ° C., (A rate at which the electrical conductivity changes) is about 2%. Therefore, in the apparatus of the present embodiment, after the temperature of the liquid mixture to be measured is previously set to a constant temperature, by measuring the conductivity, measurement errors due to temperature fluctuations of the liquid mixture and temperature compensation are minimized. did. The output signal from the flow cell 76 is input to the conductivity controller 82.
The conductivity controller 82 performs temperature compensation on the input signal from the flow cell 76 to calculate the conductivity of the mixed solution at the reference temperature, and outputs this value to the recorder 84.
Compare with a preset target value. When the conductivity of the mixed solution is lower than the target value, the flow rate of the developing solution pump 36 is increased by a predetermined amount, and when it is higher, the flow rate of the pump 36 is reduced by a predetermined amount. During this time, since the pure water pump 40 and the additive pump 38 are operated at a constant flow rate, the conductivity of the mixed solution at the reference temperature is, as shown in FIG. Transition within the range. As shown in FIG. 3, a perfect correspondence between the conductivity and the concentration of the mixed solution is observed at a constant temperature. Therefore,
By maintaining the conductivity of the mixture at a constant (target value), the concentration of the mixture can be made constant. The mixed solution having a constant concentration is stored in the developer tank 22 and used as a developer. If the conductivity of the mixture exceeds the upper limit or lower limit shown in FIG.
, And the alarm 86 is activated. Alarm 8
The operation of 6 may be configured in a plurality of stages, and various pumps and valves of the piping system may be automatically controlled according to the importance. The stirring tank 18 is provided with a liquid level meter 88,
The liquid level controller 90 operates according to the low liquid level,
The operation of the pure water pump 40, the additive pump 38, and the developing solution pump 36 is controlled. The developer tank 22 is provided with a liquid level gauge 92, and a liquid level controller 94 is operated in accordance with the set high and low liquid level to control the mixed liquid pump 60. In this embodiment, the liquid level control of the stirring tank 18 and the liquid level control of the developer tank 22 are independent as described above.
The present invention is not limited to this, and the operation of each apparatus may be smoothed by superposing the two liquid level signals and controlling the operation of each pump. In the above-described apparatus of the present embodiment, if the relationship between the concentration of the developing solution and the conductivity at the reference temperature and the temperature coefficient of the conductivity near the reference temperature are determined in advance, the developing solution having the desired concentration can be continuously obtained with high accuracy. Can be manufactured well. Since a large amount of pure water is required in a semiconductor manufacturing factory or the like that requires a developer for a positive resist, a pure water producing apparatus is indispensable. Therefore, the pure water for dilution required in the present invention can be obtained relatively easily. As is well known, the conductivity of pure water is extremely small, and the amount of various additives added as necessary is negligibly small compared to the amount of the undiluted developing solution. Is uniquely determined irrespective of the properties of pure water, the type of additive, and the amount of addition. For this reason, the concentration of the developer manufactured by the apparatus of this embodiment has high reliability. The developing solution and pure water are
First, after being sufficiently mixed by the line mixer 16,
In the process of being forcedly circulated in the stirring tank 18, a uniform mixing action is again performed. Further, the mixed liquid supplied to the stirring tank 18 is sufficiently mixed with the circulating mixed liquid mixture retained while moving down the inner cylinder 44 in the stirring tank, and then rises between the inner and outer cylinders. At the position where the mixture rises between the inner and outer cylinders, a part of the mixture is extracted and guided to the conductivity meter 20, so that the mixture from the line mixer 16 does not directly bypass the conductivity meter 20. Therefore, the measured conductivity value is smoothed, and the control by the conductivity controller 82 is prevented from becoming an unstable state such as hunting. According to the experiment of the present inventor, the average residence time of the mixed solution in the stirring tank 18 is set to 5 minutes or more, preferably 10 to 30 minutes. If the time is less than 10 minutes, the conductivity measurement value tends to be unstable, which adversely affects the control system. If the time is longer than 30 minutes, economical disadvantages are mainly caused, for example, the capacity of the stirring tank and the power for forced circulation become excessive. In the present embodiment, since the flow cell 76 for measuring the conductivity is a flow-type flow cell 76, the detection end of the cell is always washed with the liquid mixture to be measured. No measurement error occurs. Further, since the conductivity meter 20 preheats the liquid to be measured to a constant temperature, the range of temperature compensation can be small. This contributes to simplification of the control system, responsiveness and reliability. In the above-described embodiment, the flow rate of the undiluted developing solution is controlled by the conductivity controller.
The flow rate of the developing solution may be constant, and the flow rate of pure water may be controlled. Furthermore, the pump for the undiluted developing solution is divided into two units: a fixed amount pump that covers most of the predetermined flow rate, and a small amount control pump, and the control of the flow rate based on the conductivity is performed finely exclusively by the control pump. Is also good. Also,
In the above embodiment, the control of the flow rate of the developing undiluted solution, the alarm, the recording, and the like are described by directly using the detected value of the conductivity of the mixed solution. However, the relationship between the concentration and the conductivity is not limited thereto. Data may be stored as data in a microcomputer attached to the controller, and the input / output control may be performed after the conductivity is once converted into a concentration. According to the present invention, in preparing a developing solution by diluting an alkaline developing solution for photoresist with pure water, a conductivity measuring means is provided, and the concentration of the developing solution is measured by the conductivity. Since the adjustment and control are performed based on the above, a developer having a desired concentration can be manufactured accurately, promptly and continuously. At this time, since the stirring tank and the storage tank are sealed with nitrogen gas with nitrogen gas, the accuracy of the concentration of the developer can be further improved. Further, the concentration of the alkaline developing solution is easily changed by absorbing carbon dioxide gas in the air. In the case of the present invention, however, the concentration itself of the developing solution is measured by the conductivity measuring means via the conductivity. Since the control is performed so as to eliminate the deviation between the measured concentration of the developing solution and the target concentration, accurate dilution can be performed irrespective of the concentration fluctuation of the alkaline developing solution. Further, since the stirring tank and the storage tank are sealed with nitrogen gas, it is possible to prevent the concentration of the developer from fluctuating during the dilution operation or during the storage of the diluted developer. For this reason, if only the undiluted developing solution can be obtained, the required amount of the developing solution having a desired concentration can be produced in a necessary amount at any time.
A large reduction in the cost of the developer can be achieved.

【図面の簡単な説明】 【図1】第1図は本発明の実施例を示す装置系統図 【図2】第2図は本発明に係る導電率計及び導電率調節
計の相互関連を示す説明図 【図3】第3図は溶液の濃度と導電率の一般的関係を示
すグラフ 【図4】第4図は本発明に係る混合液の導電率の時刻変
化を例示する説明図 【符号の説明】 10…現像原液 12…添加剤液 14…純水供給配管 16…ラインミキサ 18…撹拌槽 20…導電率計 22…現像液タンク 64、66…窒素シール用の管路 82…導電率調節計。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system diagram showing an embodiment of the present invention. FIG. 2 is a diagram showing the correlation between a conductivity meter and a conductivity controller according to the present invention. FIG. 3 is a graph showing the general relationship between the concentration of the solution and the conductivity. FIG. 4 is an explanatory diagram illustrating the time change of the conductivity of the mixed solution according to the present invention. Description: 10—Development stock solution 12—Additive solution 14—Pure water supply pipe 16—Line mixer 18—Stirring tank 20—Conductivity meter 22—Development solution tanks 64 and 66—Nitrogen seal pipe line 82—Conductivity Controller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 俊元 神奈川県川崎市中原区田尻町31番地 株 式会社平間理化研究所内 (72)発明者 小川 修 東京都中央区日本橋小舟町5番1号 長 瀬産業株式会社内 (72)発明者 佐野 光彦 兵庫県竜野市竜野町中井236番地 ナガ セ化成工業株式会社 播磨工場内 (72)発明者 高嶋 信雄 東京都千代田区内神田1丁目1番14号 日立プラント建設株式会社内 (56)参考文献 特開 昭61−39041(JP,A) 特開 昭60−42754(JP,A) 特開 昭61−126549(JP,A) 特開 昭60−98264(JP,A) 特開 昭60−212212(JP,A) 特開 昭59−121047(JP,A) 特開 昭54−124976(JP,A) 実公 昭61−7786(JP,Y2) (58)調査した分野(Int.Cl.6,DB名) B01F 1/00 - 5/26 B01F 15/04 G03F 7/30 H01L 21/027──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshimoto Nakagawa 31 Tajiri-cho, Nakahara-ku, Kawasaki-shi, Kanagawa Pref. Nagase & Co., Ltd. (72) Inventor Mitsuhiko Sano 236 Nakai, Tatsuno-cho, Tatsuno-shi, Hyogo Nagase Kasei Kogyo Co., Ltd. JP-A-61-39041 (JP, A) JP-A-60-42754 (JP, A) JP-A-61-126549 (JP, A) JP-A-60-98264 (JP, A) JP-A-60-212212 (JP, A) JP-A-59-121047 (JP, A) JP-A-54-124976 (JP, A) Jikku Sho 61-7786 (JP, Y2) ( 58) investigated the field (Int.Cl. 6 DB name) B01F 1/00 - 5/26 B01F 15/04 G03F 7/30 H01L 21/027

Claims (1)

(57)【特許請求の範囲】 1.ホトレジストを用いて微細加工を行う加工用設備に
管路を介して所望濃度の現像液を送給するための現像原
液の希釈装置であって、 ホトレジスト用アルカリ系現像原液と純水とを受け入れ
て所定時間強制撹拌する撹拌槽と、 前記撹拌槽内の混合液の一部を抜き出しその導電率を測
定したのち撹拌槽内に戻す導電率測定手段と、 前記導電率測定手段からの出力信号にもとづき前記撹拌
槽に供給されるホトレジスト用アルカリ系現像原液また
は純水のいずれか一方の流量を制御する制御手段と、 前記撹拌槽からの混合液を前記加工用設備に前記管路を
介して送給する前に受け入れ貯留する貯留槽と、 前記撹拌槽と前記貯留槽を窒素ガスでシールする窒素ガ
スシール手段と、 を備えたことを特徴とする現像原液の希釈装置。
(57) [Claims] For processing equipment that performs fine processing using photoresist
A developing source for supplying a developing solution of a desired concentration through a pipeline;
A stirring device for receiving an alkaline developing solution for photoresist and pure water and forcibly stirring the solution for a predetermined time, extracting a part of the mixed solution in the stirring tank, measuring the conductivity thereof, and stirring the solution. Conductivity measuring means to return to the tank, and control means for controlling the flow rate of one of the alkaline developing solution for photoresist or pure water supplied to the stirring tank based on the output signal from the conductivity measuring means, The mixed solution from the stirring tank is passed through the pipeline to the processing equipment.
A storage tank for receiving and storing the liquid before being sent through the storage tank, and nitrogen gas sealing means for sealing the storage tank with nitrogen gas.
JP7013026A 1995-01-30 1995-01-30 Undiluted solution for developing solution Expired - Lifetime JP2751849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7013026A JP2751849B2 (en) 1995-01-30 1995-01-30 Undiluted solution for developing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7013026A JP2751849B2 (en) 1995-01-30 1995-01-30 Undiluted solution for developing solution

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62030037A Division JPH067910B2 (en) 1987-02-10 1987-02-10 Development stock solution diluter

Publications (2)

Publication Number Publication Date
JPH0862852A JPH0862852A (en) 1996-03-08
JP2751849B2 true JP2751849B2 (en) 1998-05-18

Family

ID=11821636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7013026A Expired - Lifetime JP2751849B2 (en) 1995-01-30 1995-01-30 Undiluted solution for developing solution

Country Status (1)

Country Link
JP (1) JP2751849B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264277A (en) * 2000-03-15 2001-09-26 Kanto Chem Co Inc Method and device for detecting concentration and chemical diluting dispensing device
US6588927B2 (en) 2001-02-06 2003-07-08 Nagase & Co., Ltd. Purified developer producing equipment and method
US6623183B2 (en) 2001-02-06 2003-09-23 Nagase & Co., Ltd. Developer producing equipment and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497841B2 (en) 2001-06-01 2004-02-16 長瀬産業株式会社 Developing waste liquid recycling apparatus and developing waste liquid recycling method
JP2007085829A (en) * 2005-09-21 2007-04-05 Daicel Chem Ind Ltd Apparatus and method for calibrating near-infrared spectral analyzer
JP5114489B2 (en) * 2007-09-03 2013-01-09 シスメックス株式会社 Sample analysis system, reagent preparation device, and sample processing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121047A (en) * 1982-12-27 1984-07-12 Fuji Photo Film Co Ltd Developing method of photosensitive lithographic printing plate and automatic developing device
US4464461A (en) * 1983-07-22 1984-08-07 Eastman Kodak Company Development of light-sensitive quinone diazide compositions
JPS6098264A (en) * 1983-10-31 1985-06-01 Yanmar Diesel Engine Co Ltd Gear supporting structure
JPS60212212A (en) * 1984-04-06 1985-10-24 Canon Inc Ink stirring apparatus
JPS617786U (en) * 1984-06-19 1986-01-17 三菱重工業株式会社 Heat pump dehumidifying dryer
JPS6139041A (en) * 1984-07-31 1986-02-25 Tokyo Ohka Kogyo Co Ltd Developing solution of positive type resist
JPS61126549A (en) * 1984-11-26 1986-06-14 Sony Corp Developing solution for positive type resist and its using method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264277A (en) * 2000-03-15 2001-09-26 Kanto Chem Co Inc Method and device for detecting concentration and chemical diluting dispensing device
US6588927B2 (en) 2001-02-06 2003-07-08 Nagase & Co., Ltd. Purified developer producing equipment and method
US6623183B2 (en) 2001-02-06 2003-09-23 Nagase & Co., Ltd. Developer producing equipment and method

Also Published As

Publication number Publication date
JPH0862852A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
US5874049A (en) Two-stage chemical mixing system
KR100520252B1 (en) Developer producing equipment and method
JP2751849B2 (en) Undiluted solution for developing solution
US6146008A (en) System for diluting ultrapure chemicals which is intended for the microelectronics industry
JPH067910B2 (en) Development stock solution diluter
CN101563654A (en) Method for regulating concentration of developing solution, apparatus for preparing the developing solution, and developing solution
JP2010506901A5 (en)
JP2003170034A (en) Chemical liquid-feeding apparatus and slurry preparation method
US5992437A (en) Method for diluting acid or alkaline stock solution and apparatus therefor
US4042444A (en) Etchant rejuvenation control system
KR100520253B1 (en) Purified developer producing equipment and method
US6955764B2 (en) Method and apparatus for preparing slurry for CMP apparatus
JP3183308B2 (en) Continuous automatic dilution system for developer
Shinskey Control of pH
JP2003248326A (en) Developer supply system
JP2670211B2 (en) How to adjust the developer
TW316954B (en)
JPH05216241A (en) Automatic diluting device for developer
JPH0753699Y2 (en) High concentration ammonia automatic dissolver
JP3352171B2 (en) Solution neutralization control method
WO2022052597A1 (en) Monitoring feedback system and monitoring feedback method
JP4792937B2 (en) Method for producing surfactant-containing alkaline developer
JPS6012386B2 (en) Mixing equipment for preparing ground consolidation chemicals
JP2632771B2 (en) Apparatus and method for adding carbon dioxide
JPH06194337A (en) High concentration residual chlorine measuring system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RVTR Cancellation of determination of trial for invalidation