JP2750810B2 - Decarbonation treatment method - Google Patents
Decarbonation treatment methodInfo
- Publication number
- JP2750810B2 JP2750810B2 JP34673993A JP34673993A JP2750810B2 JP 2750810 B2 JP2750810 B2 JP 2750810B2 JP 34673993 A JP34673993 A JP 34673993A JP 34673993 A JP34673993 A JP 34673993A JP 2750810 B2 JP2750810 B2 JP 2750810B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- treated
- water tank
- decarbonation
- tower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Physical Water Treatments (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は脱炭酸処理方法に係
り、その目的はイオン交換樹脂により処理された処理水
中に溶存している炭酸ガスを、その供給量に左右される
ことなく常に一定の効率で除去することができ、純水及
び超純水製造ラインにおいて好適に利用することのでき
る脱炭酸処理方法を提供することにある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a decarboxylation method, and an object of the present invention is to constantly remove carbon dioxide gas dissolved in treated water treated with an ion exchange resin without being influenced by the supply amount. It is an object of the present invention to provide a decarboxylation treatment method that can be efficiently removed and can be suitably used in a pure water and ultrapure water production line.
【0002】[0002]
【発明の背景】超純水とは、高度精製処理がなされ、水
中のイオン、微粒子、コロイド、微生物、有機物等が除
去された殆ど理論純水に近い水質の水を指し、現在、電
子工業をはじめ、医薬品製造、化学工業、原子力発電に
おいて必要とされている工業用水である。特に電子工業
においては、半導体製造技術における集積回路(IC)
の高集積化と微細パターン化が急速に進み、現在は超L
SI(超大規模集積回路)の時代に入っている。このよ
うに、半導体デバイスの高集積化、微細化が進むにつれ
て、半導体製造に使用する動力、治工具、装置等のウル
トラクリーン化が求められてくるようになり、特に超純
水は、直接シリコンウエハに触れ、また各工程毎に繰り
返し使用されるため、その水質が半導体デバイスの歩留
り、信頼性に大きく影響し、より高度な水質が要求され
るようになってきている。BACKGROUND OF THE INVENTION Ultrapure water refers to water that has been subjected to a high degree of purification treatment and has almost the same qualities as theoretical pure water from which ions, fine particles, colloids, microorganisms, organic substances, and the like in the water have been removed. First, it is industrial water that is needed in the pharmaceutical manufacturing, chemical industry, and nuclear power generation. Especially in the electronics industry, integrated circuits (ICs) in semiconductor manufacturing technology
High integration and fine patterning are progressing rapidly,
The era of SI (ultra large scale integrated circuit) has entered. As described above, as semiconductor devices become more highly integrated and miniaturized, ultra-clean power, jigs, tools, and the like used in semiconductor manufacturing are required. Since the wafer is touched and used repeatedly in each process, the water quality greatly affects the yield and reliability of semiconductor devices, and higher water quality is required.
【0003】[0003]
【従来の技術】最も一般的に用いられている超純水製造
方法としては、図3に示すような2床3塔型純水製造装
置(A)を用いた製造方法を例示することができる。こ
れは、原水(H0 )を、H型の陽イオン交換樹脂塔
(B)からOH型陰イオン交換樹脂塔(C)へと順に通
水させてイオン交換処理を行なう方法で、陽イオン交換
樹脂塔(B)と陰イオン交換樹脂塔(C)との間隙に脱
炭酸塔(D)を配設した2床3塔型の純水製造装置
(A)を利用するものである。2. Description of the Related Art As the most commonly used ultrapure water production method, a production method using a two-bed, three-tower type pure water production apparatus (A) as shown in FIG. 3 can be exemplified. . This is a method in which raw water (H 0 ) is sequentially passed from an H-type cation exchange resin tower (B) to an OH-type anion exchange resin tower (C) to perform an ion exchange treatment. A two-bed, three-column pure water production apparatus (A) in which a decarbonation tower (D) is disposed in a gap between the resin tower (B) and the anion exchange resin tower (C).
【0004】我が国の原水(H0 )中には、カチオンと
してCa2+、Mg2+、Na+ 等が、またアニオンとして
Cl- 、SO4 2- 、HCO3 - 等 が含まれている。従
って、このような原水(H0 )を、まずH型の陽イオン
交換樹脂塔(B)に通水すると、原水(H0 )中に含有
されているカチオンがH+ にイオン交換され、その処理
水(H1 )中にはHCl、H2SO4 、H2CO3 が生成
し、酸性を呈するようになる。この酸性雰囲気の処理水
(H1)は、次いで脱炭酸塔(D)へと送り込まれる。脱
炭酸塔(D)では、エアレーション等により処理水(H
1)中に溶存されているH2 CO3 がCO2 として空気中
に放散、除去されて脱炭酸処理水(H2)とされる。この
脱炭酸処理水(H2)は、次いで陰イオン交換樹脂塔
(C)へと送りこまれる。陰イオン交換樹脂塔(C)に
通水された処理水(H2 )は、OH型陰イオン交換樹脂
により、HCl、H2SO4 等強酸の陰イオンが全て吸
着され、純水(H3)が得られる。In raw water (H 0 ) of Japan, Ca 2+ , Mg 2+ , Na + and the like are used as cations, and Cl − , SO 4 2− and HCO 3 − are used as anions. It is included. Therefore, when such raw water (H 0 ) is first passed through the H-type cation exchange resin tower (B), the cations contained in the raw water (H 0 ) are ion-exchanged to H +, and HCl, H 2 SO 4 , and H 2 CO 3 are generated in the treated water (H 1 ) and become acidic. The treated water (H 1 ) in the acidic atmosphere is then sent to the decarbonation tower (D). In the decarbonation tower (D), the treated water (H
H 2 CO 3 dissolved in 1 ) is diffused into the air as CO 2 and removed to form decarbonated water (H 2 ). The decarbonated water (H 2 ) is then sent to the anion exchange resin tower (C). In the treated water (H 2 ) passed through the anion exchange resin tower (C), all the anions of strong acids such as HCl and H 2 SO 4 are adsorbed by the OH type anion exchange resin, and pure water (H 3) ) Is obtained.
【0005】このように、2床3塔型純水製造装置
(A)では、Hサイクル陽イオン交換で全ての陽イオン
をH+ に変え、OH型弱塩基性陰イオン交換樹脂を用い
て、前記陽イオン交換処理により生成した陰イオンを除
去するシステムにより純水を得るが、脱炭酸塔(D)を
陽イオン交換処理と陰イオン交換処理との間に設けるこ
とにより、陽イオン交換で生成した溶存炭酸ガス(H2
CO3 )を除去し、陰イオン交換樹脂塔(C)での処理
負荷を軽減することができる。[0005] As described above, in the two-bed three-column type pure water production apparatus (A), all cations are changed to H + by H cycle cation exchange, and an OH-type weakly basic anion exchange resin is used. Pure water is obtained by a system for removing anions generated by the cation exchange treatment. However, by providing a decarbonation tower (D) between the cation exchange treatment and the anion exchange treatment, pure water is produced. Dissolved carbon dioxide (H 2
CO 3 ) can be removed, and the processing load on the anion exchange resin tower (C) can be reduced.
【0006】前記したような2床3塔型の純水製造装置
(A)において使用される脱炭酸塔(D)としては、図
4に示すようなスプレー型の脱炭酸塔が例示される。こ
の脱炭酸塔(D)では、陽イオン交換樹脂塔(B)によ
り処理された水(H1)を、脱炭酸塔(D)上部に設けら
れた噴射ノズル(e)へと導き、この噴射ノズル(e)
から処理水(H1)を多数の微小液滴に細分し、塔内の中
空部(f)に噴出する。中空部(f)内に噴出された微
小液滴は空気と接触することにより、溶存している炭酸
ガス(H2CO3 )がCO2 として放出され、脱炭酸処
理水(H2)とされる。[0006] As the decarbonation tower (D) used in the two-bed three-column type pure water production apparatus (A) as described above, a spray-type decarbonation tower as shown in FIG. 4 is exemplified. In the decarbonation tower (D), the water (H 1 ) treated by the cation exchange resin tower (B) is led to an injection nozzle (e) provided above the decarbonation tower (D). Nozzle (e)
, The treated water (H 1 ) is subdivided into a large number of microdroplets and jetted into the hollow portion (f) in the tower. The microdroplets ejected into the hollow portion (f) come into contact with air, so that dissolved carbon dioxide (H 2 CO 3 ) is released as CO 2, and is converted into decarbonated water (H 2 ). You.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、前記し
たようなスプレー型の脱炭酸塔(D)では、脱炭酸塔
(D)へ送り込む処理水(H1)の供給量の変化によっ
て、処理能力(炭酸除去率)が大きく変動するという課
題が存在した。すなわち、脱炭酸塔(D)へ送り込む処
理水(H1)の供給量は、脱炭酸塔(D)入口の調整弁
(図示せず)により調節されているが、処理水(H1)供
給量が低下すると、調整弁から噴射ノズル(e)へ送り
込まれる水流が小さくなり、その結果、噴射ノズル
(e)から噴出される処理水(H1)の液滴の粒径が大き
くなってしまう。一般に、スプレー型の脱炭酸塔におい
ては、噴射ノズル(e)から噴出される処理水(H1)の
液滴は、その粒径が微細であればあるほど、塔(D)内
に充填されている空気との接触面積が大きくなるため、
溶存している炭酸ガス(H2CO3)の分解、除去性能は
良好となるが、逆に噴射ノズル(e)から噴出される処
理水(H1)の液滴の粒径が大きくなると、塔内に充填さ
れている空気との接触面積が小さくなって、溶存する炭
酸ガス(H2CO3 )の分解、除去能力が低下してしま
う。従って、前記したようなスプレー型の脱炭酸塔
(D)では、供給する処理水(H1)の流量が小さくなる
と、噴射ノズル(e)より噴出される被処理水(H1)の
液滴の粒径が大きくなり、脱炭酸効率が低下してしま
う。このような供給水量の変動による脱炭酸効率の低下
を防ぐために、脱炭酸塔(D)を高く設定することも行
われているが、脱炭酸塔(D)を高く設定すると、設置
場所が制限されてしまい、しかも設備費が膨大なものと
なってしまうなどの課題が存在した。However, in the spray-type decarbonation tower (D) as described above, the processing capacity (H 1 ) supplied to the decarbonation tower (D) changes due to a change in the supply amount. There is a problem that the carbon dioxide removal rate fluctuates greatly. That is, the supply amount of the treated water fed to the deaerator (D) (H 1) has been adjusted by decarboxylation column (D) the inlet of the regulating valve (not shown), treated water (H 1) fed When the amount decreases, the water flow sent from the regulating valve to the injection nozzle (e) decreases, and as a result, the particle size of the droplets of the treated water (H 1 ) ejected from the injection nozzle (e) increases. . Generally, in the spray type decarbonation tower, the droplets of the treated water (H 1 ) ejected from the injection nozzle (e) are filled in the tower (D) as the particle size becomes smaller. The contact area with the air
The performance of decomposing and removing dissolved carbon dioxide gas (H 2 CO 3 ) is good, but on the other hand, when the particle size of the treated water (H 1 ) droplet ejected from the injection nozzle (e) becomes large, The contact area with the air filled in the tower is reduced, and the ability to decompose and remove dissolved carbon dioxide (H 2 CO 3 ) is reduced. Therefore, in the spray type decarbonation tower (D) as described above, when the flow rate of the supplied treated water (H 1 ) decreases, the droplets of the treated water (H 1 ) ejected from the ejection nozzle (e) Becomes large, and the decarbonation efficiency decreases. In order to prevent a decrease in the decarbonation efficiency due to such a change in the supply water amount, the decarbonation tower (D) is set to be high. However, if the decarbonation tower (D) is set to be high, the installation place is restricted. However, there is a problem that the equipment cost is enormous.
【0008】そこで、業界では、純水製造時の脱炭酸処
理工程において、供給水量の変化に左右されず、常に一
定範囲の粒径の液滴を塔内に噴霧し、一定の効率で溶存
する炭酸ガス(H2CO3 )を分解、除去することので
きる優れた脱炭酸処理方法の創出が望まれていた。[0008] Therefore, in the industry, in the decarbonation treatment step in the production of pure water, droplets having a certain range of particle diameter are always sprayed into the tower without being affected by the change in the amount of supplied water, and dissolved at a constant efficiency. It has been desired to create an excellent decarbonation method capable of decomposing and removing carbon dioxide gas (H 2 CO 3 ).
【0009】[0009]
【課題を解決するための手段】請求項1に係る発明で
は、被処理水を脱炭酸塔へと送り込み、その上方部に設
けられた噴射ノズルにより前記被処理水を多数の微小液
滴に細分して塔内部に噴霧し、溶存するガス成分を空気
中に放散、除去してなる純水製造時の脱炭酸処理工程に
おいて、前記被処理水を所定の原水槽に貯留し、この原
水槽から任意の手段を介して噴射ノズルへと被処理水を
供給すると共に、脱炭酸処理された処理水を前記原水槽
と並列して設けられた処理水槽へと排出し、この処理水
を任意の手段により吸引し、次工程へと送水する際に、
前記処理水の吸引量が予め設定された量よりも減少した
場合に、前記処理水槽中に排出された処理水を原水槽へ
と流入させて、原水槽から噴射ノズルへ送り込まれる被
処理水量を一定量に維持することにより、前記噴射ノズ
ルから噴霧される微小液滴の粒径を一定範囲に設定して
なることを特徴とする脱炭酸処理方法を提供し、また請
求項2に係る発明では、前記原水槽の下方部には送風機
構が設けられてなることを特徴とする請求項1に記載の
脱炭酸処理方法を提供することにより、前記従来の課題
を悉く解消する。According to the first aspect of the present invention, the water to be treated is fed into a decarbonation tower, and the water to be treated is subdivided into a large number of fine droplets by an injection nozzle provided above the tower. In the decarbonation process at the time of pure water production by spraying the inside of the tower and dissolving dissolved gas components in the air and removing it, the water to be treated is stored in a predetermined raw water tank, and from this raw water tank The water to be treated is supplied to the injection nozzle through an arbitrary means, and the decarbonated treated water is discharged to a treated water tank provided in parallel with the raw water tank, and the treated water is supplied to the arbitrary means. When suctioning and sending water to the next process,
When the suction amount of the treated water is smaller than a predetermined amount, the treated water discharged into the treated water tank is caused to flow into the raw water tank, and the amount of the treated water sent from the raw water tank to the injection nozzle is reduced. The present invention according to claim 2 provides a decarboxylation method characterized in that the particle size of the fine droplets sprayed from the injection nozzle is set within a certain range by maintaining the particle size at a fixed amount. An air blowing mechanism is provided in a lower part of the raw water tank, and the conventional problem is completely eliminated by providing the decarbonation method according to claim 1.
【0010】[0010]
【作用】ポンプ等により原水槽より噴射ノズルに常に一
定量の被処理水を送り、処理水の吸引量が減少した場合
には、処理水槽より原水槽に、処理水の一部を常時オー
バーフロー等の手段により、原水槽へと流入させる。従
って、処理水の吸引量に左右されることなく、脱炭酸塔
の噴射ノズルへ送り込まれる被処理水量を常に一定量に
維持することができるため、噴射ノズルより塔内部に噴
霧される被処理水の微小液滴を常に一定範囲の粒径とす
ることができ、一定の効率で脱炭酸処理を行うことがで
きる。[Function] A constant amount of water to be treated is always sent from the raw water tank to the injection nozzle by a pump or the like, and when the suction amount of the treated water decreases, a part of the treated water always overflows from the treated water tank to the raw water tank. By the means described above. Therefore, the amount of water to be treated sent to the injection nozzle of the decarbonation tower can be always maintained at a constant amount without being affected by the amount of suction of the treated water, and the water to be treated sprayed into the tower from the injection nozzle can be constantly maintained. Can always have a particle size within a certain range, and the decarboxylation treatment can be performed with a certain efficiency.
【0011】[0011]
【発明の構成】以下、この発明に係る脱炭酸処理方法に
ついて、図面に基づいて詳述する。図1は、この発明の
脱炭酸処理方法の第一実施例を示す模式説明図である。
図中(1)は脱炭酸塔であり、(2)は脱炭酸塔(1)
へ送り込まれる被処理水(H−1)を貯留した原水槽、
(3)は脱炭酸塔(1)を通過し脱炭酸処理がなされた
処理水(H−2)が排出され、貯留される処理水槽であ
る。原水槽(2)には、前段工程から送り込まれ、脱炭
酸処理がなされる被処理水(H−1)が貯留されてい
る。脱炭酸塔(1)には中空部(11)が形成されてい
るとともに、その上方部には噴射ノズル(10)が設け
られている。この脱炭酸塔(1)の下部には送風機構
(4)が備えられ、常に中空部(11)内に空気が送風
されている。また、この発明においては、原水槽(2)
と処理水槽(3)とは並列して配置されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a decarboxylation method according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic explanatory view showing a first embodiment of the decarboxylation method of the present invention.
In the figure, (1) is a decarbonation tower, and (2) is a decarbonation tower (1).
Raw water tank storing the water to be treated (H-1) sent to
(3) is a treated water tank in which the treated water (H-2) which has passed through the decarbonation tower (1) and has been subjected to the decarbonation treatment is discharged and stored. In the raw water tank (2), the water to be treated (H-1), which is sent from the previous step and subjected to the decarbonation treatment, is stored. A hollow part (11) is formed in the decarbonation tower (1), and an injection nozzle (10) is provided above the hollow part (11). An air blowing mechanism (4) is provided below the decarbonation tower (1), and air is constantly blown into the hollow portion (11). In the present invention, the raw water tank (2)
And the treatment water tank (3) are arranged in parallel.
【0012】この発明の脱炭酸処理方法においては、ま
ず、原水槽(2)に貯留されている被処理水(H−1)
をポンプ(5)により吸引し、脱炭酸塔(1)上方部に
設けられた噴射ノズル(10)へと常に一定量送り込
む。脱炭酸塔(1)は、図1及び図2に示すように、上
部に噴射ノズル(10)が備えられ、噴射ノズル(1
0)の下方に中空部(11)が形成されている。噴射ノ
ズル(10)へ送り込まれた被処理水(H−1)は、微
小液滴に細分され、中空部(11)へ噴出される。この
際、中空部(11)には空気が充填されているため、噴
出された被処理水(H−1)は、空気と接触されること
により溶存する炭酸(H2CO3 )が分解され、二酸化
炭素として空気中に放散されて脱炭酸処理が行なわれ
る。また、この脱炭酸塔(1)において脱炭酸処理がな
された処理水(H−2)は、処理水槽(3)へと排出さ
れる。In the decarbonation treatment method of the present invention, first, the water to be treated (H-1) stored in the raw water tank (2).
Is sucked by a pump (5), and is always sent to an injection nozzle (10) provided above the decarbonation tower (1) in a constant amount. The decarbonation tower (1) is provided with an injection nozzle (10) at the upper part as shown in FIGS.
A hollow part (11) is formed below 0). The to-be-processed water (H-1) sent to the injection nozzle (10) is subdivided into fine droplets, and is ejected to the hollow portion (11). At this time, since the hollow portion (11) is filled with air, the discharged water to be treated (H-1) is decomposed into dissolved carbonic acid (H 2 CO 3 ) by contact with air. , And is released into the air as carbon dioxide to perform a decarbonation treatment. The treated water (H-2) subjected to the decarbonation treatment in the decarbonation tower (1) is discharged to the treated water tank (3).
【0013】ここで、処理水槽(3)は、前記原水槽
(2)と並列して設けられている。処理水槽(3)へと
排出された処理水は、ポンプ(6)により吸引されて、
次工程へと送り込まれる。また、この発明においては、
処理水の吸引量(H−2)が減少した場合には、処理水
槽(3)に排出された処理水(H−2)の一部を常時オ
ーバーフロー等の手段にて原水槽(3)に戻すことがで
きる。従って、処理水の吸引量(H−2)が少ない場合
にも、原水槽(2)から噴射ノズル(10)へ送り込ま
れる被処理水(H−1)量を一定量に維持することによ
り、噴射ノズル(10)から中空部(11)に噴出され
る被処理水(H−1)の微小液滴の粒径を、常に一定範
囲の大きさとすることができるため、一定効率で脱炭酸
処理を行なうことができ、脱炭酸塔(1)の高さ(z)
を低く設定しても、効率良い脱炭酸処理を行なうことが
できる。Here, the treated water tank (3) is provided in parallel with the raw water tank (2). The treated water discharged into the treated water tank (3) is sucked by the pump (6),
It is sent to the next process. In the present invention,
When the suction amount (H-2) of the treated water decreases, a part of the treated water (H-2) discharged to the treated water tank (3) is always transferred to the raw water tank (3) by means such as overflow. You can go back. Therefore, even when the suction amount (H-2) of the treated water is small, the amount of the treated water (H-1) sent from the raw water tank (2) to the injection nozzle (10) is maintained at a constant amount. The particle diameter of the fine droplets of the water to be treated (H-1) ejected from the ejection nozzle (10) into the hollow portion (11) can be always within a certain range, so that the decarbonation treatment is performed with a constant efficiency. And the height (z) of the decarbonation tower (1)
, The decarboxylation treatment can be performed efficiently.
【0014】図2は、この発明に係る脱炭酸処理方法の
第二実施例を示す模式図である。この第二実施例におい
ては、原水槽(2)下方部に送風機構(7)が設けられ
ている。このように、原水槽(2)下方部に送風機構
(7)を設ける構成を採用することによって、被処理水
(H−1)中に溶存している炭酸ガスは、原水槽(2)
内に貯留されている状態で、ある程度除去されるため、
脱炭酸塔(1)での負荷が軽減され、脱炭酸塔(1)の
高さをより低くしたり、大きさをさらに小さく設定して
も効率良く脱炭酸処理を行なうことができる。また、こ
の脱炭酸工程を、逆浸透装置の前処理として採用する場
合には、pH調整用の攪拌用エアーとして利用すること
もできる。FIG. 2 is a schematic view showing a second embodiment of the decarboxylation method according to the present invention. In the second embodiment, a blowing mechanism (7) is provided below the raw water tank (2). As described above, by adopting a configuration in which the blowing mechanism (7) is provided below the raw water tank (2), the carbon dioxide gas dissolved in the water to be treated (H-1) is reduced.
Because it is removed to some extent while stored in
The load on the decarbonation tower (1) is reduced, and the decarbonation can be performed efficiently even if the height of the decarbonation tower (1) is reduced or the size is further reduced. When this decarboxylation step is adopted as a pretreatment of a reverse osmosis device, it can be used as stirring air for pH adjustment.
【0015】[0015]
【実施例】以下、この発明に係る脱炭酸処理方法の効果
を試験例を挙げることにより、一層明確なものとする。
但し、この発明は以下の実施例により何ら限定されるも
のはない。EXAMPLES The effects of the decarboxylation method according to the present invention will be further clarified by giving test examples.
However, the present invention is not limited by the following examples.
【0016】[0016]
【試験例1】充填塔高さ(y)700mm、全体高さ
(z)2260mmの図1に示したような脱炭酸塔
(1)を用い、前記図1のような装置を用いて被処理水
(H−1)の脱炭酸処理を行なった。Test Example 1 Using a decarbonation tower (1) as shown in FIG. 1 having a packed tower height (y) of 700 mm and an overall height (z) of 2260 mm, using a device as shown in FIG. Water (H-1) was subjected to a decarboxylation treatment.
【0017】(実施例1) まず処理水槽(3)よりポンプ(6)を介して処理水を
吸引し(700L/hr)、原水槽(2)よりポンプ(5)を
介して被処理水(H−1)を脱炭酸塔(1)上方部に設
けられた噴射ノズル(10) へと送り込んだ。噴射ノズル
(10)にはポンプ(5)により700L/hrの水量で被処理水
(H−1)を供給し、送風機(4)にて14m3 /hrの流
量で空気を塔(1)内部へ噴霧して、脱炭酸処理を行な
った。得られた脱炭酸処理水(H−2)は処理水槽
(3)へと排出した。(尚、被処理水(H−1)として
は、炭酸ガスと炭酸とが186ppmの濃度で溶存して
いる(pH4.0(18℃))ものを用いた。)。脱炭
酸処理された処理水中の炭酸ガスと炭酸の溶存濃度を測
定し、表1にその結果を示した。(Embodiment 1) First, treated water is sucked from a treated water tank (3) via a pump (6) (700 L / hr), and water to be treated (raw water tank (2) is supplied via a pump (5)). H-1) was sent to an injection nozzle (10) provided above the decarbonation tower (1). Injection nozzle
The water to be treated (H-1) is supplied to (10) by a pump (5) at a water volume of 700 L / hr, and air is sprayed into the tower (1) at a flow rate of 14 m 3 / hr by a blower (4). Then, a decarboxylation treatment was performed. The obtained decarbonated water (H-2) was discharged to the treated water tank (3). (Note that, as the water to be treated (H-1), water in which carbon dioxide and carbonic acid were dissolved at a concentration of 186 ppm (pH 4.0 (18 ° C.)) was used.) The dissolved concentrations of carbon dioxide and carbon dioxide in the decarbonated treated water were measured, and the results are shown in Table 1.
【0018】(実施例2) 処理水槽(3)からの処理水の吸引量を500L/hrとした
以外は、前記実施例1と同様の方法で脱炭酸処理を行な
った。得られた処理水中の炭酸ガスと炭酸の溶存濃度を
測定し、表1にその結果を示した。(Example 2) Decarbonation treatment was performed in the same manner as in Example 1 except that the suction amount of the treatment water from the treatment water tank (3) was set to 500 L / hr. The dissolved concentrations of carbon dioxide and carbon dioxide in the obtained treated water were measured, and the results are shown in Table 1.
【0019】[0019]
【試験例2】(対照例) 前記実施例1と同様の大きさの脱炭酸塔を用い、図5に
示したような装置を使用して、被処理水の脱炭酸処理を
行なった。原水槽(I)よりポンプ(J)を介して被処
理水(H−1)を700L/hrの流量で吸引し、脱炭酸塔
(D)の噴射ノズル(e) へと送り込んだ。噴射ノズル
(e)には700L/hrの水量で被処理水(H−1)を供給
し、14m3 /hrの流量で空気を塔(D)内部へ送風し
て、脱炭酸処理を行なった。得られた脱炭酸処理水(H
−2)を脱炭酸塔(D)下方部より吸引し、処理水中の
炭酸ガスと炭酸の溶存濃度を測定した。この結果を表1
に示す。尚、使用した被処理水は前記実施例1と同様の
ものを用いた。Test Example 2 (Control) The decarbonation treatment of the water to be treated was performed using a decarbonation tower having the same size as that of Example 1 and an apparatus as shown in FIG. The water to be treated (H-1) was sucked from the raw water tank (I) via the pump (J) at a flow rate of 700 L / hr and sent to the injection nozzle (e) of the decarbonation tower (D). Injection nozzle
In (e), the water to be treated (H-1) was supplied at a water amount of 700 L / hr, and air was blown into the tower (D) at a flow rate of 14 m 3 / hr to perform a decarbonation treatment. The resulting decarbonated water (H
-2) was sucked from the lower part of the decarbonation tower (D), and the dissolved concentrations of carbon dioxide and carbon dioxide in the treated water were measured. Table 1 shows the results.
Shown in The water to be used was the same as that in Example 1.
【0020】(比較例1) 前記対照例と同様の大きさの脱炭酸塔(D)を用い、原
水槽(I)からの被処理水(H−1)の吸引量を500L/
hrとした以外は前記対照例と同様の方法で脱炭酸処理を
行なった。この結果を表1に示す。(Comparative Example 1) Using a decarbonation tower (D) having the same size as the control example, the suction amount of the water to be treated (H-1) from the raw water tank (I) was 500 L /
A decarboxylation treatment was performed in the same manner as in the above control example except that hr was used. Table 1 shows the results.
【0021】[0021]
【試験例3】(実施例3) 前記実施例1と同様の大きさの脱炭酸塔を用い、図2に
示したような装置を用いて被処理水(H−1)の脱炭酸
処理を行なった。すなわち、予め原水槽(2)に送風機
構(7)により空気を送気しておいた(送気量3m3 /
時間)。処理水槽(3)よりポンプ(6)を介して処理
水を吸引し(700L/hr)、原水槽(2)よりポンプ
(5)を介して被処理水(H−1)を脱炭酸塔(1)上
方部に設けられた噴射ノズル(10) へと送り込んだ。噴
射ノズル(10)にはポンプ(5)により700L/hrの水量で
被処理水(H−1)を供給し、14m3 /hrの流量で送風
機(4)により空気を塔(1)内部へ噴霧して、脱炭酸
処理を行なった。得られた脱炭酸処理水(H−2)は処
理水槽(3)へと排出した。(尚、被処理水(H−1)
としては、炭酸ガスと炭酸とが186ppmの濃度で溶
存している(pH4.0(18℃))ものを用いた。)
脱炭酸処理された処理水中の炭酸ガスと炭酸の溶存濃度
を測定し、表1にその結果を示した。Test Example 3 (Example 3) The decarbonation treatment of the water to be treated (H-1) was performed using a decarbonation tower having the same size as that of Example 1 and an apparatus as shown in FIG. Done. That is, air was previously blown into the raw water tank (2) by the blower mechanism (7) (blowing rate 3 m 3 /
time). The treated water is sucked from the treated water tank (3) via the pump (6) (700 L / hr), and the water to be treated (H-1) is desorbed from the raw water tank (2) via the pump (5). 1) It was sent to the injection nozzle (10) provided in the upper part. The water to be treated (H-1) is supplied to the injection nozzle (10) at a flow rate of 700 L / hr by the pump (5), and air is blown into the tower (1) by the blower (4) at a flow rate of 14 m 3 / hr. It was sprayed to perform a decarboxylation treatment. The obtained decarbonated water (H-2) was discharged to the treated water tank (3). (The water to be treated (H-1)
A carbon dioxide gas and a carbonic acid in which 186 ppm was dissolved (pH 4.0 (18 ° C.)) were used. )
The dissolved concentrations of carbon dioxide and carbon dioxide in the decarbonated treated water were measured, and the results are shown in Table 1.
【0022】(実施例4) 処理水槽(3)からの処理水吸引量を500L/hrとした以
外は前記実施例3と同様に処理して脱炭酸処理水を得
た。この結果を表1に示す。Example 4 Decarbonated water was obtained in the same manner as in Example 3 except that the suction amount of the treated water from the treated water tank (3) was 500 L / hr. Table 1 shows the results.
【0023】[0023]
【表1】 [Table 1]
【0024】表1の結果から明らかな如く、この発明の
脱炭酸処理方法では、噴射ノズルへの被処理水供給量が
一定であるため(実施例1及び2)、常に一定の効率で
脱炭酸処理を行なうことができる。これに対し、噴射ノ
ズルへの被処理水供給量が低下すると(比較例1)、噴
射ノズルから噴射される液滴の噴出流量が低下し、溶存
している炭酸ガスや炭酸が充分に除去されていないこと
が判る。また、原水槽中に送風を行なうと、被処理水中
に溶存している炭酸ガスや炭酸の除去効率がより良好に
なることが判る。As is clear from the results in Table 1, in the decarbonation treatment method of the present invention, since the supply amount of the water to be treated to the injection nozzle is constant (Examples 1 and 2), the decarbonation is always performed with a constant efficiency. Processing can be performed. On the other hand, when the supply amount of the water to be treated to the injection nozzle is decreased (Comparative Example 1), the ejection flow rate of the droplet ejected from the injection nozzle is decreased, and the dissolved carbon dioxide and carbon dioxide are sufficiently removed. You can see that it is not. In addition, it can be seen that when air is blown into the raw water tank, the removal efficiency of carbon dioxide and carbon dioxide dissolved in the water to be treated is improved.
【0025】[0025]
【発明の効果】以上詳述した如く、請求項1に係る発明
は、被処理水を脱炭酸塔へと送り込み、その上方部に設
けられた噴射ノズルにより前記被処理水を多数の微小液
滴に細分して塔内部に噴霧し、溶存するガス成分を空気
中に放散、除去してなる純水製造時の脱炭酸処理工程に
おいて、前記被処理水を所定の原水槽に貯留し、この原
水槽から任意の手段を介して噴射ノズルへと被処理水を
供給すると共に、脱炭酸処理された処理水を前記原水槽
と並列して設けられた処理水槽へと排出し、この処理水
を任意の手段により吸引し、次工程へと送水する際に、
前記処理水の吸引量が予め設定された量よりも減少した
場合に、前記処理水槽中に排出された処理水を原水槽へ
と流入させて、原水槽から噴射ノズルへ送り込まれる被
処理水量を一定量に維持することにより、前記噴射ノズ
ルから噴霧される微小液滴の粒径を一定範囲に設定して
なることを特徴とする脱炭酸処理方法に関するものであ
るから、噴射ノズルより噴出される被処理水の微小液滴
の粒径が、処理水の吸引量に左右されず、常に一定範囲
に設定されるので、被処理水中に溶存している炭酸ガス
を、その供給量に左右されることなく常に一定の効率で
除去することができ、純水及び超純水製造ラインにおい
て好適に使用することができるとともに、脱炭酸塔の高
さや大きさを従来より小さく設計しても、充分な脱炭酸
処理を行なうことができるため、その設置場所が制限さ
れず、且つ設備費を低減することができるなど、優れた
効果を奏する。As described above in detail, according to the first aspect of the present invention, the water to be treated is sent to a decarbonation tower, and the water to be treated is made into a large number of minute droplets by an injection nozzle provided above the tower. The water to be treated is stored in a predetermined raw water tank in a decarboxylation step in the production of pure water by dispersing and dissolving dissolved gas components into the air and spraying the dissolved gas components into the air. The water to be treated is supplied from the water tank to the injection nozzle via any means, and the decarbonated treated water is discharged to a treated water tank provided in parallel with the raw water tank, and the treated water is optionally discharged. When sucking by the means of and sending water to the next process,
When the suction amount of the treated water is smaller than a predetermined amount, the treated water discharged into the treated water tank is caused to flow into the raw water tank, and the amount of the treated water sent from the raw water tank to the injection nozzle is reduced. Since the present invention relates to a decarbonation treatment method characterized in that the particle size of the fine droplets sprayed from the spray nozzle is set to a certain range by maintaining the amount at a certain level, the droplet is ejected from the spray nozzle. Since the particle size of the minute droplets of the water to be treated is always set to a constant range without being influenced by the suction amount of the treated water, the carbon dioxide dissolved in the water to be treated is influenced by the supply amount. It can always be removed at a constant efficiency without being used, it can be suitably used in pure water and ultrapure water production lines, and even if the height and size of the decarbonation tower are designed smaller than before, sufficient Performing decarboxylation treatment Can therefore, its location is not limited, like and it is possible to reduce the equipment cost, an excellent effect.
【0026】また、請求項2に係る発明は、前記原水槽
の下方部には送風機構が設けられてなることを特徴とす
る請求項1に記載の脱炭酸処理方法に関するものである
から、脱炭酸塔における処理負荷を軽減させることがで
きるため、さらに良好な脱炭酸処理を行なうことがで
き、しかも、逆浸透装置の前処理として採用した場合に
は原水のpH調整用の攪拌用エアーとして利用すること
ができるという優れた効果を奏する。The invention according to claim 2 relates to the decarbonation method according to claim 1, wherein a blower mechanism is provided below the raw water tank. Since the processing load on the carbon dioxide tower can be reduced, better decarbonation can be performed, and when it is used as a pretreatment for a reverse osmosis device, it is used as stirring air for adjusting the pH of raw water. The effect is excellent.
【図面の簡単な説明】[Brief description of the drawings]
【図1】この発明に係る脱炭酸処理方法の第一実施例を
示した模式説明図である。FIG. 1 is a schematic explanatory view showing a first embodiment of a decarboxylation treatment method according to the present invention.
【図2】この発明に係る脱炭酸処理方法の第二実施例を
示した模式説明図である。FIG. 2 is a schematic explanatory view showing a second embodiment of the decarboxylation method according to the present invention.
【図3】2床3塔型の純水製造装置を使用した純水製造
工程の一例を示す模式説明図である。FIG. 3 is a schematic explanatory view showing an example of a pure water production process using a two-bed three-tower type pure water production apparatus.
【図4】従来の脱炭酸塔の内部構造を示した模式図であ
る。FIG. 4 is a schematic diagram showing an internal structure of a conventional decarbonation tower.
【図5】この発明の一試験例において使用した従来の脱
炭酸処理工程を示す模式図である。FIG. 5 is a schematic view showing a conventional decarboxylation step used in one test example of the present invention.
1 脱炭酸塔 2 原水槽 3 処理水槽 4 送風機構 7 送風機構 10 噴射ノズル 11 中空部 DESCRIPTION OF SYMBOLS 1 Decarbonation tower 2 Raw water tank 3 Treatment water tank 4 Blow mechanism 7 Blow mechanism 10 Injection nozzle 11 Hollow part
Claims (2)
上方部に設けられた噴射ノズルにより前記被処理水を多
数の微小液滴に細分して塔内部に噴霧し、溶存するガス
成分を空気中に放散、除去してなる純水製造時の脱炭酸
処理工程において、前記被処理水を所定の原水槽に貯留
し、この原水槽から任意の手段を介して噴射ノズルへと
被処理水を供給すると共に、脱炭酸処理された処理水を
前記原水槽と並列して設けられた処理水槽へと排出し、
この処理水を任意の手段により吸引し、次工程へと送水
する際に、前記処理水の吸引量が予め設定された量より
も減少した場合に、前記処理水槽中に排出された処理水
を原水槽へと流入させて、原水槽から噴射ノズルへ送り
込まれる被処理水量を一定量に維持することにより、前
記噴射ノズルから噴霧される微小液滴の粒径を一定範囲
に設定してなることを特徴とする脱炭酸処理方法。 (1) sending the water to be treated to a decarbonation tower,
The water to be treated is multiplied by the spray nozzle provided in the upper part.
Dissolved gas by subdividing into small number of droplets and spraying inside the tower
Decarbonation during production of pure water by dispersing and removing components in the air
In the treatment step, the water to be treated is stored in a predetermined raw water tank.
And from this raw water tank to the injection nozzle through any means
While supplying the water to be treated, the treated water that has been decarbonated
Discharging to a treatment water tank provided in parallel with the raw water tank,
This treated water is sucked by any means and sent to the next process
When performing, the suction amount of the treated water is larger than a preset amount.
When the amount of treated water discharged into the treated water tank decreases,
Into the raw water tank and send it from the raw water tank to the injection nozzle.
By maintaining a constant amount of incoming treated water,
The particle size of the fine droplet sprayed from the injection nozzle is within a certain range.
A decarboxylation treatment method characterized by being set to:
られてなることを特徴とする請求項1に記載の脱炭酸処
理方法。 2. A blower mechanism is provided below the raw water tank.
The decarboxylation treatment according to claim 1, wherein the treatment is performed.
Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34673993A JP2750810B2 (en) | 1993-12-22 | 1993-12-22 | Decarbonation treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34673993A JP2750810B2 (en) | 1993-12-22 | 1993-12-22 | Decarbonation treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07178387A JPH07178387A (en) | 1995-07-18 |
JP2750810B2 true JP2750810B2 (en) | 1998-05-13 |
Family
ID=18385492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34673993A Expired - Lifetime JP2750810B2 (en) | 1993-12-22 | 1993-12-22 | Decarbonation treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2750810B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10308435A1 (en) * | 2003-02-27 | 2004-09-09 | Abb Patent Gmbh | Process to desalinate water in a multi-stage ejector-condenser line with de-gassing station prior to surrender of raw water to process treatment |
JP2008532738A (en) * | 2005-03-03 | 2008-08-21 | ニコライ,ライオネル | Spray device with excellent decontamination |
JP6105879B2 (en) * | 2012-09-10 | 2017-03-29 | 荏原実業株式会社 | Decarboxylation device |
-
1993
- 1993-12-22 JP JP34673993A patent/JP2750810B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07178387A (en) | 1995-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5755934A (en) | Point-of-use ammonia purification for electronic component manufacture | |
EP0860866B1 (en) | Cleaning of semiconductor wafers and microelectronics substrates | |
CN1266047C (en) | Hydrogen dissolving water producing apparatus | |
JP5072062B2 (en) | Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water | |
US5833846A (en) | High-purity water producing apparatus utilizing boron-selective ion exchange resin | |
US6509305B1 (en) | Method for preparing cleaning solution | |
US6444047B1 (en) | Method of cleaning a semiconductor substrate | |
CN87106114A (en) | Method for manufacturing integrated circuit | |
EP0831978A1 (en) | On-site ammonia purification for semiconductor manufacture | |
JP2008272713A (en) | Method for producing ultrapure water, and production device therefor | |
KR101989986B1 (en) | Wet Scrubber Tower with function of Humidity Control and a method for purifying using the same | |
JP2750810B2 (en) | Decarbonation treatment method | |
US5846386A (en) | On-site ammonia purification for semiconductor manufacture | |
US6001223A (en) | On-site ammonia purification for semiconductor manufacture | |
WO1996039358A1 (en) | Point-of-use ammonia purification for electronic component manufacture | |
JP2004181455A (en) | Pollution control apparatus, air conditioning system for substrate treatment facility using it, outside air conditioning system, and method for controlling air | |
US6372022B1 (en) | Ionic purifier | |
JPH0938463A (en) | Treating method of waste gas from semiconductor production | |
JPH08187419A (en) | Waste gas treatment and device therefor | |
JP2587860B2 (en) | Ozone generation method | |
JP2000308815A (en) | Producing device of ozone dissolved water | |
JP2000135492A (en) | Decomposition treatment of hydrogen peroxide | |
JPH1071375A (en) | Washing method | |
JP3393211B2 (en) | Air cleaning method and device | |
JP3100504B2 (en) | Demineralized water production equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090227 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20100227 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100227 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 16 Free format text: PAYMENT UNTIL: 20140227 |
|
EXPY | Cancellation because of completion of term |