JP2748754B2 - Semiconductor optical device - Google Patents

Semiconductor optical device

Info

Publication number
JP2748754B2
JP2748754B2 JP3318860A JP31886091A JP2748754B2 JP 2748754 B2 JP2748754 B2 JP 2748754B2 JP 3318860 A JP3318860 A JP 3318860A JP 31886091 A JP31886091 A JP 31886091A JP 2748754 B2 JP2748754 B2 JP 2748754B2
Authority
JP
Japan
Prior art keywords
electrode
common electrode
semiconductor optical
optical device
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3318860A
Other languages
Japanese (ja)
Other versions
JPH05160500A (en
Inventor
恭一郎 藤川
健志 池田
和久 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3318860A priority Critical patent/JP2748754B2/en
Publication of JPH05160500A publication Critical patent/JPH05160500A/en
Application granted granted Critical
Publication of JP2748754B2 publication Critical patent/JP2748754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、1つの光導波路を介し
て光学的に結合された複数の半導体光素子を集積してな
る素子の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention
Integrated multiple optically coupled semiconductor optical devices.
The present invention relates to a structure of an element .

【0002】[0002]

【従来の技術】図3は従来の熱放散効果を有する電極を
備えた多電極半導体光素子の構造を示す断面図である。
この図において、1はヒートシンクを兼ねた共通電極、
2,3は独立して電流を注入するための電極、4は発光
部分である。
2. Description of the Related Art FIG. 3 is a sectional view showing the structure of a conventional multi-electrode semiconductor optical device having electrodes having a heat dissipation effect.
In this figure, 1 is a common electrode also serving as a heat sink,
2, 3 are electrodes for independently injecting current, and 4 is a light emitting portion.

【0003】次に、動作について説明する。一般に半導
体光素子は注入電流により光出力・増幅特性が変化する
が、同時に注入電流による発熱で半導体の屈折率が変化
し、波長特性も変化する。図3の電極2,3に異なる電
流を与えることにより、図3の半導体光素子が、例えば
多電極DFBレーザであれば、電極2に注入する電流で
光出力を一定に保ったまま電極3に注入する電流で発振
波長を変化させることができる。また、図3の半導体光
素子がマルチビームレーザであれば、各々のレーザ光の
光出力の割合を変化させることができる。図3におい
て、共通電極1は熱を放散させるためのヒートシンクも
兼ねており、電極2と共通電極1間を流れる電流により
生じる熱と、電極3と共通電極1間を流れる電流により
生じる熱は、共通電極1によって外部に放散されるが、
その際の熱の伝わり方はヒートシンクの共通電極1に熱
伝導の異方性がないため、等方的に伝搬する。
Next, the operation will be described. In general, the optical output and amplification characteristics of a semiconductor optical device change due to an injection current, but at the same time, the heat generated by the injection current changes the refractive index of the semiconductor and the wavelength characteristics. By applying different currents to the electrodes 2 and 3 in FIG. 3, if the semiconductor optical device in FIG. 3 is, for example, a multi-electrode DFB laser, the light output to the electrode 3 is kept constant by the current injected into the electrode 2. The oscillation wavelength can be changed by the injected current. If the semiconductor optical device shown in FIG. 3 is a multi-beam laser, the ratio of the light output of each laser beam can be changed. In FIG. 3, the common electrode 1 also serves as a heat sink for dissipating heat, and heat generated by a current flowing between the electrode 2 and the common electrode 1 and heat generated by a current flowing between the electrode 3 and the common electrode 1 are: Dissipated outside by the common electrode 1,
In this case, the heat is transmitted isotropically because the common electrode 1 of the heat sink has no anisotropy of heat conduction.

【0004】[0004]

【発明が解決しようとする課題】従来のヒートシンクを
兼ねた共通電極1を有する多電極半導体光素子は以上の
ように構成されているので、例えば図3において、電極
2に流す電流により発生する熱と、電極3に流す電流に
より発生する熱とが干渉し易いため、波長特性および光
出力特性が注入電流量だけでなく、温度によっても支配
される半導体光素子においては、電気−光特性の複数電
極間のクロストークが大きいために、光出力および波長
を安定にするための帰還方法が複雑になったり、あるい
はマルチビームレーザの各々のビーム間の光出力および
波長の制御が複雑になるといった多くの問題点があっ
た。
Since the conventional multi-electrode semiconductor optical device having the common electrode 1 also serving as a heat sink is constructed as described above, for example, in FIG. And the heat generated by the current flowing through the electrode 3 easily interferes with each other. Therefore, in a semiconductor optical device whose wavelength characteristics and optical output characteristics are governed not only by the amount of injected current but also by the temperature, a plurality of electro-optical characteristics A large amount of crosstalk between the electrodes complicates the feedback method for stabilizing the light output and wavelength, or complicates the control of the light output and wavelength between each beam of the multi-beam laser. There was a problem.

【0005】本発明は、上記のような問題点を解消する
ためになされたもので、ヒートシンクを兼ねた共通電極
の熱伝導特性に異方性をもたせることにより、複数電極
間での電流により発生する熱の干渉を低減した半導体光
素子を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the present invention provides an anisotropic heat conduction characteristic of a common electrode serving also as a heat sink, thereby generating an electric current between a plurality of electrodes. It is an object of the present invention to obtain a semiconductor optical device with reduced heat interference.

【0006】[0006]

【課題を解決するための手段】本発明に係る半導体光素
子は、ヒートシンクを兼ねた共通電極の電極厚さを他の
複数の電極形状に対向する部分を対向しない部分より厚
くすることで、ヒートシンクの熱放散効果に異方性をも
たせたものである。
According to the semiconductor optical device of the present invention, the thickness of the common electrode, which also functions as a heat sink, is made thicker at the portion facing the other plurality of electrode shapes than at the portion not facing the other electrodes. Is anisotropic to the heat dissipation effect.

【0007】[0007]

【作用】本発明におけるヒートシンクを兼ねた共通電極
は、電極の厚みが大きい部分から厚みが小さい部分へ向
かう熱伝導度よりも電極の厚みの大きい部分を通って素
子外部に流れる熱の伝導度のほうが大きくなるので、熱
の放散が異方性となり、熱的干渉を低減できる。
According to the present invention, the common electrode serving also as a heat sink has a lower conductivity than that of the heat conduction from the thicker portion of the electrode to the thinner portion. Since the heat dissipation becomes larger, heat dissipation becomes anisotropic, and thermal interference can be reduced.

【0008】[0008]

【実施例】以下、本発明の一実施例を図について説明す
る。図1は本発明を2電極DFBレーザに適用した一実
施例を示す図である。図1において、1は熱伝導に異方
性を有するヒートシンクを兼ねた共通電極で、電極の厚
みの厚い部分1aと厚みの薄い部分1bとからなり、厚
みの厚い部分1aを電極2,3に対向する部分に形成
し、対向しない部分は厚みの薄い部分1bとすることに
より熱伝導に異方性をもたせている。4は発光部分であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment in which the present invention is applied to a two-electrode DFB laser. In FIG. 1, reference numeral 1 denotes a common electrode serving also as a heat sink having anisotropy in heat conduction. The common electrode 1 comprises a thick portion 1a and a thin portion 1b of the electrode. Anisotropic heat conduction is provided by forming a portion 1b at the opposite portion and a portion 1b having a small thickness at the non-opposing portion. 4 is a light emitting portion.

【0009】共通電極1と電極2間を流れる電流により
生じる熱は、共通電極1に設けられた電極1の厚みの薄
い部分1b、つまり熱抵抗の大きい部分があることによ
り、熱の大部分が共通電極1と電極3間に到達すること
なく、ヒートシンクを兼ねた共通電極1によって素子外
部に放出される。また、共通電極1と電極3間を流れる
電流により生じる熱についても同様のことがいえる。結
果として、共通電極1と電極2間の電流による熱と、共
通電極1と電極3間の電流による熱の干渉は小さく抑え
られる。このため、共通電極1と電極2間を流れる電流
に発光部分4の光出力および発振波長に対する効果と、
電極3と電極2間を流れる電流の発光部分4の光出力お
よび発振波長に対する効果との間の独立性が増すため、
例えば発振する光の光出力を一定に保ったまま発振波長
を変化させる、あるいは発振波長を一定に保ったまま光
出力を変化させるといった制御のための複数電極間の注
入電流量の制御が容易になる。
Most of the heat generated by the current flowing between the common electrode 1 and the electrode 2 is generated by the thin portion 1b of the electrode 1 provided on the common electrode 1, that is, the portion having a large thermal resistance. The light is emitted to the outside of the element by the common electrode 1 which also serves as a heat sink without reaching between the common electrode 1 and the electrode 3. The same can be said for the heat generated by the current flowing between the common electrode 1 and the electrode 3. As a result, the interference between the heat caused by the current between the common electrode 1 and the electrode 2 and the heat caused by the current between the common electrode 1 and the electrode 3 can be reduced. Therefore, the current flowing between the common electrode 1 and the electrode 2 has an effect on the light output and the oscillation wavelength of the light emitting portion 4, and
Since the independence between the light output of the light emitting portion 4 and the effect on the oscillation wavelength of the current flowing between the electrodes 3 and 2 is increased,
For example, it is easy to control the amount of injection current between multiple electrodes for controlling the oscillation wavelength while keeping the optical output of the oscillating light constant, or changing the optical output while keeping the oscillation wavelength constant. Become.

【0010】図2は本発明を2ビームアレイレーザに適
用したものである。この図において、4a,4bは各々
独立した発光部分、2はこの発光部分4aに電流を注入
するための電極、3は前記発光部分4bに電流を注入す
るための電極である。実施例1と同様の理由により、共
通電極1と電極2間および共通電極1と電極3間での熱
的干渉が低減されるので、隣り合うビーム間で一方の発
光部分(例えば4a)に流す電流により生じる発熱が他
方の発光部分(例えば4b)で発生する光の発振波長や
光出力に与える影響が低減できる。
FIG. 2 shows the present invention applied to a two-beam array laser. In this figure, 4a and 4b are independent light emitting portions, 2 is an electrode for injecting current into the light emitting portion 4a, and 3 is an electrode for injecting current into the light emitting portion 4b. For the same reason as in the first embodiment, thermal interference between the common electrode 1 and the electrode 2 and between the common electrode 1 and the electrode 3 is reduced, so that the light flows to one light-emitting portion (for example, 4a) between adjacent beams. The effect of the heat generated by the current on the oscillation wavelength and light output of light generated in the other light emitting portion (for example, 4b) can be reduced.

【0011】また、本発明は、半導体光変調器アレイ,
および光増幅器アレイ等、3つ以上の電極を有し、それ
らが1つの光導波を介して光学的に接続された半導体光
機能素子にも適用できる。図1において、発光部分4を
光導波路に置き換えれば、実施例1において示した理由
により、実施例1と同様の効果を奏する。
Further, the present invention provides a semiconductor optical modulator array,
And optical amplifier arrays and the like, more than two electrodes possess, it
They can also be applied to a semiconductor optical functional device optically connected via one optical waveguide . In FIG. 1, if the light emitting portion 4 is replaced with an optical waveguide, the same effect as in the first embodiment can be obtained for the reason shown in the first embodiment.

【0012】さらに、本発明は、図1における発光部分
4を受光部分に置き換えることにより、半導体受光素子
アレイ等、3つ以上の電極を有する半導体受光素子にも
適用でき、実施例1と同様の効果を奏する。
Further, the present invention can be applied to a semiconductor light receiving element having three or more electrodes, such as a semiconductor light receiving element array, by replacing the light emitting part 4 in FIG. 1 with a light receiving part. It works.

【0013】[0013]

【発明の効果】以上説明したように、本発明によれば、
熱放散効果を有する共通電極の厚さを他の電極に対向す
る部分を対向しない部分より厚くして熱の放散効果に異
方性を有するように構成したので、複数電極間を流れる
電流による発熱相互のクロストークの小さい多電極半導
体光素子が得られる。
As described above, according to the present invention,
The thickness of the common electrode having a heat dissipation effect is made thicker at the portion facing the other electrode than at the portion not facing the other electrode so that the heat dissipation effect has anisotropy. A multi-electrode semiconductor optical device having small mutual crosstalk can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による2電極DFBレーザを
示す断面図である。
FIG. 1 is a cross-sectional view illustrating a two-electrode DFB laser according to one embodiment of the present invention.

【図2】本発明の他の実施例による2ビームアレイレー
ザを示す断面図である。
FIG. 2 is a cross-sectional view illustrating a two-beam array laser according to another embodiment of the present invention.

【図3】従来の多電極半導体光素子を示す断面図であ
る。
FIG. 3 is a sectional view showing a conventional multi-electrode semiconductor optical device.

【符号の説明】[Explanation of symbols]

1 共通電極 1a 厚みの厚い部分 1b 厚みの薄い部分 2 電極 3 電極 4 発光部分 4a 発光部分 4b 発光部分 DESCRIPTION OF SYMBOLS 1 Common electrode 1a Thick part 1b Thin part 2 Electrode 3 Electrode 4 Light emitting part 4a Light emitting part 4b Light emitting part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1つの光導波路を介して光学的に結合さ
れ、ヒートシンクを兼ねる共通電極と、独立した複数の
電極を有する半導体光素子において、前記共通電極と独
立した電極のそれぞれとの間に電流を流すことにより発
生する熱の放散に異方性を持たせるために、前記共通電
極の厚みを前記独立した各電極に対向する部分を対向し
ない部分より厚くしたことを特徴とする半導体光素子。
1. An optically coupled optical waveguide through one optical waveguide.
In a semiconductor optical device having a common electrode also serving as a heat sink and a plurality of independent electrodes, anisotropic heat dissipation generated by flowing a current between the common electrode and the independent electrodes is provided. A semiconductor optical device, wherein a thickness of the common electrode is greater at a portion facing each of the independent electrodes than at a portion not facing the independent electrode.
JP3318860A 1991-12-03 1991-12-03 Semiconductor optical device Expired - Lifetime JP2748754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3318860A JP2748754B2 (en) 1991-12-03 1991-12-03 Semiconductor optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3318860A JP2748754B2 (en) 1991-12-03 1991-12-03 Semiconductor optical device

Publications (2)

Publication Number Publication Date
JPH05160500A JPH05160500A (en) 1993-06-25
JP2748754B2 true JP2748754B2 (en) 1998-05-13

Family

ID=18103766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3318860A Expired - Lifetime JP2748754B2 (en) 1991-12-03 1991-12-03 Semiconductor optical device

Country Status (1)

Country Link
JP (1) JP2748754B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310358B2 (en) * 2004-12-17 2007-12-18 Palo Alto Research Center Incorporated Semiconductor lasers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416992A (en) * 1977-07-07 1979-02-07 Mitsubishi Electric Corp Light emitting diode
JPS63199479A (en) * 1987-02-16 1988-08-17 Nec Corp Semiconductor laser array device

Also Published As

Publication number Publication date
JPH05160500A (en) 1993-06-25

Similar Documents

Publication Publication Date Title
US7486709B2 (en) Semiconductor laser micro-heating element structure
JP3152424B2 (en) Tunable semiconductor laser
JP2004518287A5 (en)
JP2008060445A (en) Light emitting element
US20180278020A1 (en) Submount, optical transmitter module, optical module, optical transmission equipment, and control method therefor
JP2011507263A (en) Tunable semiconductor laser device
JP3990745B2 (en) Semiconductor optical module
JP2748754B2 (en) Semiconductor optical device
JPH0992934A (en) Wavelength changeable semiconductor laser element
US6671297B2 (en) Wavelength conversion device
JPH10256676A (en) Semiconductor laser device
JP2003017793A (en) Semiconductor laser
JP2918739B2 (en) Multi-beam semiconductor laser device
JPH05183239A (en) Semiconductor laser
JPH02306681A (en) Semiconductor laser device
JP3168855B2 (en) Semiconductor light source device and control method thereof
JP2538450Y2 (en) Semiconductor laser device
JP3248569B2 (en) Tunable semiconductor laser
JPS60182181A (en) Semiconductor laser array
JP2000101182A (en) Semiconductor laser
JP2001094155A (en) Wiring structure for self-scanning light-emitting element array
JP2005026333A (en) Semiconductor laser equipment
JP4620216B2 (en) Tunable semiconductor laser
JPS6125234B2 (en)
JPH065980A (en) Distributed reflection type semiconductor laser