JP2746609B2 - Low melting point alloy core and method of manufacturing the same - Google Patents

Low melting point alloy core and method of manufacturing the same

Info

Publication number
JP2746609B2
JP2746609B2 JP26496588A JP26496588A JP2746609B2 JP 2746609 B2 JP2746609 B2 JP 2746609B2 JP 26496588 A JP26496588 A JP 26496588A JP 26496588 A JP26496588 A JP 26496588A JP 2746609 B2 JP2746609 B2 JP 2746609B2
Authority
JP
Japan
Prior art keywords
melting point
core
low melting
point alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26496588A
Other languages
Japanese (ja)
Other versions
JPH02112850A (en
Inventor
矩具 松川
崇 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP26496588A priority Critical patent/JP2746609B2/en
Publication of JPH02112850A publication Critical patent/JPH02112850A/en
Application granted granted Critical
Publication of JP2746609B2 publication Critical patent/JP2746609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低融点合金中子およびその製造方法に関し、
特に、芯材を埋設して圧縮強度を大きくした低融点合金
中子およびその製造方法に関するものである。
The present invention relates to a low melting point alloy core and a method for producing the same,
More particularly, the present invention relates to a low-melting-point alloy core in which a core material is embedded to increase the compressive strength, and a method for manufacturing the same.

〔従来技術および解決しようとする課題〕[Prior art and problems to be solved]

一般に、中空部のある最終成形品を成形する際に、前
記中空部に合致した中子を成形空所内に配設した状態で
成形材料を充填し、中子を内蔵した一次成形品を成形
後、この一次成形品から前記中子のみを除去して中空部
のある成形品を得る方法がある。
In general, when molding a final molded product having a hollow portion, a molding material is filled in a state where a core matching the hollow portion is disposed in a molding cavity, and a primary molded product containing a core is molded. There is a method of obtaining a molded article having a hollow portion by removing only the core from the primary molded article.

そして、これに用いられる中子としては、中子を内蔵
した一次成形品の成形後に所定の温度に加熱することに
より中子を溶融、除去できる低融点合金製のものが知ら
れている。
As the core used for this purpose, there is known a core made of a low melting point alloy that can melt and remove the core by heating to a predetermined temperature after molding a primary molded article containing the core.

しかしながら、上記低融点合金製中子にあっては、そ
の材質にもよるが、常温時の圧縮強度が300〜800Kg/cm2
程度であり、また、融点温度付近においては常温時の圧
縮強度の1/3程度に低下してしまう性質を有しており、
たとえば射出成形の場合、射出成形時の成形材料の成形
圧力(通常800〜1200Kg/cm2によって前記中子が変形し
易く、中子の機能を果たさないものとなり、精密な中空
部形状を有する最終成形品を成形できないという問題点
を有していた。
However, the core made of the low melting point alloy has a compressive strength at room temperature of 300 to 800 kg / cm 2 , depending on its material.
About the melting point temperature, and has the property of decreasing to about 1/3 of the compressive strength at room temperature,
For example, in the case of injection molding, the molding pressure of the molding material at the time of injection molding (usually 800 to 1200 kg / cm 2 makes the core easily deformable and does not fulfill the function of the core. There was a problem that a molded product could not be formed.

これに対し、前記低融点合金製中子に繊維を含有させ
て圧縮強度を大きくすることが考えられるが、繊維と低
融点合金との濡れが悪いとともに、繊維に対して低融点
合金の比重が大きく、単純に含有させようとしても繊維
が低融点合金の上層に分離してしまい、低融点合金に繊
維を含有させることは困難であった。
On the other hand, it is conceivable to increase the compressive strength by adding fibers to the core made of the low melting point alloy, but the wettability between the fibers and the low melting point alloy is poor, and the specific gravity of the low melting point alloy with respect to the fibers is low. Even if it is large, even if it is simply contained, the fiber is separated into the upper layer of the low melting point alloy, and it is difficult to include the fiber in the low melting point alloy.

本発明は上記のような従来のもののもつ問題点を解決
したものであって、低融点合金と分離しない芯材を低融
点合金に埋設し、中子を内蔵する一次成形品の成形時の
成形圧力が作用しても変形しない圧縮強度を有するとと
もに、一次成形品の成形後に加熱する簡単な操作で除去
でき、精密な中空部形状を有する最終成形品を成形する
ことができる低融点合金中子およびその製造方法を提供
することを目的としている。
The present invention solves the above-mentioned problems of the conventional one, and embeds a core material that does not separate from the low-melting alloy in the low-melting alloy, and forms the primary molded article containing the core at the time of molding. A low melting point alloy core that has a compressive strength that does not deform even when pressure is applied and that can be removed by a simple operation of heating after molding of the primary molded product, and that can form a final molded product with a precise hollow shape And a method for manufacturing the same.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するために本発明の低融点合金中子
は、耐熱性繊維の糸を流体が流入する目の粗さに編んだ
袋状に形成した被覆体の内部に耐熱性繊維の束および/
または綿状物を詰めて芯材を形成し、この芯材を低融点
合金に埋設するとともに、芯材の内部に低融点合金を充
填した構成を有していて、また、本発明の低融点合金中
子の製造方法は、当接離隔する上鋳造型と下鋳造型とで
形成する鋳造空所内に、耐熱性繊維の糸を流体が注入す
る目の粗さに編んで袋状に形成した被覆体の内部に耐熱
性繊維の束および/または綿状物を詰めて形成した芯材
を配設し、該芯材の内部に浸透する圧力で溶融した低融
点合金を前記鋳造空所内に充填した後、前記上下の鋳造
型を前記低融点合金の融点温度以下に冷却する手段を有
している。
In order to achieve the above object, the low-melting alloy core of the present invention comprises a heat-resistant fiber bundle inside a bag-shaped coating formed by knitting heat-resistant fiber yarn to a coarse mesh through which a fluid flows. and/
Alternatively, a core material is formed by filling a cotton-like material, and the core material is embedded in a low-melting-point alloy, and the core material is filled with a low-melting-point alloy. The manufacturing method of the alloy core was formed in a bag shape by knitting a thread of a heat-resistant fiber to the roughness of a fluid-injected surface in a casting cavity formed by an upper casting mold and a lower casting mold that are in contact with and separated from each other. A core material formed by packing a bundle of heat-resistant fibers and / or cotton-like material is disposed inside the coating, and a low-melting alloy melted by a pressure penetrating into the core material is filled in the casting cavity. Then, there is provided a means for cooling the upper and lower casting molds to a temperature equal to or lower than the melting point of the low melting point alloy.

〔作用〕[Action]

本発明は上記の構成および手段を採用したことによ
り、中子を内蔵する一次成形品を成形する際の成形圧力
によっても変形しないこととなるとともに、このような
性質を有する中子を簡単、かつ確実に製造できることと
なる。
By adopting the above configuration and means, the present invention will not be deformed even by molding pressure when molding a primary molded article containing a core, and a core having such properties is simply and It can be manufactured reliably.

〔実施例〕〔Example〕

以下、図面に示す本発明の実施例について説明する。 Hereinafter, embodiments of the present invention shown in the drawings will be described.

第1図(a)(b)には本発明による低融点合金中子
の一実施例が示されていて、この低融点合金中子1は、
耐熱性繊維の糸を流体が流入する目の粗さに編んで袋状
に形成した被覆体3aの内部に耐熱性繊維の束3bを詰めて
芯材3を形成し、この芯材3を低融点合金2に埋設する
とともに、芯材3の内部に低融点合金2を充填して断面
円形の略コ字状となる中子形状に形成している。
1 (a) and 1 (b) show an embodiment of a low melting point alloy core according to the present invention.
A bundle of heat-resistant fibers 3b is packed inside a covering 3a formed by knitting a yarn of heat-resistant fiber to the roughness of the eyes into which the fluid flows, and forming a core material 3. The core material 3 is embedded in the melting point alloy 2 and is filled with the low melting point alloy 2 to form a core having a substantially U-shaped cross section.

上記本発明による低融点合金中子1に埋設する芯材3
は、第2図(a)に示すように全体を中子形状より一回
り小さい形状に形成したものであり、耐熱性繊維の糸を
第2図(b)に示すように流体が流入する目の粗さに編
んで袋状に形成した被覆体3a内に第2図(c)に示すよ
うに耐熱性繊維の束3bを中子の軸方向に配列して詰めて
形成したものである。
The core material 3 embedded in the low melting point alloy core 1 according to the present invention.
Is formed into a shape slightly smaller than the core shape as shown in FIG. 2 (a), and heat-resistant fiber yarns are formed as shown in FIG. 2 (b). As shown in FIG. 2 (c), a bundle 3b of heat-resistant fibers is arranged in the axial direction of the core and packed in a cover 3a formed in a bag shape by knitting to a roughness.

また、上記本発明による低融点合金中子1に埋設する
芯材3の他の例は、第3図に示すように、上記と同様な
袋状被覆体3a内の外側に耐熱性繊維の束3bを中子の軸方
向に配列するとともに、その中心部に耐熱性繊維の綿状
物3cを詰めて形成したものであり、本発明の低融点合金
中子1に用いる芯材3は、上記袋状被覆体3a内に耐熱性
繊維の束3bおよび/または綿状物3cを詰めて形成したも
のであればいずれのものであってもよい。
As shown in FIG. 3, another example of the core material 3 embedded in the low-melting alloy core 1 according to the present invention is a bundle of heat-resistant fibers outside the inside of a bag-like coating 3a similar to the above. 3b are arranged in the axial direction of the core, and the center portion thereof is formed by filling a cotton-like material 3c of heat resistant fiber. The core material 3 used for the low melting point alloy core 1 of the present invention is Any material may be used as long as it is formed by packing the bundle 3b of heat-resistant fibers and / or the cotton-like material 3c in the bag-like covering 3a.

上記芯材3の被覆体3aに用いられる耐熱性繊維の糸並
びにこの被覆体3aの内部に充填される耐熱性繊維の束3b
および耐熱性繊維の綿状物3cに用いられる耐熱性繊維と
しては、前記低融点合金2の融点より80℃以上高い温度
にさらされても劣化しないものが好ましく、たとえば炭
素繊維、Eガラス繊維、アルミナ繊維、炭化ケイ素ウィ
スカ等の無機質繊維、アラミド繊維、ナイロン繊維等の
有機繊維、ステンレス繊維、銅繊維等の前記低融点合金
2と合金をつくらない金属繊維等が挙げられる。
Thread of heat-resistant fiber used for the coating 3a of the core material 3 and bundle 3b of heat-resistant fiber filled inside the coating 3a
As the heat-resistant fiber used for the heat-resistant fiber flocculent material 3c, one that does not deteriorate even when exposed to a temperature higher than the melting point of the low-melting alloy 2 by 80 ° C. or more is preferable. For example, carbon fiber, E glass fiber, Examples include inorganic fibers such as alumina fibers and silicon carbide whiskers, organic fibers such as aramid fibers and nylon fibers, and metal fibers that do not form an alloy with the low melting point alloy 2 such as stainless steel fibers and copper fibers.

本発明による低融点合金中子1に用いられる低融点合
金2としては、70〜250℃の融点を有する合金であるこ
とが好ましく、 錫(Sn),ビスマス(Bi)、鉛(Pb)、カドミウム(C
d)、亜鉛(Zn)およびアンチモン(Sb)のグループか
ら選ばれる2〜4つの金属元素を含む合金が好ましく、
たとえば、(1)Bi/Pb/Sn/Cd=50/26.7/13.3/10(融点
70℃)、(2)Bi/Pb/Cd=51.65/40.20/8.15(融点91.5
℃),(3)Bi/Sn=57/43(融点138.5℃)、(4)Pb/
Sn=38.1/61.9(融点183℃)、(5)Sn/Zn=91/9(融
点199℃)、(6)Pb/Sb=87.5/12.5(融点247℃)等が
挙げられる。
The low-melting alloy 2 used for the low-melting alloy core 1 according to the present invention is preferably an alloy having a melting point of 70 to 250 ° C., such as tin (Sn), bismuth (Bi), lead (Pb), and cadmium. (C
d), an alloy containing 2 to 4 metal elements selected from the group of zinc (Zn) and antimony (Sb) is preferable,
For example, (1) Bi / Pb / Sn / Cd = 50 / 26.7 / 13.3 / 10 (melting point
70 ° C), (2) Bi / Pb / Cd = 51.65 / 40.20 / 8.15 (melting point 91.5
° C), (3) Bi / Sn = 57/43 (melting point 138.5 ° C), (4) Pb /
Sn = 38.1 / 61.9 (melting point 183 ° C.), (5) Sn / Zn = 91/9 (melting point 199 ° C.), (6) Pb / Sb = 87.5 / 12.5 (melting point 247 ° C.) and the like.

上記のように構成される本発明による低融点合金中子
1にあっては、耐熱性繊維の束3bおよび/または綿状物
3cを袋状被覆体3aの内部に詰めて形成した芯材3を低融
点合金2に埋設するとともに、その芯材3の内部にも低
融点合金2を充填しているので、低融点合金単体からな
る中子に比較して、本発明による低融点合金中子1では
2倍以上の圧縮強度を示し、また、合金の融点温度近く
においても常温に対する圧縮強度低下は約1/2程度と合
金単体のものに対して大幅に改良されたものとなった。
In the low melting point alloy core 1 according to the present invention configured as described above, the heat-resistant fiber bundle 3b and / or the floc
The core material 3 formed by filling the inside of the bag-shaped cover 3a with 3c is embedded in the low melting point alloy 2 and the inside of the core material 3 is also filled with the low melting point alloy 2, so that only the low melting point alloy is used. In comparison with the core consisting of, the low-melting alloy core 1 according to the present invention exhibits more than twice the compressive strength, and even near the melting point temperature of the alloy, the compressive strength decreases with respect to room temperature by about 1/2. It has been greatly improved over the single one.

本発明の低融点合金中子1の製造方法に用いる鋳造型
は、第4図および第5図に示すように、上鋳造型11とこ
の上鋳造型11に対し当接離隔するように移動する下鋳造
型12とからなり、両型11、12の当接時に鋳造空所13を形
成し、前記上鋳造型11には、溶融した低融点合金2を前
記鋳造空所13に導入する導入口14が形成されるととも
に、両型11、12の分割面に前記鋳造空所13に接続する空
気抜き孔15が形成されている。
As shown in FIGS. 4 and 5, the casting mold used in the method of manufacturing the low melting point alloy core 1 of the present invention moves so as to be in contact with and separate from the upper casting mold 11. A casting cavity 13 is formed when the two molds 11 and 12 come into contact with each other, and the upper casting mold 11 has an inlet for introducing the molten low melting point alloy 2 into the casting cavity 13. 14 is formed, and an air vent hole 15 connected to the casting cavity 13 is formed on the divided surface of the two dies 11 and 12.

上記のように構成される鋳造型を用いて本発明による
低融点合金中子1を製造するには、まず、前記上および
下鋳造型11、12を開いた状態で、前記鋳造空所13内に前
記芯材3を配設した後、両型11、12を型締めし、次に、
前記導入口14からあらかじめ融点より5〜80℃高い温度
に溶融した低融点合金2を前記芯材3を配設した鋳造空
所13内に充填する。
In order to manufacture the low melting point alloy core 1 according to the present invention using the casting mold configured as described above, first, the upper and lower casting molds 11 and 12 are opened and the casting cavity 13 is After arranging the core material 3, the molds 11 and 12 are clamped.
A low-melting alloy 2 previously melted at a temperature 5 to 80 ° C. higher than the melting point from the inlet 14 is filled into the casting cavity 13 in which the core material 3 is disposed.

このこときの低融点合金2の充填圧は前記芯材3の内
部に溶融状態の低融点合金2が浸透できる圧力であり、
低融点合金2を芯材3の内部を含めて鋳造空所13内に充
填後、前記第1および第2の鋳造型11、12を低融点合金
2の融点温度以下に冷却する。最後に鋳造した後両型1
1、12を開き、鋳造品である低融点合金中子を鋳造空所1
3から取り出し、バリをカットし、本発明による低融点
合金中子1を得る。
The filling pressure of the low melting point alloy 2 at this time is a pressure at which the low melting point alloy 2 in a molten state can penetrate into the core material 3,
After filling the low-melting alloy 2 into the casting cavity 13 including the inside of the core material 3, the first and second casting dies 11 and 12 are cooled to a temperature lower than the melting point of the low-melting alloy 2. After casting, both molds 1
Open 1 and 12, and cast a low melting point alloy core
3 and the burrs are cut to obtain a low melting point alloy core 1 according to the present invention.

また、前記上および下鋳造型11、12は、鋳造前にあら
かじめ低融点合金2の融点より5〜50℃低い温度に加熱
しておくことが好ましく、さらに、鋳造後の両型11、12
の冷却温度は低融点合金2の融点より3℃以上低いこと
が好ましい。
Further, it is preferable that the upper and lower casting dies 11 and 12 are preliminarily heated to a temperature lower by 5 to 50 ° C. than the melting point of the low melting point alloy 2 before casting.
Is preferably lower than the melting point of the low melting point alloy 3 by 3 ° C. or more.

上記のようにして鋳造する本発明の低融点合金中子1
の製造方法にあっては、耐熱性繊維の束3bおよび/また
は綿状物3cを袋状被覆体3aの内部に詰めて形成した芯材
3が低融点合金2と分離することなく、芯材3を低融点
合金2に埋設できるとともに、芯材3の内部に低融点合
金2が充填されることとなる。
Low melting point alloy core 1 of the present invention cast as described above
In the manufacturing method, the core material 3 formed by packing the heat-resistant fiber bundle 3b and / or the cotton-like material 3c inside the bag-shaped covering 3a does not separate from the low-melting-point alloy 2, 3 can be embedded in the low melting point alloy 2 and the core material 3 is filled with the low melting point alloy 2.

上記の方法で製造された本発明による低融点合金中子
1は、圧縮成形、射出成形、トランスファー成形等の成
形型の中子として用いられて、精密な中空部のある最終
成形品を成形することができるものである。
The low-melting alloy core 1 according to the present invention manufactured by the above method is used as a core of a molding die such as compression molding, injection molding, transfer molding, etc., to form a final molded product having a precise hollow portion. Is what you can do.

以下、本発明の低融点合金中子を用いて中空部のある
最終成形品を成形する例について説明する。
Hereinafter, an example of forming a final molded product having a hollow portion using the low melting point alloy core of the present invention will be described.

まず、中子を内蔵した一次成形品を成形する成形型の
成形空所内の所定位置に本発明による低融点合金中子1
を配設した後、樹脂等の成形材料を成形空所内に充填
し、所定時間成形した後成形型から成形品を取り出し、
前記低融点合金中子1を内蔵した一次成形品を得る。
First, the low melting point alloy core 1 according to the present invention is placed at a predetermined position in a molding cavity of a molding die for molding a primary molded article containing a core.
After arranging, the molding material such as resin is filled in the molding cavity, and after molding for a predetermined time, the molded product is taken out from the molding die.
A primary molded article incorporating the low melting point alloy core 1 is obtained.

次に、前記で得られた低融点合金中子1を内蔵した一
次成形品を低融点合金2の融点温度以上で、一次成形品
の熱変形する温度以下の温度に空気浴、液体浴、高周波
誘導加熱等の手段により加熱し、低融点合金中子1の低
融点合金2を溶融除去し、さらに、低融点合金2が溶融
した後の中空部内に残った芯材3を取り除き最終成形品
を得る。
Next, the primary molded article containing the low-melting alloy core 1 obtained above is heated to a temperature not lower than the melting point of the low-melting alloy 2 and not higher than the temperature at which the primary molded article is thermally deformed. Heating by means such as induction heating or the like, the low-melting alloy 2 of the low-melting alloy core 1 is melted and removed, and the core material 3 remaining in the hollow portion after the low-melting alloy 2 is melted is removed to obtain a final molded product. obtain.

上記の本発明による低融点合金中子1は、射出成形、
圧縮成形、トランスファー成形等いずれの成形方法にお
いても適用でき、上記の低融点合金中子1を用いて成形
できる成形材料としては、低融点合金2の融点温度付近
においても熱劣化、熱変形しない各種の樹脂材料を用い
ることができ、たとえば熱可塑性樹脂としては、ナイロ
ン6、ナイロン6,6、ナイロン4,6、ナイロン11、ナイロ
ン12等のポリアミド樹脂、ポリブチレンテレフタレー
ト、ポリフェニレンサルファイド、ポリエチレン、オリ
プロピレン、ポリカーボネート、ポリアセタール等の各
合成樹脂が挙げられ、熱硬化性樹脂としては、フェノー
ル、不飽和ポリエステル、シリコン、エポキシ、尿素等
の各合成樹脂が挙げられる。
The low melting point alloy core 1 according to the present invention is injection molded,
The molding material which can be applied to any molding method such as compression molding and transfer molding, and which can be molded using the low melting point alloy core 1 described above, does not deteriorate or thermally deform even near the melting point temperature of the low melting point alloy 2. For example, thermoplastic resins include polyamide resins such as nylon 6, nylon 6,6, nylon 4,6, nylon 11, and nylon 12, polybutylene terephthalate, polyphenylene sulfide, polyethylene, and propylene. , Polycarbonate, polyacetal, etc., and the thermosetting resin includes phenol, unsaturated polyester, silicone, epoxy, urea, etc.

〔発明の効果〕〔The invention's effect〕

本発明は上記のように構成したことにより、低融点合
金と分離をしない芯材を低融点合金に埋設するととも
に、その芯材の内部に低融点合金を充填して低融点合金
中子の圧縮強度を大きくすることができ、中子を内蔵す
る一次成形品の成形時の成形圧力が作用しても変形しな
い圧縮強度を有するとともに、一次成形品の成形後に加
熱する簡単な操作で中子のみを除去でき、精密な中空部
を有する成形品を成形することができるようになるなど
のすぐれた効果を有するものである。
According to the present invention, as described above, a core material that does not separate from the low melting point alloy is embedded in the low melting point alloy, and the low melting point alloy is filled inside the core material to compress the low melting point alloy core. Strength can be increased, it has a compressive strength that does not deform even when molding pressure acts on the primary molded product containing the core, and only the core is heated by a simple operation of heating after molding the primary molded product And has an excellent effect such that a molded article having a precise hollow portion can be formed.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)(b)は本発明による低融点合金中子の一
実施例を示し、第1図(a)は斜視図、第1図(b)は
第1図(a)のI−I線断面説明図、第2図(a)
(b)(c)は本発明による低融点合金中子に埋設する
芯材の第1の実施例を示し、第2図(a)は正面図、第
2図(b)は表面拡大説明図、第2図(c)は第2図
(a)のII−II線断面説明図、第3図は本発明による低
融点合金中子に埋設する芯材の第2の実施例の断面説明
図、第4図および第5図(a)(b)は本発明による低
融点合金中子を製造する鋳造型の説明図であり、第4図
は断面説明図、第5図(a)は下鋳造型の斜視図、第5
図(b)は第5図(a)のV−V線断面説明図である。 1……低融点合金中子 2……低融点合金 3……芯材 3a……被覆体 3b……繊維の束 3c……繊維の綿状物 11……上鋳造型 12……下鋳造型 13……鋳造空所 14……導入口 15……空気抜き孔
1 (a) and 1 (b) show an embodiment of a low melting point alloy core according to the present invention. FIG. 1 (a) is a perspective view, and FIG. 1 (b) is I in FIG. 1 (a). -I line sectional explanatory view, FIG. 2 (a)
(B) and (c) show a first embodiment of a core material embedded in a low melting point alloy core according to the present invention. FIG. 2 (a) is a front view, and FIG. 2 (b) is an enlarged surface explanatory view. FIG. 2 (c) is a cross-sectional explanatory view taken along the line II-II of FIG. 2 (a), and FIG. 3 is a cross-sectional explanatory view of a second embodiment of the core material embedded in the low melting point alloy core according to the present invention. 4 and 5 (a) and 5 (b) are explanatory views of a casting mold for producing a low melting point alloy core according to the present invention. FIG. 4 is a sectional explanatory view, and FIG. 5 (a) is a lower view. Perspective view of casting mold, fifth
FIG. 5B is a cross-sectional explanatory view taken along the line VV in FIG. 5A. DESCRIPTION OF SYMBOLS 1 ... Low melting point alloy core 2 ... Low melting point alloy 3 ... Core material 3a ... Coating body 3b ... Fiber bundle 3c ... Fiber cotton-like material 11 ... Top casting mold 12 ... Bottom casting mold 13 …… Casting space 14 …… Inlet 15 …… Air vent hole

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】耐熱性繊維の糸を流体が流入する目の粗さ
に編んで袋状に形成した被覆体(3a)の内部に耐熱性繊
維の束(3b)および/または綿状物(3c)を詰めて芯材
(3)を形成し、この芯材(3)を低融点合金(2)に
埋設するとともに、芯材(3)の内部に低融点合金
(2)を充填したことを特徴とする低融点合金中子。
1. A heat-resistant fiber bundle (3b) and / or a cotton-like material (3) are formed inside a cover (3a) formed by knitting heat-resistant fiber yarns to a coarse mesh into which a fluid flows and forming a bag. 3c) is filled to form a core material (3), and the core material (3) is embedded in the low melting point alloy (2), and the inside of the core material (3) is filled with the low melting point alloy (2). A low melting point alloy core characterized by the following.
【請求項2】当接離隔する上鋳造型(11)と下鋳造型
(12)とで形成する鋳造空所(13)内に、耐熱性繊維の
糸を流体が注入する目の粗さに編んで袋状に形成した被
覆体(3a)の内部に耐熱性繊維の束(3b)および/また
は綿状物(3c)を詰めて形成した芯材(3)を配設し、
該芯材(3)の内部に浸透する圧力で溶融した低融点合
金(2)を前記鋳造空所(13)内に充填した後、前記上
下の鋳造型(11)、(12)を前記低融点合金(2)の融
点温度以下に冷却することを特徴とする低融点合金中子
の製造方法。
2. The method according to claim 1, wherein a heat-resistant fiber yarn is injected into a casting cavity (13) formed by an upper casting mold (11) and a lower casting mold (12) which are in contact with and separated from each other. A core material (3) formed by packing a heat-resistant fiber bundle (3b) and / or a cotton-like material (3c) inside a knitted and bag-shaped cover (3a) is provided.
After filling the casting cavity (13) with the low melting point alloy (2) melted under the pressure penetrating into the core material (3), the upper and lower casting dies (11) and (12) are filled with the low melting point alloy. A method for producing a low melting point alloy core, comprising cooling the alloy to a temperature lower than the melting point of the melting point alloy (2).
JP26496588A 1988-10-20 1988-10-20 Low melting point alloy core and method of manufacturing the same Expired - Lifetime JP2746609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26496588A JP2746609B2 (en) 1988-10-20 1988-10-20 Low melting point alloy core and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26496588A JP2746609B2 (en) 1988-10-20 1988-10-20 Low melting point alloy core and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02112850A JPH02112850A (en) 1990-04-25
JP2746609B2 true JP2746609B2 (en) 1998-05-06

Family

ID=17410664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26496588A Expired - Lifetime JP2746609B2 (en) 1988-10-20 1988-10-20 Low melting point alloy core and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2746609B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480801A (en) * 2013-09-18 2014-01-01 沈阳工业大学 Novel preparation method for casting crankshaft oil bore

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691888B (en) * 2013-12-12 2019-05-03 中国兵器工业第五九研究所 A kind of composite core shapes the casting method of special-shaped pore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480801A (en) * 2013-09-18 2014-01-01 沈阳工业大学 Novel preparation method for casting crankshaft oil bore

Also Published As

Publication number Publication date
JPH02112850A (en) 1990-04-25

Similar Documents

Publication Publication Date Title
US8024993B2 (en) Bicycle component and method for manufacturing such a component
US5494627A (en) Method for making a vehicle seat component with improved resistance to permanent deformation
JP2746609B2 (en) Low melting point alloy core and method of manufacturing the same
JPS6264468A (en) Casted body and manufacture thereof
WO1986002570A1 (en) An artificial feather for shuttlecocks and method of manufacturing such a feather
DE2251435A1 (en) Plastic mouldings - with complicated cavities produced with low-melting metal alloy moulding cores
JP2801917B2 (en) Manufacturing method of low melting point alloy core
EP0058555A1 (en) Reinforced hollow or tubular articles
JP2746611B2 (en) Low melting point alloy core and method of manufacturing the same
EP0271222A3 (en) Production of metal matrix composites
JP2950624B2 (en) Method for producing cylindrical body having resin filter part
JP2579997B2 (en) Method for manufacturing resin molded products
JPS6387206A (en) Preparation of molding having projecting rib
US5195571A (en) Method of die cast molding metal to fiber reinforced fiber plastic
JPH0530832Y2 (en)
JP2768714B2 (en) Casting mold and casting method using the casting mold
JP2746616B2 (en) Low-melting-point alloy core, method of manufacturing the same, and method of forming molded article using the same
JPS5889343A (en) Manufacture of thermosetting resin molded product
JP2773261B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JPS6050135B2 (en) Manufacturing method for fiber-reinforced plastic moldings
EP0755739B1 (en) A method of manufacturing low melting-point metal cores
JP2734074B2 (en) Leachable core for resin molding
JPS6163426A (en) Manufacture of molded article of electromagnetic wave shielding material
JP3070693B2 (en) Manufacturing method of core made of low melting point alloy
JPH071503A (en) Production of oil pan