JPH02112850A - Low melting point alloy core and its manufacture - Google Patents

Low melting point alloy core and its manufacture

Info

Publication number
JPH02112850A
JPH02112850A JP26496588A JP26496588A JPH02112850A JP H02112850 A JPH02112850 A JP H02112850A JP 26496588 A JP26496588 A JP 26496588A JP 26496588 A JP26496588 A JP 26496588A JP H02112850 A JPH02112850 A JP H02112850A
Authority
JP
Japan
Prior art keywords
melting point
core
low melting
point alloy
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26496588A
Other languages
Japanese (ja)
Other versions
JP2746609B2 (en
Inventor
Noritomo Matsukawa
松川 矩具
Takashi Miyazaki
崇 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP26496588A priority Critical patent/JP2746609B2/en
Publication of JPH02112850A publication Critical patent/JPH02112850A/en
Application granted granted Critical
Publication of JP2746609B2 publication Critical patent/JP2746609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make compressing strength of a low m.p. alloy core highly by packing bundle and wire-like materials of heat resistant fibers in a bag-like coating body knitted with yarn made of heat resistant fibers to form a core material, embedding the core material into the low m.p. alloy and also filling up the low m.p. alloy in the core material. CONSTITUTION:An upper and lower casting molds 11, 12 are opened and after arranging the core material 3 in the casting cavity 13, both molds 11, 12 are clamped. Successively, the molten low m.p. alloy 2 is filled up into the casting cavity 13 arranging the core material 3 from an introducing hole 14. Then, after filling up the low m.p. alloy 2 into the inner part of the core material 3 and in the casting core 13, the casting molds 11, 12 are cooled to obtain the low m.p. alloy core 1. Therefore, the compressing strength of the core 1 can be made to high and even if the forming pressure is acted at the time of forming a primary forming product including the core, the core has the compressing strength without any deformation and also after forming the primary forming product, by heating, only the core can be removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低融点合金中子およびその製造方法に関し、特
に、芯材を埋設して圧縮強度を大きくした低融点合金中
子およびその製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a low melting point alloy core and a method for manufacturing the same, and in particular, a low melting point alloy core in which a core material is embedded to increase compressive strength and a method for manufacturing the same. It is related to.

〔従来技術および解決しようとする課題〕−IIIQに
、中空部のある最終成形品を成形する際に、前記中空部
に合致した中子を成形空所内に配設した状態で成形材料
を充填し、中子を内蔵した一次成形品を成形後、この−
次成形品から前記中子のみを除去して中空部のある成形
品を得る方法がある。
[Prior art and problems to be solved]-IIIQ, when molding a final molded product with a hollow part, a molding material is filled with a core that matches the hollow part placed in the molding cavity. , after molding the primary molded product with a built-in core, this −
There is a method of obtaining a molded product with a hollow portion by removing only the core from the next molded product.

そして、これに用いられる中子としては、中子を内蔵し
た一次成形品の成形後に所定の温度に加熱することによ
り中子を溶融、除去できる低融点合金製のものが知られ
ている。
As the core used for this, it is known that the core is made of a low melting point alloy, and the core can be melted and removed by heating to a predetermined temperature after forming a primary molded product containing the core.

しかしながら、上記低融点合金製中子にあっては、その
材質にもよるが、常温時の圧縮強度が300〜800K
g/cd程度であり、また、融点温度付近においては常
温時の圧縮強度のl/3程度に低下してしまう性質を有
しており、たとえば射出成形の場合、射出成形時の成形
材料の成形圧力(J常800〜1200 K g/cj
)によって前記中子が変形し易く、中子の機能を果たさ
ないものとなり、精密な中空部形状を有する最終成形品
を成形できないという問題点を有していた。
However, the core made of the above-mentioned low melting point alloy has a compressive strength of 300 to 800 K at room temperature, depending on the material.
g/cd, and has the property that near the melting point temperature, the compressive strength decreases to about 1/3 of the compressive strength at room temperature.For example, in the case of injection molding, the molding material during injection molding Pressure (J normal 800-1200 Kg/cj
), the core is easily deformed and does not function as a core, resulting in a problem that a final molded product having a precise hollow shape cannot be molded.

これに対し、前記低融点合金製中子に繊維を含有させて
圧縮強度を大きくすることが考えられるが、繊維と低融
点合金との濡れが悪いとともに、繊維に対して低融点合
金の比重が大きく、単純に含有させようとしても繊維が
低融点合金の上層に分離してしまい、低融点合金に繊維
を含有させることは困難であった。
To deal with this, it is possible to increase the compressive strength by incorporating fibers into the core made of the low melting point alloy, but this would result in poor wetting between the fibers and the low melting point alloy and the specific gravity of the low melting point alloy relative to the fibers. It is difficult to incorporate fibers into the low melting point alloy because the fibers are so large that even if an attempt is made to simply incorporate them, the fibers will separate into the upper layer of the low melting point alloy.

本発明は上記のような従来のもののもつ問題点を解決し
たものであって、低融点合金と分離しない芯材を低融点
合金に埋設し、中子を内蔵する一次成形品の成形時の成
形圧力が作用しても変形しない圧縮強度を有するととも
に、−次成形品の成形後に加熱する簡単な操作で除去で
き、精密な中空部形状を有する最終成形品を成形するこ
とができる低融点合金中子およびその製造方法を提供す
ることを目的としている。
The present invention solves the above-mentioned problems of the conventional products by embedding a core material that does not separate from the low melting point alloy in the low melting point alloy, and forming it during molding of the primary molded product containing the core. A low melting point alloy that has a compressive strength that does not deform even when pressure is applied, can be removed by a simple heating operation after forming the next molded product, and can be molded into a final molded product with a precise hollow part shape. The purpose of this invention is to provide a product and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明の低融点合金中子は
、耐熱性繊維の糸を流体が流入する目の粗さに編んで袋
状に形成した被覆体の内部に耐熱性繊維の束および/ま
たは綿状物を詰めて芯材を形成し、この芯材を低融点合
金に埋設するとともに、芯材の内部に低融点合金を充填
した構成を有していて、また、本発明の低融点合金中子
の製造方法は、当接離隔する上鋳造型と下鋳造型とで形
成する鋳造空所内に、耐熱性繊維の糸を流体が流入する
目の粗さに編んで袋状に形成した被覆体の内部に耐熱性
繊維の束および/または綿状物を詰めて形成した芯材を
配設し、該芯材の内部に浸透する圧力で溶融した低融点
合金を前記鋳造空所内に充填した後、前記−ヒ下の鋳造
型を前記低融点合金の融点温度以下に冷却する手段を有
している。
In order to achieve the above object, the low melting point alloy core of the present invention has a bundle of heat resistant fibers inside a bag-shaped covering made by knitting threads of heat resistant fibers into a bag-like shape that allows fluid to flow in. and/or a core material is filled with cotton-like material, this core material is embedded in a low melting point alloy, and the core material is filled with a low melting point alloy, and the present invention The manufacturing method for low melting point alloy cores involves knitting heat-resistant fiber threads into a bag-like shape in a casting cavity formed by an upper casting mold and a lower casting mold that are in contact with each other in a space that allows fluid to flow in. A core material formed by filling bundles of heat-resistant fibers and/or cotton-like material is disposed inside the formed coating, and a low melting point alloy melted by pressure penetrating into the core material is poured into the casting cavity. After filling the mold, the lower casting mold is cooled to a temperature below the melting point of the low melting point alloy.

〔作用〕[Effect]

本発明は上記の構成および手段を採用したことにより、
中子を内蔵する一次成形品を成形する際の成形圧力によ
っても変形しないこととなるとともに、このような性質
を有する中子を簡単、かつ確実に製造できることとなる
By employing the above configuration and means, the present invention has the following features:
This means that the primary molded product containing the core will not be deformed by the molding pressure during molding, and the core that has these properties can be manufactured easily and reliably.

[実施例] 以下、図面に示す本発明の実施例について説明する。[Example] Embodiments of the present invention shown in the drawings will be described below.

第1図+at fblには本発明による低融点合金中子
の一実施例が示されていて、この低融点合金中子lは、
耐熱性繊維の糸を流体が流入する目の粗さに編んで袋状
に形成した被覆体3aの内部に耐熱性繊維の束3bを詰
めて芯材3を形成し、この芯材3を低融点合金2に埋設
するとともに、芯材3の内部に低融点合金2を充填して
断面円形の略コ字状となる中子形状に形成している。
FIG. 1+at fbl shows an embodiment of a low melting point alloy core according to the present invention, and this low melting point alloy core l is
A core material 3 is formed by filling bundles 3b of heat resistant fibers inside a covering 3a formed into a bag by knitting threads of heat resistant fibers into a coarse mesh that allows fluid to flow in. The core material 3 is embedded in the melting point alloy 2, and the core material 3 is filled with the low melting point alloy 2 to form a core having a substantially U-shaped cross section.

上記本発明による低融点合金中子1に埋設する芯材3は
、第2図(alに示すように全体を中子形状より一回り
小さい形状に形成したものであり、耐熱性繊維の糸を第
2図+blに示すように流体が流入する目の粗さに編ん
で袋状に形成した被覆体3a内に第2図(C1に示すよ
うに耐熱性風維の束3bを中子の軸方向に配列して詰め
て形成したものである。
The core material 3 embedded in the low melting point alloy core 1 according to the present invention is formed into a shape that is slightly smaller than the core shape as a whole, as shown in FIG. As shown in Fig. 2+bl, bundles 3b of heat-resistant wind fibers are placed on the shaft of the core, as shown in Fig. 2 (C1), inside a covering 3a formed into a bag by knitting to a coarse mesh through which fluid flows. It is formed by arranging and packing in the direction.

また、上記本発明による低融点合金中子1に埋設する芯
材3の他の例は、第3図に示すように、上記と同様な袋
状被覆体3a内の外側に耐熱性繊維の束3bを中子の軸
方向に配列するとともに、その中心部に耐熱性繊維の綿
状物3cを詰めて形成したものであり、本発明の低融点
合金中子lに用いる芯材3は、上記袋状被覆体3a内に
耐熱性繊維の束3bおよび/または綿状物3cを詰めて
形成し、たちのであればいずれのものであってもよい。
Further, another example of the core material 3 embedded in the low melting point alloy core 1 according to the present invention is as shown in FIG. 3, as shown in FIG. The core material 3 used in the low melting point alloy core l of the present invention is formed by arranging the core materials 3b in the axial direction of the core and filling the center with a cotton-like material 3c of heat-resistant fibers. The bag-like covering 3a is formed by stuffing bundles 3b of heat-resistant fibers and/or cotton-like material 3c, and any material may be used as long as it is the same.

上記芯材3の被覆体3aに用いられる耐熱性繊維の糸並
びにこの被覆体3aの内部に充填される耐熱性繊維の束
3bおよび耐熱性繊維の綿状物3cに用いられる耐熱性
繊維としては、前記低融点合金2の融点より80℃以上
高い温度にさらされても劣化しないものが好ましく、た
とえば炭素繊維、Eガラス繊維、アルミナ繊維、炭化ケ
イ素ウィスカ等の無機質繊維、アラミド繊維、ナイロン
繊維等の有機繊維、ステンレス繊維、銅繊維等の前記低
融点合金2と合金をつくらない金属繊維等が挙げられる
The heat-resistant fibers used in the heat-resistant fiber threads used in the covering body 3a of the core material 3, the heat-resistant fiber bundles 3b and the heat-resistant fiber flocs 3c filled inside the covering body 3a are as follows: , those that do not deteriorate even when exposed to temperatures 80° C. or more higher than the melting point of the low melting point alloy 2 are preferable, such as carbon fibers, E-glass fibers, alumina fibers, inorganic fibers such as silicon carbide whiskers, aramid fibers, nylon fibers, etc. Metal fibers that do not form an alloy with the low melting point alloy 2, such as organic fibers, stainless steel fibers, and copper fibers, can be mentioned.

本発明による低融点合金中子1に用いられる低融点合金
2としては、70〜250℃の融点を有する合金である
ことが好ましく、 錫(S n)  ビスマス(Bi)、鉛(P b)カド
ミウム(Cd)、亜鉛(Z n)およびアンチモン(S
b)のグループから選ばれる2〜4つの金属元素を含む
合金が好ましく、たとえば、(1) B i / P 
b / S n / Cd = 50 / 26 、 
7 /13.3/10 (融点70℃) 、+2) B
 i / P b/Cd=51. 65/40. 20
/8. 15(融点 91.5℃) 、(31B i 
/ S n = 57 /43(融点138.5℃) 
、+41 P b / S n −38,1/61.9
 (融点183℃) 、+51 S n/Zn=  9
1/9(融点199℃) 、+6) P b/Sb= 
 87.5/12.5 (融点247℃)等が挙げられ
る。
The low melting point alloy 2 used in the low melting point alloy core 1 according to the present invention is preferably an alloy having a melting point of 70 to 250°C, and includes tin (Sn), bismuth (Bi), lead (Pb), cadmium (Cd), zinc (Z n) and antimony (S
An alloy containing 2 to 4 metal elements selected from the group b) is preferable, for example, (1) B i /P
b/Sn/Cd=50/26,
7 /13.3/10 (melting point 70℃), +2) B
i/Pb/Cd=51. 65/40. 20
/8. 15 (melting point 91.5°C), (31B i
/ S n = 57 /43 (melting point 138.5°C)
, +41 Pb/Sn -38,1/61.9
(Melting point 183°C), +51 S n/Zn = 9
1/9 (melting point 199°C), +6) Pb/Sb=
87.5/12.5 (melting point 247°C) and the like.

上記のように構成される本発明による低融点合金中子1
にあっては、耐熱性繊維の束3bおよび/または綿状物
3cを袋状被覆体3aの内部に詰めて形成した芯材3を
低融点合金2に埋設するとともに、その芯材3の内部に
も低融点合金2を充填しているので、低融点合金単体か
らなる中子に比較して、本発明による低融点合金中子l
では2倍以上の圧縮強度を示し、また、合金の融点温度
近くにおいても常温に対する圧縮強度低下は約1/2程
度と合金単体のものに対して大幅に改良されたものとな
った。
Low melting point alloy core 1 according to the present invention configured as described above
In this case, a core material 3 formed by stuffing a bundle of heat-resistant fibers 3b and/or a cotton material 3c inside a bag-like covering 3a is embedded in a low melting point alloy 2, and the inside of the core material 3 is Since the core is also filled with the low melting point alloy 2, the low melting point alloy core l according to the present invention
showed more than twice the compressive strength, and even near the melting point of the alloy, the compressive strength decreased by about 1/2 compared to room temperature, which was a significant improvement over that of the alloy alone.

本発明の低融点合金中子1の製造方法に用いる鋳造型は
、第4図および第5図に示すように、上鋳造型11とこ
の上鋳造型11に対し当接離隔するように移動する下鋳
造型12とからなり、両型11.12の当接時に鋳造空
所13を形成し、前記上鋳造型11には、溶融した低融
点合金2を前記鋳造空所13に導入する導入口14が形
成されるとともに、両型11.12の分割面に前記鋳造
空所13に接続する空気抜き孔15が形成されている。
As shown in FIGS. 4 and 5, the casting mold used in the method for manufacturing the low melting point alloy core 1 of the present invention is moved so as to come into contact with and away from the upper casting mold 11. The upper casting mold 11 has an inlet for introducing the molten low melting point alloy 2 into the casting cavity 13. 14 is formed, and an air vent hole 15 connected to the casting cavity 13 is formed in the dividing surface of both molds 11 and 12.

上記のように構成される鋳造型を用いて本発明による低
融点合金中子lを製造するには、まず、前記上および下
鋳造型11,12を開いた状態で、前記鋳造空所13内
に前記芯材3を配設した後、両型11.12を型締めし
、次に、前記導入口14からあらかしめ融点より5〜8
0℃高い温度に溶融した低融点合金2を前記芯材3を配
設した鋳造空所13内に充填する。
In order to manufacture the low melting point alloy core l according to the present invention using the casting mold configured as described above, first, with the upper and lower casting molds 11 and 12 open, the inside of the casting cavity 13 is After disposing the core material 3 in
The low melting point alloy 2 melted at a temperature 0° C. higher is filled into the casting cavity 13 in which the core material 3 is disposed.

このときの低融点合金2の充填圧は前記芯材3の内部に
溶融状態の低融点合金2が浸透できる圧力であり、低融
点合金2を芯材3の内部を含めて鋳造空所13内に充填
後、前記第1および第2の鋳造型11,12を低融点合
金2の融点温度以下に冷却する。最後に鋳造した後両型
11.12を間き、鋳造品である低融点合金中子を鋳造
空所13から取り出し、パリをカットし、本発明による
低融点合金中子lを得る。
The filling pressure of the low melting point alloy 2 at this time is such that the molten low melting point alloy 2 can penetrate into the inside of the core material 3, and the low melting point alloy 2 is filled into the casting cavity 13 including the inside of the core material 3. After filling, the first and second casting molds 11 and 12 are cooled to below the melting point temperature of the low melting point alloy 2. After the final casting, the molds 11 and 12 are separated, the cast product low melting point alloy core is taken out from the casting cavity 13, and the edges are cut to obtain the low melting point alloy core l according to the present invention.

また、前記上および下鋳造型11.12は、鋳造前にあ
らかじめ低融点合金2の融点より5〜50℃低い温度に
加熱しておくことが好ましく、さらに、鋳造後の両型1
1.12の冷却温度は低融点合金2の融点より3°C以
上低いことが好ましい。
Further, it is preferable that the upper and lower casting molds 11 and 12 are heated in advance to a temperature 5 to 50°C lower than the melting point of the low melting point alloy 2 before casting, and furthermore, both molds 11 and 12 after casting are
The cooling temperature of 1.12 is preferably 3°C or more lower than the melting point of low melting point alloy 2.

上記のようにして鋳造する本発明の低融点C命中子1の
製造方法にあっては、耐熱性繊維の束3bおよび/また
は綿状物3cを袋状被覆体3aの内部に詰めて形成した
芯材3が低融点合金2と分離することなく、芯材3を低
融点合金2に埋設できるとともに、芯材3の内部に低融
点合金2が充填されることとなる。
In the method for producing the low melting point C hit element 1 of the present invention, which is cast as described above, the bundle 3b of heat-resistant fibers and/or the cotton material 3c are stuffed inside the bag-like covering 3a. The core material 3 can be embedded in the low melting point alloy 2 without separating the core material 3 from the low melting point alloy 2, and the core material 3 is filled with the low melting point alloy 2.

上記の方法で製造された本発明による低融点合金中子1
は、圧縮成形、射出成形、トランスファー成形等の成形
型の中子として用いられて、精密な中空部のある最終成
形品を成形することができるものである。
Low melting point alloy core 1 according to the present invention manufactured by the above method
is used as the core of a mold for compression molding, injection molding, transfer molding, etc., and can form a final molded product with a precise hollow part.

以下、本発明の低融点合金中子を用いて中空部のある最
終成形品を成形する例について説明する。
Hereinafter, an example of molding a final molded product having a hollow portion using the low melting point alloy core of the present invention will be described.

まず、中子を内蔵した一次成形品を成形する成形型の成
形空所内の所定位置に本発明による低融点合金中子lを
配設した後、樹脂等の成形材料を成形空所内に充填し、
所定時間成形した後成形型から成形品を取り出し、前記
低融点合金中子1を内蔵した一次成形品を得る。
First, the low melting point alloy core l according to the present invention is placed at a predetermined position in the molding cavity of a mold for molding a primary molded product with a built-in core, and then a molding material such as a resin is filled into the molding cavity. ,
After molding for a predetermined period of time, the molded product is removed from the mold to obtain a primary molded product containing the low melting point alloy core 1.

次に、前記で得られた低融点合金中子lを内蔵した一次
成形品を低融点合金2の融点温度以上で、−次成形品の
熱変形する温度以下の温度に空気浴、液体浴、高周波誘
導加熱等の手段により加熱し、低融点合金中子1の低融
点合金2を溶融除去し、さらに、低融点合金2が溶融し
た後の中空部内に残った芯材3を取り除き最終成形品を
得る。
Next, the primary molded product containing the low melting point alloy core 1 obtained above is heated in an air bath or a liquid bath at a temperature higher than the melting point temperature of the low melting point alloy 2 and lower than the temperature at which the next molded product is thermally deformed. The low melting point alloy 2 of the low melting point alloy core 1 is heated by means such as high frequency induction heating, and then the low melting point alloy 2 of the low melting point alloy core 1 is melted and removed, and the core material 3 remaining in the hollow part after the low melting point alloy 2 is melted is removed, resulting in a final molded product. get.

上記の本発明による低融点合金中子1は、射出成形、圧
縮成形、トランスファー成形等いずれの成形方法におい
ても適用でき、上記の低融点合金中子1を用いて成形で
きる成形材料としては、低融点合金2の融点温度付近に
おいても熱劣化、熱変形しない各種の樹脂材料を用いる
ことができ、たとえば熱可塑性樹脂としては、ナイロン
6、ナイロン6.6、ナイロン4,6、ナイロン11、
ナイロン12等のポリアミド樹脂、ポリブチレンテレフ
タレート、ポリフェニレンサルファイド、ポリエチレン
、ポリプロピレン、ポリカーボネート、ポリアセタール
等の各合成樹脂が挙げられ、熱硬化性樹脂としては、フ
ェノール、不飽和ポリエステル、シリコン、エポキシ、
尿素等の各合成樹脂が挙げられる。
The above low melting point alloy core 1 according to the present invention can be applied to any molding method such as injection molding, compression molding, transfer molding, etc. As a molding material that can be molded using the above low melting point alloy core 1, Various resin materials that do not undergo thermal deterioration or thermal deformation even near the melting point temperature of Melting Point Alloy 2 can be used. For example, thermoplastic resins include nylon 6, nylon 6.6, nylon 4,6, nylon 11,
Examples include polyamide resins such as nylon 12, polybutylene terephthalate, polyphenylene sulfide, polyethylene, polypropylene, polycarbonate, polyacetal, and other synthetic resins, and thermosetting resins include phenol, unsaturated polyester, silicone, epoxy,
Examples include various synthetic resins such as urea.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成したことにより、低融点合金
と分離をしない芯材を低融点合金に埋設するとともに、
その芯材の内部に低融点合金を充填して低融点合金中子
の圧縮強度を太きくすることができ、中子を内蔵する一
次成形品の成形時の成形圧力が作用しても変形しない圧
縮強度を有するとともに、−次成形品の成形後に加熱す
る簡単な操作で中子のみを除去でき、精密な中空部を有
する成形品を成形することができるようになるなどのす
くれた効果を有するものである。
By configuring the present invention as described above, the core material that is not separated from the low melting point alloy is embedded in the low melting point alloy, and
By filling the inside of the core material with a low melting point alloy, the compressive strength of the low melting point alloy core can be increased, and it will not deform even when the molding pressure is applied during molding of the primary molded product containing the core. In addition to having high compressive strength, it has the advantage of being able to remove only the core with a simple heating operation after molding the next molded product, making it possible to mold molded products with precise hollow parts. It is something that you have.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al [blは本発明による低融点合金中子の
一実施例を示し、第1図falは斜視図、第1図fbl
は第1図(alのl−1yA断面説明図、第2図(a)
(′b)tc+は本発明による低融点合金中子に埋設す
る芯材の第1の実施例を示し、第2図(alは正面図、
第2図+b)は表面拡大説明図、第2図(C1は第2図
ta+のn−n線断面説明図、第3図は本発明による低
融点合金中子に埋設する芯材の第2の実施例の断面説明
図、第4図および第5図(δ)(b)は本発明による低
融点合金中子を製造する鋳造型の説明図であり、第4図
は断面説明図、第5図(alは上鋳造型の斜視図、第5
図(blは第5図(alの■V線断面説明図である。 1・・・・・・低融点合金中子 2・・・・・・低融点合金 3・・・・・・芯材 3a・・・・・・被覆体 3b・・・・・・繊維の束 3c・・・・・・繊維の綿状物 11・・・・・・1鋳造型 12・・・・・・上鋳造型 13・・・・・・鋳造空所 14・・・・・・導入口 15・・・・・・空気抜き孔 第 図 (b) 第 図 第2図 (G) (b) ■ (C) 第 図 (b) 13錦u’FPrT
Figure 1 (al [bl] shows one embodiment of the low melting point alloy core according to the present invention, Figure 1 fal is a perspective view, Figure 1 fbl
Figure 1 (l-1yA cross-sectional explanatory diagram of al, Figure 2 (a)
('b) tc+ shows the first embodiment of the core material embedded in the low melting point alloy core according to the present invention, and FIG. 2 (al is a front view,
FIG. 2+b) is an enlarged surface explanatory diagram, FIG. 4 and 5 (δ) (b) are explanatory views of a casting mold for producing a low melting point alloy core according to the present invention, and FIG. Figure 5 (al is a perspective view of the upper casting mold, 5th
Figure (bl is an explanatory view of the cross section on line ■V in Figure 5 (al). 1...Low melting point alloy core 2...Low melting point alloy 3...Core material 3a...Coating 3b...Bundle of fibers 3c...Fib-like material 11...1 Casting mold 12...Top casting Mold 13... Casting cavity 14... Inlet 15... Air vent hole Figure (b) Figure Figure 2 (G) (b) ■ (C) Figure (b) 13 brocade u'FPrT

Claims (2)

【特許請求の範囲】[Claims] (1)耐熱性繊維の糸を流体が流入する目の粗さに編ん
で袋状に形成した被覆体(3a)の内部に耐熱性繊維の
束(3b)および/または綿状物(3c)を詰めて芯材
(3)を形成し、この芯材(3)を低融点合金(2)に
埋設するとともに、芯材(3)の内部に低融点合金(2
)を充填したことを特徴とする低融点合金中子。
(1) A bundle of heat-resistant fibers (3b) and/or a cotton-like substance (3c) is placed inside a bag-shaped covering (3a) formed by knitting threads of heat-resistant fibers into a coarse mesh that allows fluid to flow in. This core material (3) is embedded in the low melting point alloy (2), and the low melting point alloy (2) is filled inside the core material (3).
) A low melting point alloy core characterized by being filled with.
(2)当接離隔する上鋳造型(11)と下鋳造型(12
)とで形成する鋳造空所(13)内に、耐熱性繊維の糸
を流体が流入する目の粗さに編んで袋状に形成した被覆
体(3a)の内部に耐熱性繊維の束(3b)および/ま
たは綿状物(3c)を詰めて形成した芯材(3)を配設
し、該芯材(3)の内部に浸透する圧力で溶融した低融
点合金(2)を前記鋳造空所(13)内に充填した後、
前記上下の鋳造型(11)、(12)を前記低融点合金
(2)の融点温度以下に冷却することを特徴とする低融
点合金中子の製造方法。
(2) Upper casting mold (11) and lower casting mold (12) that come into contact and separate
A bundle of heat-resistant fibers ( ) is placed inside a bag-shaped covering (3a) formed by knitting threads of heat-resistant fibers into a bag-like shape that allows fluid to flow into the casting cavity (13). A core material (3) formed by filling 3b) and/or a cotton material (3c) is disposed, and the low melting point alloy (2) melted by pressure penetrating into the core material (3) is cast. After filling the void (13),
A method for producing a low melting point alloy core, characterized in that the upper and lower casting molds (11) and (12) are cooled to a temperature below the melting point of the low melting point alloy (2).
JP26496588A 1988-10-20 1988-10-20 Low melting point alloy core and method of manufacturing the same Expired - Lifetime JP2746609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26496588A JP2746609B2 (en) 1988-10-20 1988-10-20 Low melting point alloy core and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26496588A JP2746609B2 (en) 1988-10-20 1988-10-20 Low melting point alloy core and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02112850A true JPH02112850A (en) 1990-04-25
JP2746609B2 JP2746609B2 (en) 1998-05-06

Family

ID=17410664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26496588A Expired - Lifetime JP2746609B2 (en) 1988-10-20 1988-10-20 Low melting point alloy core and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2746609B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691888A (en) * 2013-12-12 2014-04-02 中国兵器工业第五九研究所 Method for manufacturing composite core shaping irregular pore

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480801A (en) * 2013-09-18 2014-01-01 沈阳工业大学 Novel preparation method for casting crankshaft oil bore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691888A (en) * 2013-12-12 2014-04-02 中国兵器工业第五九研究所 Method for manufacturing composite core shaping irregular pore

Also Published As

Publication number Publication date
JP2746609B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
US5494627A (en) Method for making a vehicle seat component with improved resistance to permanent deformation
EP1281609B1 (en) Process for the production of a crank lever for a bicycle and crank lever for a bicycle
US4615855A (en) Process for forming composite article
FR2548084B1 (en) PROCESS FOR MANUFACTURING COMPOSITE OBJECTS AND COMPOSITE OBJECTS OBTAINED
EP0202249A1 (en) An artificial feather for shuttlecocks and method of manufacturing such a feather.
JPH02112850A (en) Low melting point alloy core and its manufacture
JPH07102445B2 (en) Cast body and manufacturing method thereof
EP0551574B1 (en) Composite implant with metallic braid
JPH04269515A (en) Manufacture of molded item, molded item and its reinforcing material
JPS63139731A (en) Synthetic such as shelf and manufacture of said synthetic
US5195571A (en) Method of die cast molding metal to fiber reinforced fiber plastic
JP2746611B2 (en) Low melting point alloy core and method of manufacturing the same
JP2801917B2 (en) Manufacturing method of low melting point alloy core
JP2950624B2 (en) Method for producing cylindrical body having resin filter part
JPH0530832Y2 (en)
JP2768714B2 (en) Casting mold and casting method using the casting mold
JPS5889343A (en) Manufacture of thermosetting resin molded product
JPH03149485A (en) Multiple-unit tube
JPS6050135B2 (en) Manufacturing method for fiber-reinforced plastic moldings
JP2773261B2 (en) Method for producing fiber-reinforced thermoplastic resin molded article
JP2556256B2 (en) FRTP molding method
JPH02133143A (en) Low melting alloy core and production thereof and method for molding molded article by using this core
JPH0318826B2 (en)
JPH01269511A (en) Manufacture of resin molded product
JPH071503A (en) Production of oil pan