JP2746550B2 - Polyamic acid and polyimide - Google Patents
Polyamic acid and polyimideInfo
- Publication number
- JP2746550B2 JP2746550B2 JP7216185A JP21618595A JP2746550B2 JP 2746550 B2 JP2746550 B2 JP 2746550B2 JP 7216185 A JP7216185 A JP 7216185A JP 21618595 A JP21618595 A JP 21618595A JP 2746550 B2 JP2746550 B2 JP 2746550B2
- Authority
- JP
- Japan
- Prior art keywords
- polyimide
- polyamic acid
- dielectric constant
- embedded image
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/032—Organic insulating material consisting of one material
- H05K1/0346—Organic insulating material consisting of one material containing N
Landscapes
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ポリアミド酸およびポ
リイミドに係り、特に、低い誘電率を有する材料に関す
る。The present invention relates to polyamic acids and polyimides, and more particularly to materials having a low dielectric constant.
【0002】[0002]
【従来の技術】大型計算機の演算処理速度は、素子の高
速化、実装系の高密度化によって高速化の一途をたどっ
ている。これに対応し、実装基板の信号層に用いる絶縁
材料の低誘電化の要求も高まっている。この理由は、絶
縁膜の誘電率が低ければ低い程、下記(III)式に示す関
係により、信号伝播遅延が低減され、その結果、演算処
理速度の高速化が見込めるからである。2. Description of the Related Art The arithmetic processing speed of a large-scale computer has been steadily increasing due to an increase in the speed of elements and an increase in the density of a mounting system. In response to this, there is an increasing demand for lowering the dielectric constant of the insulating material used for the signal layer of the mounting board. The reason is that the lower the dielectric constant of the insulating film, the lower the signal propagation delay due to the relationship shown in the following equation (III), and as a result, the higher the processing speed can be expected.
【0003】 Td=l√ε (III) Td:信号伝播遅延時間 l:回路定数 ε:絶縁層の比誘電率 具体的な方策としては、従来絶縁層に用いられていたセ
ラミックス(ε≒10)を、有機材料(ε=2〜6)に
替える試みがなされている。その材料としては、実装基
板製造時の薄膜プロセス、並びに、チップ接続、ピン付
等の後工程に耐えられる優れた耐熱性を有する、例えば
米国特許第3179634号公報記載のポリイミド系樹
脂が着目されている。Td = l√ε (III) Td: signal propagation delay time l: circuit constant ε: relative dielectric constant of insulating layer As a specific measure, ceramics conventionally used for the insulating layer (ε ≒ 10) Is being replaced with an organic material (ε = 2 to 6). As the material, attention is focused on a polyimide resin described in, for example, US Pat. No. 3,179,634, which has excellent heat resistance that can withstand a thin film process at the time of manufacturing a mounting substrate, and a post process such as chip connection and pin attachment. I have.
【0004】この中でも、低比誘電率のポリイミドとし
ては、サーミッドFA−7001((株)カネボウエヌ
エスシー)が、ε=2.95(10kHz、カタログ
値)という値で、市販品の中で低い値を有している。[0004] Among these, as a polyimide having a low relative dielectric constant, THERmid FA-7001 (Kanebo uenu SSC) has a value of ε = 2.95 (10 kHz, catalog value), which is the lowest among commercially available products. Have a value.
【0005】[0005]
【発明が解決しようとする課題】しかし、上記ポリイミ
ド系樹脂にあっても、演算処理速度の高速化に伴い、さ
らに比誘電率の低いものが要求されてきているのが実情
である。すなわち、計算機用薄膜多層基板に代表され
る、高速信号処理が求められる基板や、素子の絶縁層に
好適な材料として、低比誘電率で、しかも、耐熱性の優
れた材料が要求されている。However, even in the case of the above-mentioned polyimide resin, a resin having a lower relative dielectric constant has been demanded in accordance with an increase in the processing speed. In other words, as a material suitable for a substrate requiring high-speed signal processing, such as a thin-film multilayer substrate for a computer, or an insulating layer of an element, a material having a low dielectric constant and excellent heat resistance is required. .
【0006】本発明の目的は、このような要求に沿っ
た、従来より低誘電率で、かつ、従来と同等の耐熱性を
有して、高速信号処理が求められる基板や、素子の絶縁
層に好適な材料とその製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a substrate and an insulating layer of an element which have a lower dielectric constant than conventional ones, have the same heat resistance as conventional ones, and require high-speed signal processing. And a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段】上記目的は、下記の一般
式(I)で表わされる繰り返し単位から成るポリアミド
酸、または、下記の一般式(II)で表わされる繰り返し
単位から成るポリイミドにおいて、The object of the present invention is to provide a polyamic acid comprising a repeating unit represented by the following general formula (I) or a polyimide comprising a repeating unit represented by the following general formula (II):
【0008】[0008]
【化1】 Embedded image
【0009】[0009]
【化4】 Embedded image
【0010】Ar1は、Ar 1 is
【0011】[0011]
【化2】 Embedded image
【0012】のうちから選ばれる少なくとも一種の基で
あり、Ar2は、Ar 2 is at least one group selected from the group consisting of
【0013】[0013]
【化3】 Embedded image
【0014】のうちから選ばれる少なくとも一種の基で
あることを特徴とするポリアミド酸またはポリイミドを
熱硬化し、成膜することにより達成される。This is attained by thermosetting a polyamic acid or polyimide, which is at least one group selected from the groups, to form a film.
【0015】このポリアミド酸、または、ポリイミド
は、N,N−ジメチルアセトアミド、N,N−ジメチル
ホルムアミド、N−メチル−2−ピロリドン、ジグライ
ム等の極性溶媒中で、ジアミンとテトラカルボン酸二無
水物の重合反応により製造すればよい。This polyamic acid or polyimide is prepared by diamine and tetracarboxylic dianhydride in a polar solvent such as N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, diglyme, etc. May be produced by a polymerization reaction of
【0016】上記ジアミンとしては、As the above diamine,
【0017】[0017]
【化5】 Embedded image
【0018】のうちから選ばれる少なくとも一種を用い
る。At least one selected from the above is used.
【0019】また、上記テトラカルボン酸二無水物とし
ては、The tetracarboxylic dianhydride includes:
【0020】[0020]
【化6】 Embedded image
【0021】のうちから選ばれる少なくとも一種を用い
る。At least one selected from the above is used.
【0022】[0022]
【実施例】以下、本発明の実施例を詳細に説明する。Embodiments of the present invention will be described below in detail.
【0023】<実施例1>反応容器である500mlの
4つ口フラスコに、羽根付撹拌棒、冷却管、N2ガス導
入管を取り付けた後、乾燥N2ガスを流す。フラスコ内
がN2ガスで十分置換されたところで、脱水蒸留した
N,N−ジメチルアセトアミドを150g入れ、下記
(IV)式で表わされる芳香族ジアミン29.526g
(69.6mmol)を加え完全に溶解する。<Example 1> A 500 mL four-necked flask serving as a reaction vessel was equipped with a stirring rod with a blade, a cooling pipe, and a N 2 gas introduction pipe, and then flowed dry N 2 gas. When the inside of the flask was sufficiently replaced with N 2 gas, 150 g of dehydrated and distilled N, N-dimethylacetamide was added, and 29.526 g of an aromatic diamine represented by the following formula (IV):
(69.6 mmol) and completely dissolved.
【0024】[0024]
【化7】 Embedded image
【0025】この後、フラスコを冷水浴につけ、ジアミ
ンと等モル量の下記(V)式で表わされるテトラカルボ
ン酸二無水物を反応液の温度が40℃以上にならないよ
う少量ずつ加える。この際、反応容器壁についた上記テ
トラカルボン酸二無水物をN,N−ジメチルアセトアミ
ド50gで洗い流しながら加える。Thereafter, the flask is placed in a cold water bath, and an equimolar amount of tetracarboxylic dianhydride represented by the following formula (V) is added little by little so that the temperature of the reaction solution does not exceed 40 ° C .: At this time, the above tetracarboxylic dianhydride attached to the reaction vessel wall is added while washing with 50 g of N, N-dimethylacetamide.
【0026】[0026]
【化8】 Embedded image
【0027】この後、室温で6時間撹拌し、さらに、オ
イルバスを用い、反応液の温度を70℃に上げ、4時間
撹拌を行なった後、自然冷却し、室温まで下がったとこ
ろで撹拌を止め、ポリアミド酸ワニスを得た。After that, the mixture was stirred at room temperature for 6 hours, the temperature of the reaction solution was raised to 70 ° C. using an oil bath, and the mixture was stirred for 4 hours. Thus, a polyamic acid varnish was obtained.
【0028】このワニスは固形分濃度20wt%であ
り、粘度は1.1Pa・sであった。This varnish had a solid content of 20 wt% and a viscosity of 1.1 Pa · s.
【0029】次に、このワニスをポアサイズ2μmのテ
フロンフィルタを用い加圧濾過して異物を除き、図1に
示すように、φ3インチのガラス基板1上に形成された
2μm厚の下部Al電極2上にスピン塗布した。次い
で、この基板を200℃30分、さらに350℃30分
熱処理によりイミド化し、厚さ5μmのポリイミド膜3
を形成した。Next, the varnish was subjected to pressure filtration using a Teflon filter having a pore size of 2 μm to remove foreign substances, and as shown in FIG. Spin coated on top. Next, the substrate was imidized by heat treatment at 200 ° C. for 30 minutes and further at 350 ° C. for 30 minutes, and a polyimide film 3 having a thickness of 5 μm was formed.
Was formed.
【0030】さらに、該ポリイミド膜3上にマスク蒸着
により2μm厚の上部Al電極4を形成し、該ポリイミ
ド膜3の一部をカッタナイフにより削り、下部Al電極
2を露出させ、誘電率測定用試料を作製した。Further, an upper Al electrode 4 having a thickness of 2 μm is formed on the polyimide film 3 by mask vapor deposition. A sample was prepared.
【0031】この試料を用い、ポリイミド膜3の静電容
量を、(株)横川ヒューレットパッカード製のLCZメ
ータ4277Aで測定し、下記の式(VI)を用いて比誘
電率εを求めた。測定周波数は10kHzを用いた。Using this sample, the capacitance of the polyimide film 3 was measured with an LCZ meter 4277A manufactured by Yokogawa Hewlett-Packard Co., Ltd., and the relative dielectric constant ε was obtained using the following equation (VI). The measurement frequency used was 10 kHz.
【0032】 (c:静電容量、d:試料膜厚、ε0:真空の誘電率、
S:上部電極面積) この際のεは2.6であり、従来のポリイミドと比べ、
十分に低い値であった。[0032] (C: capacitance, d: sample thickness, ε 0 : vacuum dielectric constant,
(S: upper electrode area) At this time, ε is 2.6, which is smaller than that of the conventional polyimide.
It was a sufficiently low value.
【0033】また、ε測定用フィルムと同様にして、シ
リコンウエハ上に熱硬化して成膜したポリイミドフィル
ムを用い、ガラス転移温度(Tg)と熱分解開始温度
(TG)とを、それぞれ、(株)真空理工製のDSC−
1500M、TGD−500RHを用い測定した。その
結果、Tg=320℃、TG=440℃と高い耐熱性を
有することが確認できた。Further, in the same manner as in the film for measuring ε, a polyimide film formed by thermosetting on a silicon wafer was used, and the glass transition temperature (Tg) and the thermal decomposition onset temperature (TG) were respectively set to ( DSC- manufactured by Vacuum Riko Co., Ltd.
It measured using 1500M and TGD-500RH. As a result, it was confirmed that Tg = 320 ° C. and TG = 440 ° C., which have high heat resistance.
【0034】<実施例2>実施例1と同様な反応によ
り、図2のNo.1〜No.6および図3のNo.7〜
No.8に示した如く、ポリアミド酸前駆体→ポリイミ
ドフィルムを製造した。またε,Tg,TGの評価も同
様に行なった。実施例1と同様に従来のポリイミドと比
べ、十分に低εであり、Tg,TG共、高い値を示し
た。<Example 2> By the same reaction as in Example 1, No. 2 in FIG. 1 to No. 6 and No. 3 in FIG. 7 ~
No. As shown in No. 8, a polyamic acid precursor → a polyimide film was produced. The evaluation of ε, Tg, and TG was performed in the same manner. As in Example 1, the ε was sufficiently lower than that of the conventional polyimide, and both Tg and TG showed high values.
【0035】<比較例>ポリアミド酸ワニスである商品
名PIQ(日立化成工業株式会社製)を用い、実施例1
と同様にポリイミドフィルムを製造し、ε,Tg,TG
を測定した。ε=3.4、Tg=310℃、TG=46
0℃であり、耐熱性は優れているものの、εは本発明と
較べ高い値であった。<Comparative Example> Example 1 was performed using a polyamic acid varnish (trade name: PIQ, manufactured by Hitachi Chemical Co., Ltd.).
, Tg, TG
Was measured. ε = 3.4, Tg = 310 ° C., TG = 46
The temperature was 0 ° C. and the heat resistance was excellent, but ε was higher than that of the present invention.
【0036】[0036]
【発明の効果】本発明によれば、εが低く、かつ高耐熱
なポリイミド樹脂が得られるため、計算機用薄膜多層基
板に代表されるところの、高速信号処理が求められる基
板、または素子の絶縁層に本材料を用いれば、信号処理
速度向上の効果がある。According to the present invention, since a polyimide resin having a low ε and a high heat resistance can be obtained, a substrate or a device which requires high-speed signal processing, such as a thin film multilayer substrate for a computer, is required. Use of this material for the layer has the effect of improving the signal processing speed.
【図1】 本発明の実施例1で形成される、ε測定用試
料の断面形状の概要を示す断面図である。FIG. 1 is a cross-sectional view showing an outline of a cross-sectional shape of a sample for ε measurement formed in Example 1 of the present invention.
【図2】 実施例2において製造したポリイミドを示す
図表である。FIG. 2 is a chart showing a polyimide produced in Example 2.
【図3】 実施例2において製造したポリイミドを示す
図表である。FIG. 3 is a chart showing a polyimide produced in Example 2.
1…ガラス基板、2…下部Al電極、3…ポリイミド
膜、4…上部Al電極。DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2 ... Lower Al electrode, 3 ... Polyimide film, 4 ... Upper Al electrode.
Claims (2)
単位から成るポリアミド酸において、 【化1】 Ar1は、 【化2】 のうちのいずれかの基であり、Ar2は、 【化3】 のうちのいずれかの基であることを特徴とするポリアミ
ド酸。1. A polyamic acid comprising a repeating unit represented by the following general formula (I): Ar 1 is Ar 2 is a group represented by the following formula: A polyamic acid, which is any one of the above groups.
単位から成るポリイミドにおいて、 【化4】 Ar1は、 【化2】 のうちのいずれかの基であり、 Ar2は、 【化3】 のうちのいずれかの基であることを特徴とするポリイミ
ド。2. A polyimide comprising a repeating unit represented by the following general formula (II): Ar 1 is Is any of the radicals, Ar 2 is embedded image A polyimide, which is any one of the above groups.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7216185A JP2746550B2 (en) | 1995-08-24 | 1995-08-24 | Polyamic acid and polyimide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7216185A JP2746550B2 (en) | 1995-08-24 | 1995-08-24 | Polyamic acid and polyimide |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63010146A Division JP2575772B2 (en) | 1988-01-20 | 1988-01-20 | Polyamic acid production method, polyimide production method, and polyimide precursor varnish |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0859831A JPH0859831A (en) | 1996-03-05 |
JP2746550B2 true JP2746550B2 (en) | 1998-05-06 |
Family
ID=16684627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7216185A Expired - Fee Related JP2746550B2 (en) | 1995-08-24 | 1995-08-24 | Polyamic acid and polyimide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2746550B2 (en) |
-
1995
- 1995-08-24 JP JP7216185A patent/JP2746550B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0859831A (en) | 1996-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0216007A2 (en) | Process for producing organic silicon-terminated polyimide precursor and polyimide | |
US6084053A (en) | Electronic part and process for manufacturing the same | |
US4686147A (en) | Magnetic head and method of producing the same | |
KR100217451B1 (en) | Polyimide copolymers containing 4-4'-bis(aminophenoxy)biphenyl and siloxane diamine moieties | |
JP4042201B2 (en) | Electronic component and manufacturing method thereof | |
US5133989A (en) | Process for producing metal-polyimide composite article | |
US5854380A (en) | Polyimide precursor solution process for the production thereof coating or film obtained therefrom and process for producing the film | |
KR101107847B1 (en) | Crystalline encapsulants | |
US5164816A (en) | Integrated circuit device produced with a resin layer produced from a heat-resistant resin paste | |
JP2746550B2 (en) | Polyamic acid and polyimide | |
EP0361462A2 (en) | Process for producing copper or silver/polyimide composite article | |
JP2001302913A (en) | Polyimide precursor solution and polyamide coating film obtainable therefrom | |
JPS62253621A (en) | Polyimide resin | |
JP2575772B2 (en) | Polyamic acid production method, polyimide production method, and polyimide precursor varnish | |
JP3633238B2 (en) | Aromatic bis (ether anhydride), polyamic acid and polyimide | |
JP3641901B2 (en) | Polyamic acid and polyimide | |
JP3079740B2 (en) | Polyimide and wiring structure using the same | |
JP4045621B2 (en) | Electrical insulating material containing fluorine-containing polyimide resin and electronic component using the same | |
JP2662425B2 (en) | Process for producing polyimide isoindoloquinazolinedione and its precursor | |
JPH11349683A (en) | Polyimide resin, polyamic acid and interlayer insulation film | |
JPH0649207A (en) | Production of electronic device using polyamic acid ester | |
JP3653888B2 (en) | Polyamic acid and polyimide | |
JPH04285660A (en) | Heat-resistant resin paste and ic using the same | |
JP2000186145A (en) | Polybenzoxazole precursor and polybenzoxazole resin | |
JP2001323100A (en) | Polymer of low dielectric constant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |