JP2745839B2 - Manufacturing method of martensitic stainless steel slab - Google Patents

Manufacturing method of martensitic stainless steel slab

Info

Publication number
JP2745839B2
JP2745839B2 JP3036084A JP3608491A JP2745839B2 JP 2745839 B2 JP2745839 B2 JP 2745839B2 JP 3036084 A JP3036084 A JP 3036084A JP 3608491 A JP3608491 A JP 3608491A JP 2745839 B2 JP2745839 B2 JP 2745839B2
Authority
JP
Japan
Prior art keywords
temperature
transformation
less
stainless steel
martensitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3036084A
Other languages
Japanese (ja)
Other versions
JPH04276014A (en
Inventor
光之 森重
裕造 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3036084A priority Critical patent/JP2745839B2/en
Publication of JPH04276014A publication Critical patent/JPH04276014A/en
Application granted granted Critical
Publication of JP2745839B2 publication Critical patent/JP2745839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、一般に13Cr系ステ
ンレス鋼と称されるマルテンサイト系ステンレス鋼、さ
らに詳細には、C:0.40%以下、Si:1.0%以
下、Mn:1.0%以下、Cr:10〜15%、Ni:
0.80%以下を含有するマルテンサイト系ステンレス
鋼の鋼片の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a martensitic stainless steel generally called 13Cr stainless steel, more specifically, C: 0.40% or less, Si: 1.0% or less, Mn: 1 0.0% or less, Cr: 10 to 15%, Ni:
The present invention relates to a method for producing a billet of martensitic stainless steel containing 0.80% or less.

【0002】[0002]

【従来の技術】一般にマルテンサイト系ステンレス鋼
は、耐食性高合金シームレス油井管等として広く使用さ
れており、その成分としては上記組成のものが一般的で
ある。また、その製造に際しては、図3に示したよう
に、溶解工程(I)および連続鋳造工程(II) を経て得
た高温鋳片を、約850℃にて均熱炉に装入し、加熱
(III)した後、熱間圧延(IV) を行い、徐冷炉にて約7
50℃から約200℃まで徐冷(V)し、次いで軟化焼
鈍(VI)を施した後、外周切削(VII)し製管(VIII) を
行うという工程を採っていた。
2. Description of the Related Art In general, martensitic stainless steel is widely used as a corrosion-resistant high-alloy seamless oil country tubular good or the like, and its component is generally the one having the above composition. In the production, as shown in FIG. 3, the high temperature slab obtained through the melting step (I) and the continuous casting step (II) is charged into a soaking furnace at about 850 ° C. After (III), hot rolling (IV) is performed and about 7
A process of gradually cooling (V) from 50 ° C. to about 200 ° C., followed by softening annealing (VI), cutting the outer periphery (VII), and forming a pipe (VIII) is employed.

【0003】このように従来法においては軟化焼鈍工程
が必須であった。この理由は、軟化焼鈍を行わないと、
13Cr鋼の焼入性が良好なため、素形材の丸ビレット
製造段階の冷却過程でマルテンサイト変態を起こして変
態割れが生じやすく、またこのマルテンサイトは硬度が
高く、ビレットにした場合、その外周の切削が極めて困
難になるためである。
[0003] As described above, in the conventional method, the soft annealing step was essential. The reason for this is that if soft annealing is not performed,
Because of the good hardenability of 13Cr steel, martensitic transformation is likely to occur in the cooling process of the round billet production stage of the shaped material, and transformation cracks are likely to occur. This is because it becomes extremely difficult to cut the outer periphery.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記方
法においては、通常、熱間圧延後1000℃の温度で4
時間および750℃の温度で15時間、軟化焼鈍のため
加熱しなければならないため、処理に時間がかかる上
に、経済的にも消費エネルギーが大きいという問題があ
る。
However, in the above-mentioned method, usually, hot rolling is performed at a temperature of 1000.degree.
It has to be heated for 15 hours at a temperature of 750 ° C. and a temperature of 750 ° C., so that it takes a long time for the treatment, and there is a problem that the energy consumption is large economically.

【0005】そこで本発明の主目的は、熱間圧延後の冷
却過程でフェライト+パーライト組織を十分発達させ、
マルテンサイト変態生成を抑制することにより、上記軟
化焼鈍工程の省略を可能とし、マルテンサイト系ステン
レス鋼を短時間に経済的に製造する方法を提供すること
にある。
Accordingly, a main object of the present invention is to sufficiently develop a ferrite + pearlite structure in a cooling process after hot rolling,
An object of the present invention is to provide a method for economically producing martensitic stainless steel in a short time by suppressing the formation of martensitic transformation, thereby enabling the softening annealing step to be omitted.

【0006】[0006]

【課題を解決するための手段】上記課題は、C:0.4
0%以下、Si:1.0%以下、Mn:1.0%以下、
Cr:10〜15%、Ni:0.80%以下を含有する
マルテンサイト系ステンレス鋼を、連続鋳造法により鋳
造後、オーステナイト温度域から、γ組織からα組織へ
の変態温度以下で300℃以上の温度まで、20℃/H
r以下の冷却速度で冷却した後、1200〜1250℃
に加熱し、最終圧延温度が800℃以上として熱間圧延
を行い、次いで10℃/Hr以下の徐冷速度で冷却する
ことで解決できる。
Means for Solving the Problems The above-mentioned problems are as follows: C: 0.4
0% or less, Si: 1.0% or less, Mn: 1.0% or less,
After casting a martensitic stainless steel containing Cr: 10 to 15% and Ni: 0.80% or less by the continuous casting method, from the austenite temperature range, from γ structure to α structure
Up to a temperature of 300 ° C or higher below the transformation temperature of 20 ° C / H
After cooling at a cooling rate of r or less, 1200-1250 ° C
This can be solved by performing hot rolling at a final rolling temperature of 800 ° C. or higher and then cooling at a slow cooling rate of 10 ° C./Hr or lower.

【0007】[0007]

【作用】本発明において、上記組成のマルテンサイト系
ステンレス鋼鋳片をオーステナイト温度域から、γ組織
からα組織への変態温度以下で300℃以上の温度ま
で、冷却する。すなわち、本発明は、γ→α変態温度以
下のできるだけ低い温度に冷却することにより変態を起
こさせ、結晶粒を微細化しようとするものである。
According to the present invention, a martensitic stainless steel slab having the above composition is subjected to γ-structure formation from the austenite temperature range.
Temperature below 300 ° C below the transformation temperature to
And cool. That is, the present invention is intended to cause transformation by cooling to a temperature as low as possible below the γ → α transformation temperature, thereby making the crystal grains fine .

【0008】冷却下限温度を300℃としたのは、マル
テンサイト変態開始温度(MS 点)直上としてマルテン
サイト変態割れを防止するためである。この際、冷却速
度が大きい程α核生成場所の増加に伴い、結晶粒の微細
化が得られるが、鋳片内外温度差による熱応力割れ防止
のため、鋳片の冷却速度を20℃/Hr以下とした。
The lower limit of the cooling temperature is set to 300 ° C. in order to prevent martensite transformation cracking just above the martensite transformation start temperature (MS point). At this time, as the cooling rate increases, crystal grains become finer as the number of α nucleation sites increases. However, in order to prevent thermal stress cracking due to a temperature difference between the inside and outside of the slab , the slab cooling rate is set to 20 ° C./Hr. It was as follows.

【0009】次に、この鋳片を熱間圧延のために加熱
し、α→γ再変態を起こさせるが、α結晶粒が微細なた
め、γ核生成場所は増加し、γの成長は抑制される。す
なわち、鋳片を一旦γ→α変態温度以下に冷却した後再
加熱する方が、γ→α変態点以上の温度から再加熱され
るのと比較して、結晶粒は微細となる。
Next, the slab is heated for hot rolling to cause α → γ retransformation. However, since α grains are fine, the number of γ nucleation sites increases and the growth of γ is suppressed. Is done. That is, when the slab is once cooled to a temperature below the γ → α transformation temperature and then reheated, the crystal grains become finer than when reheated from a temperature above the γ → α transformation point.

【0010】また、鋳片を熱間圧延のために加熱する温
度を、1200℃〜1250℃としたのは、1250℃
を超えると粒界脆化を生じ、割れ発生の原因となり、1
200℃未満の場合は鋳片の変形抵抗が大きく熱間圧延
が困難となり、また最終圧延温度が800℃未満となっ
てしまうからである。
The temperature at which the slab is heated for hot rolling is set at 1200 ° C. to 1250 ° C.
If the ratio exceeds 1, grain boundary embrittlement occurs, causing cracking.
If the temperature is lower than 200 ° C., the deformation resistance of the slab is large and hot rolling becomes difficult, and the final rolling temperature is lower than 800 ° C.

【0011】上記範囲内の温度にすれば、鋳片を熱間圧
延した後徐冷する際に、徐冷前の結晶粒が微細なことに
より、拡散を伴う変態であるγ→α変態の核生成場所で
ある粒界が増加し、γ→α変態が起こりやすく、マルテ
ンサイト変態は抑制される。
When the temperature is in the above range, when the slab is hot-rolled and then gradually cooled, the crystal grains before the slow cooling are fine, so that the nucleus of the γ → α transformation, which is a transformation accompanied by diffusion, is performed. The grain boundaries, which are the generation sites, increase, and γ → α transformation is likely to occur, and martensitic transformation is suppressed.

【0012】本発明において、最終圧延温度が800℃
以上になるようにしたのは、最終圧延温度が800℃に
満たない場合には、冷却速度を遅くしても、フェライト
+パーライト変態を十分行うことができないためであ
る。また熱間圧延後の鋼片の徐冷速度を10℃/Hr以
下とした理由は、フェライト+パーライト変態を十分に
促進させるためである。
In the present invention, the final rolling temperature is 800 ° C.
The reason for this is that if the final rolling temperature is lower than 800 ° C., the ferrite + pearlite transformation cannot be performed sufficiently even if the cooling rate is reduced. The reason for setting the slow cooling rate of the steel slab after hot rolling to 10 ° C./Hr or less is to sufficiently promote the ferrite + pearlite transformation.

【0013】以上の通り、本発明によれば、連続鋳造法
により得られたマルテンサイト系ステンレス鋼鋳片をγ
→α変態温度以下、マルテンサイト変態開始温度(Ms
点)直上まで冷却することにより、結晶粒の微細化を得
て、熱間圧延後の徐冷過程でフェライト+パーライト変
態を促進し、マルテンサイト変態を抑制することにより
硬度を減じて靱性を改善し、これにより軟化焼鈍工程の
省略が可能となる。
As described above, according to the present invention, the martensitic stainless steel slab obtained by the continuous casting method is γ
→ Martensitic transformation onset temperature (Ms
Point) By cooling to just above, crystal grains can be refined, ferrite + pearlite transformation is promoted in the slow cooling process after hot rolling, and martensite transformation is suppressed to reduce hardness and improve toughness. However, this makes it possible to omit the soft annealing step.

【0014】次に、本発明に係る工程を図面により説明
する。図1において、上記成分のマルテンサイト系ステ
ンレス鋼を溶解(1)後、例えば幅530mm、厚み41
0 mm に連続鋳造(2)し、これを鋳片温度300℃ま
で冷却速度20℃/Hr以下の冷却速度で冷却する。次
いで、この鋳片を1200℃から1250℃の温度で加
熱(3)した後、熱間圧延(4)し、例えば直径187
mmの丸ビレット形状とする。その後10℃/Hr以下の
速度で徐冷(5)し、得られる丸ビレットを外周切削
(6)し製管(7)する。かかる工程を採用することに
より、後述する理由から軟化焼鈍工程を省略できる。
Next, the steps according to the present invention will be described with reference to the drawings. In FIG. 1, after melting the martensitic stainless steel of the above component (1), for example, a width of 530 mm and a thickness of 41
Continuous casting (2) to a thickness of 0 mm is performed, and this is cooled to a slab temperature of 300 ° C. at a cooling rate of 20 ° C./Hr or less. Next, the slab is heated (3) at a temperature of 1200 ° C. to 1250 ° C., and then hot-rolled (4).
mm round billet shape. Thereafter, it is gradually cooled at a rate of 10 ° C./Hr or less (5), and the obtained round billet is cut (6) to make a pipe (7). By adopting such a step, the soft annealing step can be omitted for the reason described later.

【0015】次に、本発明における各成分の数値限定理
由について説明する。 C:0.40%以下 Cは強度を確保するためには必要であるが、0.40%
を超えると強度が増し、靱性が低下するためである。 Si:1.0%以下 Si は脱酸剤として有効であるが、1.0%を超えると
靱性の低下が著しくなるためである。 Mn:1.0%以下 強度および靱性の向上に有効であるが、上限1.0%を
超えれば機械的性質が劣化するためである。 Cr:上限15%、下限:10% 必要な耐食性を得るために10%以上が必要であり、ま
たマルテンサイト系ステンレス鋼の用途に対する耐食性
は15%以下で十分であるためである。 Ni:0.80%以下 耐食性及び靱性を向上させる元素であるが、高価な元素
であることから、コストとの兼ね合いから上限を0.8
0%とした。
Next, the reasons for limiting the numerical values of each component in the present invention will be described. C: 0.40% or less C is necessary to secure strength, but is 0.40%
This is because, if it exceeds, the strength increases and the toughness decreases. Si: 1.0% or less Si is effective as a deoxidizing agent, but if it exceeds 1.0%, the toughness is significantly reduced. Mn: 1.0% or less It is effective for improving the strength and toughness, but if the upper limit exceeds 1.0%, the mechanical properties deteriorate. Cr: upper limit 15%, lower limit: 10% In order to obtain the required corrosion resistance, 10% or more is necessary, and the corrosion resistance for the application of martensitic stainless steel is 15% or less. Ni: 0.80% or less Although it is an element for improving corrosion resistance and toughness, since it is an expensive element, the upper limit is 0.8 in consideration of cost.
0%.

【0016】次に、表1に示す代表成分の鋼について
の、本発明法および従来法におけるヒートパターンによ
り得られたCCT線図を図2に示す。図2において、実
線は本発明例を、破線は従来例を示す。なお、表2は図
2の補足説明である。
Next, FIG. 2 shows a CCT diagram obtained by a heat pattern according to the method of the present invention and a conventional method for steels having the representative components shown in Table 1. In FIG.
The line indicates the example of the present invention, and the broken line indicates the conventional example. Table 2 is a supplementary description of FIG.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】そこで、図2に示すように、本発明法に従
って連続鋳造法により得られた鋳片を、γ→α変態点以
下に冷却することにより徐冷前の結晶粒は微細化し、拡
散変態の開始が短時間側に移行することが判明した。ま
た、表2に示されているように、徐冷速度10℃/Hr
以下では、フェライト+パーライト変態が促進され、マ
ルテンサイト変態が防止され、ビッカース硬度について
も十分低い値が得られている。
Therefore, as shown in FIG.
Thus, it was found that by cooling the slab obtained by the continuous casting method to below the γ → α transformation point, the crystal grains before slow cooling became finer, and the start of diffusion transformation shifted to a shorter time side. Also, as shown in Table 2, the slow cooling rate was 10 ° C./Hr
In the following, ferrite + pearlite transformation is promoted, martensitic transformation is prevented, and a sufficiently low Vickers hardness is obtained.

【0020】したがって徐冷前の結晶粒を微細化するこ
とにより、マルテンサイト変態は抑制され、硬度は減少
し、軟化焼鈍工程を省略してもマルテンサイト変態割れ
防止および外周切削は可能となる。
Therefore, by refining the crystal grains before slow cooling, the martensitic transformation is suppressed, the hardness is reduced, and even if the softening annealing step is omitted, the prevention of the martensitic transformation crack and the outer peripheral cutting can be performed.

【0021】[0021]

【実施例】次に、実施例により本発明の効果を明らかに
する。供試鋼として、表3に示すマルテンサイト系ステ
ンレス鋼(実施例:No.1〜5、比較例:No.1〜6、
従来例:No.1〜5)を使用した。
EXAMPLES Next, the effects of the present invention will be clarified by examples. As test steels, martensitic stainless steels shown in Table 3 ( Examples: Nos. 1 to 5, Comparative Examples: Nos. 1 to 6,
Conventional examples: Nos . 1 to 5 ) were used.

【0022】[0022]

【表3】 [Table 3]

【0023】実施例および比較例においては、表3に示
す成分のマルテンサイト系ステンレス鋼を、精錬炉にて
溶製後、連続鋳造法により、幅530mm×厚み410mm
ブルームを得た。得られたブルームについて本発明に従
って、20℃/Hr以下の冷却速度で300℃近傍の温
まで冷却した後、1200℃〜1250℃まで加熱し
6時間保持した後、800℃以上の温度で熱間圧延を終
了し直径187mmの丸ビレットとした。その後、10℃
/Hr以下の徐冷速度で200℃まで冷却し、マルテン
サイト系ステンレス鋼を得た。
In Examples and Comparative Examples, martensitic stainless steels having the components shown in Table 3 were melted in a refining furnace, and then subjected to continuous casting to obtain 530 mm wide × 410 mm thick.
Bloom got. According to the present invention, the obtained bloom has a temperature of about 300 ° C. at a cooling rate of 20 ° C./Hr or less.
After cooling to time, after heating and held for 6 hours to 1200 ° C. to 1250 ° C., and a round billet of the terminated diameter 187mm hot-rolled at 800 ° C. or higher. Then, 10 ℃
It cooled to 200 degreeC at the slow cooling rate of / Hr or less, and obtained martensitic stainless steel.

【0024】従来例においては、連続鋳造法により得ら
れたブルームを850℃の温度から1200℃〜125
0℃まで加熱し6時間保持した後、800℃以上の温度
で熱間圧延を終了し、10℃/Hr以下の徐冷速度で2
00℃まで冷却しマルテンサイト系ステンレス鋼を得
た。
In the conventional example, the bloom obtained by the continuous casting method is heated from 850 ° C. to 1200 ° C. to 125 ° C.
After heating to 0 ° C. and holding for 6 hours, hot rolling was completed at a temperature of 800 ° C. or more, and a slow cooling rate of 10 ° C./Hr or less was applied.
It cooled to 00 degreeC, and obtained the martensitic stainless steel.

【0025】結果を同じく表3に示した。The results are also shown in Table 3.

【0026】表3において、○はマルテンサイト変態割
れの発生がなく、硬度(ビッカース硬度)が十分低いこ
とを示し、×はマルテンサイト変態割れが発生し、硬度
が高いことを示す。C含有量が1.0%を超える比較例
No.1、Si 含有量1.0%を超える比較例No.2、M
n 含有量が1.0%を超える比較例No.4はそれぞれマ
ルテンサイト変態割れが生じ硬度も高い。また鋳片温度
255℃の比較例No.3、鋼片徐冷速度15℃/Hrの
比較例No.4、および鋼片徐冷速度20℃/Hrの比較
例No.5については、それぞれマルテンサイト変態割れ
が発生した。さらに、鋼片冷却速度が25℃/Hrの比
較例No.3および28℃/Hrの比較例No.6について
もそれぞれマルテンサイト変態割れが生じた。
In Table 3, ○ indicates that no martensitic transformation cracks occurred and the hardness (Vickers hardness) was sufficiently low, and x indicates that martensite transformation cracks occurred and the hardness was high. Comparative example in which C content exceeds 1.0%
No. 1 , Comparative Example No. 2 containing more than 1.0% of Si
In Comparative Example No. 4 in which the n content exceeds 1.0%, martensitic transformation cracking occurs and the hardness is high. Also the slab temperature
Comparative Example No. 3 at 255 ° C., steel slab slow cooling rate of 15 ° C./Hr
Comparative Example No. 4 and comparison of billet slow cooling rate 20 ° C / Hr
In Example No. 5 , a martensitic transformation crack occurred in each case. Furthermore, the billet cooling rate is 25 ° C / Hr.
Comparative Example No. 3 and Comparative Example No. 6 at 28 ° C./Hr
In each case, a martensitic transformation crack occurred.

【0027】また、各実施例と同一の供試鋼について、
従来方法により同条件で製造を行ったところ、従来例N
o.1〜5すべてマルテンサイト変態割れが生じ、高い硬
度を示した。
Further , for the same test steel as in each embodiment,
Production was performed under the same conditions by the conventional method.
o.1~5 all martensitic transformation cracking occurs, and shows the high hardness.

【0028】[0028]

【発明の効果】以上の通り、本発明によれば、従来必須
であった軟化焼鈍工程を省略できるため、短時間かつ経
済的にマルテンサイト系ステンレス鋼鋼片を得ることが
できる。
As described above, according to the present invention, the martensitic stainless steel slab can be obtained in a short time and economically, since the softening annealing step which has been conventionally required can be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法に係る工程図である。FIG. 1 is a process chart according to the method of the present invention.

【図2】本発明に係るステンレス鋼のCCT線図であ
る。
FIG. 2 is a CCT diagram of the stainless steel according to the present invention.

【図3】従来方法に係る工程図である。FIG. 3 is a process chart according to a conventional method.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.40%(重量%、以下同じ)以
下、Si:1.0%以下、Mn:1.0%以下、Cr:
10〜15%、Ni:0.80%以下を含有するマルテ
ンサイト系ステンレス鋼を、連続鋳造法により鋳造後、
オーステナイト温度域から、γ組織からα組織への変態
温度以下で300℃以上の温度まで、20℃/Hr以下
の冷却速度で冷却した後、1200〜1250℃に加熱
、最終圧延温度が800℃以上として熱間圧延を行
い、次いで10℃/Hr以下の徐冷速度で冷却すること
を特徴とするマルテンサイト系ステンレス鋼鋼片の製造
法。
1. C: 0.40% (% by weight, the same applies hereinafter), Si: 1.0% or less, Mn: 1.0% or less, Cr:
After casting a martensitic stainless steel containing 10 to 15% and Ni: 0.80% or less by a continuous casting method,
Transformation from γ-structure to α-structure from austenite temperature range
After cooling at a cooling rate of 20 ° C./Hr or less to a temperature of 300 ° C. or more at a temperature of not more than the temperature, it is heated to 1200 to 1250 ° C., and hot-rolled at a final rolling temperature of 800 ° C. or more , and then 10 ° C./Hr A method for producing a martensitic stainless steel slab characterized by cooling at the following slow cooling rate .
JP3036084A 1991-03-01 1991-03-01 Manufacturing method of martensitic stainless steel slab Expired - Fee Related JP2745839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3036084A JP2745839B2 (en) 1991-03-01 1991-03-01 Manufacturing method of martensitic stainless steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3036084A JP2745839B2 (en) 1991-03-01 1991-03-01 Manufacturing method of martensitic stainless steel slab

Publications (2)

Publication Number Publication Date
JPH04276014A JPH04276014A (en) 1992-10-01
JP2745839B2 true JP2745839B2 (en) 1998-04-28

Family

ID=12459884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3036084A Expired - Fee Related JP2745839B2 (en) 1991-03-01 1991-03-01 Manufacturing method of martensitic stainless steel slab

Country Status (1)

Country Link
JP (1) JP2745839B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101258764B1 (en) * 2010-12-14 2013-04-29 주식회사 포스코 Martensite stainless steel with the high quenched hardness and the method of manufacturing the same
CN103480809A (en) * 2013-07-08 2014-01-01 山西太钢不锈钢股份有限公司 Continuous casting method for wide high-carbon martensitic stainless steel plate blank

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153830A (en) * 1983-02-19 1984-09-01 Nippon Stainless Steel Co Ltd Heat treatment of hot rolled strip of martensitic stainless steel
JPS6186008A (en) * 1984-10-04 1986-05-01 Sumitomo Metal Ind Ltd Manufacture of martensitic stainless steel
JPS624818A (en) * 1985-06-28 1987-01-10 Sumitomo Metal Ind Ltd Manufacture of martensitic stainless steel slab

Also Published As

Publication number Publication date
JPH04276014A (en) 1992-10-01

Similar Documents

Publication Publication Date Title
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP5303856B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy
JP2000336456A (en) Hot rolled wire rod-bar steel for machine structure and production thereof
JP3812168B2 (en) Manufacturing method of seamless steel pipe for line pipe with excellent strength uniformity and toughness
JP6460883B2 (en) Manufacturing method of heat-treated steel wire with excellent workability
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
JPH09157758A (en) Production of high carbon steel strip excellent in workability
JPH05271772A (en) Manufacture of steel pipe for oil well excellent in sulfide stress cracking resistance
JP2003183733A (en) Method for manufacturing wire rod
JP2000219914A (en) Seamless steel pipe having fine grain structure and little unevenness of strength
JP2745839B2 (en) Manufacturing method of martensitic stainless steel slab
JPH0920961A (en) Production of seamless pipe for low temperature use
JP7277584B2 (en) Medium- and high-temperature steel sheet with excellent high-temperature strength and its manufacturing method
JP6747623B1 (en) ERW steel pipe
JP7229827B2 (en) Manufacturing method of high carbon steel sheet
JP4196501B2 (en) Steel for seamless steel pipe with high strength and excellent toughness
JP2527511B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
JP2551692B2 (en) Manufacturing method of low alloy seamless steel pipe with fine grain structure.
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH05171361A (en) Production of martensitic stainless steel
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JP3046183B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH09111345A (en) Production of martensitic stainless steel oil well pipe
JPH04358025A (en) Production of high toughness seamless steel tube having fine-grained structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees