JP2744542B2 - Digital signal receiver - Google Patents

Digital signal receiver

Info

Publication number
JP2744542B2
JP2744542B2 JP4010695A JP1069592A JP2744542B2 JP 2744542 B2 JP2744542 B2 JP 2744542B2 JP 4010695 A JP4010695 A JP 4010695A JP 1069592 A JP1069592 A JP 1069592A JP 2744542 B2 JP2744542 B2 JP 2744542B2
Authority
JP
Japan
Prior art keywords
sin
cos
digital signal
signal
sinπσ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4010695A
Other languages
Japanese (ja)
Other versions
JPH05207087A (en
Inventor
康則 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4010695A priority Critical patent/JP2744542B2/en
Publication of JPH05207087A publication Critical patent/JPH05207087A/en
Application granted granted Critical
Publication of JP2744542B2 publication Critical patent/JP2744542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、携帯電話やLAN等の
高速デジタル信号伝送用の無線ネットワークで使用され
るデジタル信号受信装置に関し、詳述すれば、搬送波の
周波数FC、変調デジタル信号のシンボルレート B に対
して、 |F C −F L |≧(1/2)・F B なる関係を有する周波数FLの参照信号で受信高周波信
号からベースバンド信号を検波する位相検波手段と、前
記位相検波手段により検波され周波数FC−FLで位相が
回転するベースバンド信号に対してπ/2間隔でA/D
変換する直交成分導出手段と、前記直交成分導出手段に
より変換された直交成分データと1タイムスロット前の
直交成分データとから、以下の式に基づいて、変調デジ
タル信号を演算導出する遅延検波手段とを備えて構成し
てあるデジタル信号受信装置に関する。
BACKGROUND OF THE INVENTION This invention relates to a digital signal receiving apparatus for use in high-speed digital signal transmission of a wireless network of a cellular phone or a LAN, if specifically, the carrier frequency F C, the modulated digital signal pair to the symbol rate F B
To, | F C -F L | and ≧ (1/2) · F phase detection means for detecting a baseband signal from the received RF signal with the reference signal of frequency F L with B the relationship, by the phase detection means A / D at intervals of π / 2 with respect to the detected baseband signal whose phase rotates at the frequency F C -F L
A quadrature component deriving unit for converting, and a quadrature component data converted by the quadrature component deriving unit and a delay detection unit for calculating and deriving a modulated digital signal based on the following equation from the quadrature component data one time slot before : The present invention relates to a digital signal receiving device configured to include:

【0002】[0002]

【従来の技術】上述のデジタル信号受信装置により受信
される高周波信号は、通常、周波数帯を効率よく使用す
べく帯域が制限されているので、前記位相検波手段によ
り検波されたベースバンド信号は、図2に示すように、
シンボルの切り替わり時に振幅が小となる。そして、従
来の遅延検波手段は、この現象を特別に考慮して構成す
るものではなかった。
2. Description of the Related Art Since a high-frequency signal received by the above-mentioned digital signal receiving apparatus is usually limited in band in order to use a frequency band efficiently, a baseband signal detected by the phase detecting means is: As shown in FIG.
The amplitude becomes small when the symbols are switched. The conventional delay detection means has not been configured with special consideration of this phenomenon.

【0003】今、第I番目のシンボル内でn番目にA/D
変換されたベースバンド信号をSi(n) とし、1シンボル
当りのサンプル数をMとすると、
[0003] Now, in the I-th symbol, the A / D
Let the converted baseband signal be Si (n), one symbol
If the number of samples per unit is M,

【0004】[0004]

【数1】 (Equation 1)

【0005】 Si(n)= Acos(πΣ(j=0,i)S(j) +(M (i-1)+n)π/2) …………… (1) となる。但し、1≦n≦Mである。ここから、変調デジタル信号を得るべく、 I(i,n)=Si(n) ・Si-1(n) +Si(n-1) ・Si-1(n-1) ……………(2) Q(i,n)=−Si(n) ・Si-1(n-1) +Si(n-1) ・Si-1(n) ……………(3) の演算を施す。 I(i,n)=Si(n)・Si-1(n)+Si(n-1)・Si-1(n-1) = Acos(πΣ(j=0,i)S(j)+(M(i-1)+n)π/2)Acos(πΣ(j=0,i-1)S(j) +(M(i-1)+n)π/2) + Acos(πΣ(j=0,i)S(j)+(M(i-1)+n-1)π/2)Acos(πΣ(j=0,i-1)S(j) +(M(i-1)+n-1)π/2) =A2{ ( cosπΣ(j=0,i)S(j)cos(M(i-1)+n)π/2 − sinπΣ(j=0,i)S(j)sin(M(i-1)+n)π/2) × cosπΣ(j=0,i-1)S(j)cos(M(i-1)+n)π/2 − sinπΣ(j=0,i-1)S(j)sin(M(i-1)+n)π/2) + cosπΣ(j=0,i)S(j)cos(M(i-1)+n-1)π/2 − sinπΣ(j=0,i)S(j)sin(M(i-1)+n-1)π/2) × cosπΣ(j=0,i-1)S(j)cos(M(i-1)+n-1)π/2 − sinπΣ(j=0,i-1)S(j)sin(M(i-1)+n-1)π/2)} =A2{(cosπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)cos(M(i-1)+n)π/2 cos(M(i-1)+n)π/2 − cosπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)cos(M(i-1)+n)π/2 sin(M(i-1)+n)π/2 − sinπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)sin(M(i-1)+n)π/2 cos(M(i-1)+n)π/2 + sinπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)sin(M(i-1)+n)π/2 sin(M(i-1)+n)π/2 + cosπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)cos(M(i-1)+n-1)π/2 cos(M(i-1)+n-1)π/2 − cosπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)cos(M(i-1)+n-1)π/2 sin(M(i-1)+n-1)π/2 − sinπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)sin(M(i-1)+n-1)π/2 cos(M(i-1)+n-1)π/2 + sinπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)sin(M(i-1)+n-1)π/2 sin(M(i-1)+n-1)π/2} =A2{ cosπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)(cos(M(i-1)+n)π/2 ×cos(M(i-1)+n)π/2+cos(M(i-1)+n-1)π/2cos(M(i-1)+n-1)π/2) − cosπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)(cos(M(i-1)+n)π/2 ×sin(M(i-1)+n)π/2+cos(M(i-1)+n-1)π/2sin(M(i-1)+n-1)π/2) − sinπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)(sin(M(i-1)+n)π/2 ×cos(M(i-1)+n)π/2+sin(M(i-1)+n)π/2cos(M(i-1)+n-1)π/2) + sinπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)(sin(M(i-1)+n)π/2 ×sin(M(i-1)+n)π/2+sin(M(i-1)+n-1)π/2sin(M(i-1)+n-1)π/2)} ここで、 cos(M(i-1)+n-1)π/2=cos((M(i-1)+n)π/2−π/2) = sin(M(i-1)+n)π/2、 sin(M(i-1)+n-1)π/2=sin((M(i-1)+n)π/2−π/2) =−cos(M(i-1)+n)π/2、 より I(i,n) =A2{ cosπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)(cos(M(i-1)+n)π/2 cos(M(i-1)+n)π/2 + sin(M(i-1)+n)π/2sin(M(i-1)+n)π/2) − cosπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)cos(M(i-1)+n)π/2 sin(M(i-1)+n)π/2 −sin(M(i-1)+n)π/2cos(M(i-1)+n)π/2 − sinπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)sin(M(i-1)+n)π/2 cos(M(i-1)+n)π/2 −cos(M(i-1)+n)π/2sin(M(i-1)+n)π/2 + sinπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)sin(M(i-1)+n)π/2 sin(M(i-1)+n)π/2 +cos(M(i-1)+n)π/2cos(M(i-1)+n)π/2} =A2{ cosπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j) + sinπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)} =A2 cos(πΣ(j=0,i)S(j)−πΣ(j=0,i-1)S(j))) =A2 cosπS(i) …………… (4) Q(i,n)=−Si(n)・Si-1(n-1)+Si(n-1)・Si-1(n) =-Acos(πΣ(j=0,i)S(j)+(M(i-1)+n)π/2)Acos(πΣ(j=0,i-1)S(j) +(M(i-1)+n-1)π/2) + Acos(πΣ(j=0,i)S(j)+(M(i-1)+n-1)π/2)Acos(πΣ(j=0,i-1)S(j) +(M(i-1)+n)π/2) =A2{(−cosπΣ(j=0,i)S(j)cos(M(i-1)+n)π/2 − sinπΣ(j=0,i)S(j)sin(M(i-1)+n)π/2) × cosπΣ(j=0,i-1)S(j)cos(M(i-1)+n-1)π/2 − sinπΣ(j=0,i-1)S(j)sin(M(i-1)+n-1)π/2) + cosπΣ(j=0,i)S(j)cos(M(i-1)+n-1)π/2 − sinπΣ(j=0,i)S(j)sin(M(i-1)+n-1)π/2) × cosπΣ(j=0,i-1)S(j)cos(M(i-1)+n)π/2 − sinπΣ(j=0,i-1)S(j)sin(M(i-1)+n)π/2)} =A2{(cosπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)cos(M(i-1)+n)π/2 cos(M(i-1)+n-1)π/2 + cosπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)cos(M(i-1)+n)π/2 sin(M(i-1)+n-1)π/2 + sinπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)sin(M(i-1)+n)π/2 cos(M(i-1)+n-1)π/2 − sinπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)sin(M(i-1)+n)π/2 sin(M(i-1)+n-1)π/2 + cosπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)cos(M(i-1)+n-1)π/2 cos(M(i-1)+n)π/2 − cosπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)cos(M(i-1)+n-1)π/2 sin(M(i-1)+n)π/2 − sinπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)sin(M(i-1)+n-1)π/2 cos(M(i-1)+n)π/2 + sinπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)sin(M(i-1)+n-1)π/2 sin(M(i-1)+n)π/2} =A2{−cosπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)(cos(M(i-1)+n)π/2 ×cos(M(i-1)+n-1)π/2−cos(M(i-1)+n-1)π/2cos(M(i-1)+n)π/2) + cosπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)(cos(M(i-1)+n)π/2 ×sin(M(i-1)+n-1)π/2−cos(M(i-1)+n-1)π/2sin(M(i-1)+n)π/2) + sinπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)(sin(M(i-1)+n)π/2 ×cos(M(i-1)+n-1)π/2−sin(M(i-1)+n)π/2cos(M(i-1)+n)π/2) − sinπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)(sin(M(i-1)+n)π/2 ×sin(M(i-1)+n-1)π/2−sin(M(i-1)+n-1)π/2sin(M(i-1)+n)π/2)} =A2{cos πΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)(cos(M(i-1)+n)π/2 ×sin(M(i-1)+n-1)π/2−cos(M(i-1)+n-1)π/2sin(M(i-1)+n)π/2) + sinπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)(sin(M(I-1)+n)π/2 ×cos(M(i-1)+n-1)π/2− sin(M(i-1)+n-1)π/2cos(M(i-1)+n)π/2)} ここで、 cos(M(i-1)+n-1)π/2=cos((M(i-1)+n)π/2−π/2) = sin(M(i-1)+n)π/2、 sin(M(i-1)+n-1)π/2=sin((M(i-1)+n)π/2−π/2) =−cos(M(i-1)+n)π/2、 より Q(i,n) =A2{ cosπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j)(−cos(M(i-1)+n)π/2 ×cos(M(i-1)+n)π/2−sin(M(i-1)+n)π/2sin(M(i-1)+n)π/2) + sinπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)sin(M(i-1)+n)π/2 ×sin(M(i-1)+n)π/2+sin(M(i-1)+n)π/2cos(M(i-1)+n)π/2)} =A2{−cosπΣ(j=0,i)S(j)sinπΣ(j=0,i-1)S(j) + sinπΣ(j=0,i)S(j)cosπΣ(j=0,i-1)S(j)} =A2 sin(πΣ(j=0,i)S(j)−πΣ(j=0,i-1)S(j))) =A2 sinπS(i) …………… (5) 以上により、変調デジタル信号が再生されるのである。 [0005] a Si (n) = Acos (πΣ (j = 0, i) S (j) + (M · (i-1) + n) π / 2) ............... (1). However, 1 ≦ n ≦ M. From this, to obtain a modulated digital signal, I (i, n) = Si (n) .Si-1 (n) + Si (n-1) .Si-1 (n-1) (2) ) Q (i, n) = - Si (n) · Si-1 (n-1) + Si (n-1) · Si-1 (n) applying operation of ............... (3). I (i, n) = Si (n) · Si-1 (n) + Si (n-1) · Si-1 (n-1) = Acos (πΣ (j = 0, i) S (j) + ( M (i-1) + n) π / 2) Acos (πΣ (j = 0, i-1) S (j) + (M (i-1) + n) π / 2) + Acos (πΣ (j = 0 , i) S (j) + (M (i-1) + n-1) π / 2) Acos (πΣ (j = 0, i-1) S (j) + (M (i-1) + n-1 ) π / 2) = A 2 {(cosπΣ (j = 0, i) S (j) cos (M (i-1) + n) π / 2 − sinπΣ (j = 0, i) S (j) sin ( M (i-1) + n) π / 2) × cosπΣ (j = 0, i-1) S (j) cos (M (i-1) + n) π / 2 − sinπΣ (j = 0, i-1 ) S (j) sin (M (i-1) + n) π / 2) + cosπΣ (j = 0, i) S (j) cos (M (i-1) + n-1) π / 2−sinπΣ ( j = 0, i) S (j) sin (M (i-1) + n-1) π / 2) × cosπΣ (j = 0, i-1) S (j) cos (M (i-1) + n -1) π / 2 − sinπΣ (j = 0, i-1) S (j) sin (M (i-1) + n-1) π / 2)} = A 2 {(cosπΣ (j = 0, i ) S (j) cosπΣ (j = 0, i-1) S (j) cos (M (i-1) + n) π / 2 cos (M (i-1) + n) π / 2 − cosπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) cos (M (i-1) + n) π / 2 sin (M (i-1) + n) π / 2 − sinπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) sin (M (i-1) + n) π / 2 cos (M (i-1) + n) π / 2 + sinπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) sin (M (i-1) + n) π / 2 sin (M (i-1) + n ) π / 2 + cosπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) cos (M (i-1) + n-1) π / 2 cos (M ( i- 1) + n-1) π / 2 − cosπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) cos (M (i-1) + n-1) π / 2 sin (M (i-1) + n-1) π / 2 − sinπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) sin (M (i-1 ) + N-1) π / 2 cos (M (i-1) + n-1) π / 2 + sinπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) sin (M (i-1) + n-1) π / 2 sin (M (i-1) + n-1) π / 2} = A 2 {cosπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) (cos (M (i-1) + n) π / 2 × cos (M (i-1) + n) π / 2 + cos (M (i-1) + n-1) π / 2cos (M (i-1) + n-1) π / 2) − cosπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) (cos (M ( i-1) + n) π / 2 × sin (M (i-1) + n) π / 2 + cos (M (i-1) + n-1) π / 2sin (M (i-1) + n-1) π / 2) − sinπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) (sin (M (i-1) + n) π / 2 × cos (M (i− 1) + n) π / 2 + sin (M (i-1) + n) π / 2cos (M (i-1) + n-1) π / 2) + sinπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) (sin (M (i-1) + n) π / 2 × sin (M (i-1) + n) π / 2 + sin (M (i-1) + n-1) π / 2sin (M (i-1) + n-1) π / 2)} where cos (M (i-1) + n-1) π / 2 = cos ((M (i-1) + n) π / 2−π / 2) = sin (M (i-1) + n) π / 2, sin (M (i-1) + n-1) π / 2 = sin ((M (i-1) + n) π / 2−π / 2) = − cos (M (i−1) + n) π / 2, so I (i, n) = A 2 {cosπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) (cos (M (i-1) + n) π / 2 cos (M (i-1) + N) π / 2 + sin (M (i-1) + n) π / 2sin (M (i-1) + n) π / 2) − cosπΣ (j = 0, i) S (j) sinπΣ (j = 0 , i-1) S (j) cos (M (i-1) + n) π / 2 sin (M (i-1) + n) π / 2 −sin (M (i-1) + n) π / 2cos ( M (i-1) + n) π / 2 − sinπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) sin (M (i-1) + n) π / 2 cos (M (i-1) + n) π / 2 −cos (M (i-1) + n) π / 2sin (M (i-1) + n) π / 2 + sinπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) sin (M (i-1) + n) π / 2 sin (M (i-1) + n) π / 2 + cos (M (i-1 ) + n) π / 2cos ( M (i-1) + n) π / 2} = A 2 {cosπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) + sinπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j)} = A 2 cos (πΣ (j = 0, i) S (j) −πΣ (j = 0 , i-1) S (j))) = A 2 cosπS (i) …………… (4) Q (i, n) = − Si (n) · Si-1 (n-1) + Si (n -1) · Si-1 (n) = -Acos (πΣ (j = 0, i) S (j) + (M (i-1) + n) π / 2) Acos (πΣ (j = 0, i- 1) S (j) + (M (i-1) + n-1) π / 2) + Acos (πΣ (j = 0, i) S (j) + (M (i-1) + n-1) π / 2) Acos (πΣ (j = 0, i-1) S (j) + (M (i-1) + n) π / 2) = A 2 {(-cosπΣ (j = 0, i) S (j ) cos (M (i-1) + n) π / 2 − sinπΣ (j = 0, i) S (j) sin (M (i-1) + n) π / 2) × cosπΣ (j = 0, i-1) S (j) cos (M (i-1) + n-1) π / 2 − sinπΣ (j = 0, i-1) S (j) sin (M (i-1) + n-1) π / 2) + cosπΣ (j = 0, i) S (j) cos (M (i-1) + n-1) π / 2 − sinπΣ (j = 0, i) S (j) sin (M (i-1) + n-1) π / 2) × cosπΣ (j = 0, i-1) S (j) cos (M ( i-1) + n) π / 2 − sinπΣ (j = 0, i-1) S (j) sin (M (i-1) + n) π / 2)} = A 2 {(cosπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) cos (M (i-1) + n) π / 2 cos (M (i-1) + n-1) π / 2 + cosπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) cos (M (i-1) + n) π / 2 sin (M (i-1) + n-1) π / 2 + sinπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) sin (M (i-1) + n) π / 2 cos (M (i-1 ) + N-1) π / 2 − sinπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) sin (M (i-1) + n) π / 2 sin ( M (i-1) + n-1) π / 2 + cosπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) cos (M (i-1) + n- 1) π / 2 cos (M (i-1) + n) π / 2 − cosπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) cos (M (i -1) + n-1) π / 2 sin (M (i-1) + n) π / 2 − sinπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) sin (M (i-1) + n-1) π / 2 cos (M (i-1) + n) π / 2 + sinπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1 ) S (j) sin (M (i-1) + n-1) π / 2 sin (M (i-1) + n) π / 2} = A 2 {-cosπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) (cos (M (i-1) + n) π / 2 × cos (M (i-1) + n-1) π / 2−cos ( M (i-1) + n-1) π / 2cos (M (i-1) + n) π / 2) + cosπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) (cos (M (i-1) + n) π / 2 × sin (M (i-1) + n-1) π / 2-cos (M (i-1) + n-1) π / 2sin ( M (i-1) + n) π / 2) + sinπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) (sin (M (i-1) + n) π / 2 × cos (M (i-1) + n-1) π / 2−sin (M (i-1) + n) π / 2cos (M (i-1) + n) π / 2) − sinπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) (sin (M (i-1) + n) π / 2 × sin (M (i-1) + n-1) π / 2−sin (M (i-1) + n-1) π / 2sin (M (i-1) + n) π / 2)} = A 2 {cos πΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) (cos (M (i-1) + n) π / 2 × sin (M (i-1) + n-1) π / 2−cos (M (i -1) + n-1) π / 2sin (M (i-1) + n) π / 2) + sinπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) (sin (M (I-1) + n) π / 2 × cos (M (i-1) + n-1) π / 2− sin (M (i-1) + n-1) π / 2cos (M (i -1) + n) π / 2)} where cos (M (i-1) + n-1) π / 2 = cos ((M (i-1) + n) π / 2−π / 2) = sin (M (i-1) + n) π / 2, sin (M (i-1) + n-1) π / 2 = sin ((M (i-1) + n) π / 2−π / 2) = − cos (M (i-1) + n) π / 2, Q (i, n) = A 2 {cosπΣ (j = 0, i) S (j) sin πΣ (j = 0, i-1) S (j) (− cos (M (i−1) + n) π / 2 × cos (M (i−1) + n) π / 2−sin (M (i− 1) + n) π / 2sin (M (i-1) + n) π / 2) + sinπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j) sin (M (i-1) + n) π / 2 × sin (M (i-1) + n) π / 2 + sin (M (i-1) + n) π / 2cos (M (i-1) + n) π / 2)} = A 2 {−cosπΣ (j = 0, i) S (j) sinπΣ (j = 0, i-1) S (j) + sinπΣ (j = 0, i) S (j) cosπΣ (j = 0, i-1) S (j)} = A 2 sin (πΣ (j = 0, i) S (j) -πΣ (j = 0, i-1) S (j))) = A 2 sinπS (i) (5) As described above, the modulated digital signal is reproduced.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述した従来
のデジタル信号受信装置によれば、シンボルの切り替わ
り時に振幅が極端に小となる場合には位相情報が曖昧に
なるため復調誤差を生じ、変調デジタル信号の正確な導
出ができない場合があるという欠点があった。本発明の
目的は上記欠点を解消する点にある。
However, according to the above-mentioned conventional digital signal receiving apparatus, if the amplitude is extremely small at the time of symbol switching, the phase information becomes ambiguous, so that a demodulation error occurs. There is a disadvantage that accurate derivation of digital signals may not be possible. An object of the present invention is to eliminate the above disadvantages.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明によるデジタル信号受信装置の特徴構成は、前記
遅延検波手段に、演算導出された変調デジタル信号が有
意であるか否かを前記ベースバンド信号の振幅値に基づ
き判断して、有意と判断された信号を出力する判別手段
を設けてある点にある。
In order to achieve the above object, a digital signal receiving apparatus according to the present invention is characterized in that the differential detection means determines whether or not a calculated and derived modulated digital signal is significant. The difference is that a judgment means for judging based on the amplitude value of the band signal and outputting a signal judged to be significant is provided.

【0008】[0008]

【作用】判別手段は、複数シンボル間にわたりベースバ
ンド信号の振幅値を把握して、変調デジタル信号が演算
導出されたタイミングにおける前記振幅値が設定値より
小の場合は有意でないと判断してそのデータを破棄し、
次の演算導出タイミングに備える。そして、変調デジタ
ル信号が演算導出されたタイミングにおける前記振幅値
が設定値以上であれば有意であると判断してそのデータ
を新の変調デジタル信号として採用するのである。設定
値としては、例えば、複数シンボル間にわたるベースバ
ンド信号の最大振幅値の50%の値等、任意に設定すれ
ばよい。その結果、1タイムスロット毎に採用されたデ
ータを変調デジタル信号として出力することになる。
The judging means grasps the amplitude value of the baseband signal over a plurality of symbols and judges that the amplitude value is not significant if the amplitude value at the timing when the modulated digital signal is calculated and derived is not significant. Discard the data,
Prepare for the next calculation derivation timing. If the amplitude value at the timing when the modulated digital signal is calculated and derived is greater than or equal to the set value, it is determined to be significant and the data is adopted as a new modulated digital signal. The set value may be arbitrarily set, for example, a value of 50% of the maximum amplitude value of the baseband signal over a plurality of symbols. As a result, data adopted for each time slot is output as a modulated digital signal.

【0009】[0009]

【発明の効果】本発明により、シンボルの切り替わり時
に振幅が極端に小となる場合であっても、正確に変調デ
ジタル信号を再生できるデジタル信号受信装置を提供で
きるようになった。
According to the present invention, it is possible to provide a digital signal receiving apparatus capable of accurately reproducing a modulated digital signal even when the amplitude becomes extremely small at the time of symbol switching.

【0010】[0010]

【実施例】以下に実施例を説明する。デジタル信号受信
装置は、二重差動符号化通信方式を採用するものであ
り、図1に示すように、受信高周波信号を増幅する増幅
手段5と、増幅された高周波信号から直交するベースバ
ンド信号を検波する位相検波手段6と、その位相検波手
段6により検波されたベースバンド信号をA/D変換す
る直交成分導出手段7と、変換された直交成分データと
1スロット前の直交成分データとから変調デジタル信号
を演算導出する遅延検波手段8とで構成してあり、前記
遅延検波手段8を、変調デジタル信号を導出する第一遅
延検波部8Aと、その第一遅延検波部8Aにより導出さ
れた変調デジタル信号から周波数誤差を除去する第二遅
延検波部8B等で構成してある。
Embodiments will be described below. The digital signal receiving device adopts the double differential coded communication system.
As shown in FIG. 1, an amplifying means 5 for amplifying a received high-frequency signal, a phase detecting means 6 for detecting an orthogonal baseband signal from the amplified high-frequency signal, and a base detected by the phase detecting means 6 A quadrature component deriving unit 7 for A / D converting the band signal; and a delay detection unit 8 for calculating and deriving a modulated digital signal from the converted quadrature component data and the quadrature component data one slot before. The delay detection means 8 includes a first delay detection unit 8A for deriving a modulated digital signal, a second delay detection unit 8B for removing a frequency error from the modulated digital signal derived by the first delay detection unit 8A, and the like. It is.

【0011】詳述すると、前記位相検波手段6は、前記
増幅手段5の出力信号から、搬送波の周波数FC、変調
デジタル信号のシンボルレート B に対して、 |F C −F L |≧(1/2)・F B なる関係を有する周波数FLの参照信号を生成する発振
器61と、その参照信号でベースバンド信号を検波する
ミキサ回路62と、増幅器63等で構成してあり、本実
施例ではFC=150MHz、FL=146MHz、 B
=1MHzで構成してある。前記直交成分導出手段7
は、周波数16MHzのクロック発振器71と、そのク
ロック発振器71からのクロック信号に同期して前記ベ
ースバンド信号をデジタル信号に変換するA/D変換器
72とで構成してあり、前記位相検波手段6により検波
され周波数FC−FL(=4MHz)でビートするベース
バンド信号をπ/2間隔でA/D変換する。
[0011] More specifically, the phase detecting means 6, the output signal from the amplifying means 5, the frequency F C of the carrier, the symbol rate F B of the modulated digital signal, | F C -F L | ≧ ( an oscillator 61 for generating a reference signal of frequency F L with 1/2) · F B becomes relationship, a mixer circuit 62 for detecting a baseband signal at the reference signal, Yes constituted by an amplifier 63 and the like, the present embodiment In the example, F C = 150 MHz, F L = 146 MHz, F B
= 1 MHz . The orthogonal component deriving means 7
Comprises a clock oscillator 71 having a frequency of 16 MHz, and an A / D converter 72 for converting the baseband signal into a digital signal in synchronization with a clock signal from the clock oscillator 71. The A / D conversion is performed on the baseband signal detected by the above and beat at the frequency F C -F L (= 4 MHz) at intervals of π / 2.

【0012】前記遅延検波手段8は、前記直交成分導出
手段7によりπ/2位相を異ならせてA/D変換された
二つの直交成分データから直近にサンプリングされた直
交成分データに対応する角度成分データを変換出力する
角度変換器8Cと、角度変換器8Cによる角度成分デー
タと1タイムスロット前の角度成分データとから変調デ
ジタル信号を演算導出する遅延検波部8A,8Bとで構
成してある。詳述すると、前記角度変換器8Cは、位相
角0°から360°に対応して00Hから0FFHのH
EXデータが格納されたROM81と、位相がπ/2異
なる前回にA/D変換器72で変換されたデジタル信号
を確保するシフトレジスタ82と、前記A/D変換器7
2で最新に変換されたデジタル信号と前記シフトレジス
タ82のデータとから前記ベースバンド信号の角度成分
データを前記ROM81から読み出すアクセス回路(図
示せず)とで構成してある。前記遅延検波部8A,8B
は、それぞれ前記角度成分データを1タイムスロット遅
延させるシフトレジスタ群T1,T2と、シフトレジス
タ群のうち最終段のシフトレジスタの値と最新の角度成
分データを減算する演算器83,84で構成してある。
前記演算器83が変調デジタル信号を導出する第一遅延
検波部となり、前記演算器84がその第一遅延検波部に
より導出された変調デジタル信号から周波数誤差を除去
する第二遅延検波部となる。つまり、演算器83,84
の出力が00H、即ち、1タイムスロット前と今回の角
度成分データが等しければ前回と今回のデータが等し
く、演算器83,84の出力が80H、即ち、1タイム
スロット前と今回の角度成分データが位相反転していれ
ば前回と今回のデータは異なると判別される。
The delay detection means 8 is adapted to derive the quadrature component.
A / D converted by means of π / 2 phase by means 7
The most recently sampled version of the two orthogonal component data
An angle converter 8C for converting and outputting angle component data corresponding to the intersection component data; a delay detector 8A for calculating and deriving a modulated digital signal from the angle component data by the angle converter 8C and the angle component data one time slot before; 8B. More specifically, the angle converter 8C outputs an H of 00H to 0FFH corresponding to a phase angle of 0 ° to 360 °.
A ROM 81 in which EX data is stored; a shift register 82 for securing a digital signal previously converted by an A / D converter 72 having a phase different by π / 2;
An access circuit (not shown) for reading the angle component data of the baseband signal from the ROM 81 from the digital signal most recently converted in step 2 and the data of the shift register 82. The delay detectors 8A and 8B
Are composed of shift register groups T1 and T2 for delaying the angle component data by one time slot, and arithmetic units 83 and 84 for subtracting the latest angle component data from the value of the last stage shift register in the shift register group. It is.
The calculator 83 serves as a first delay detector for deriving a modulated digital signal, and the calculator 84 serves as a second delay detector for removing a frequency error from the modulated digital signal derived by the first delay detector. That is, the arithmetic units 83 and 84
Is 00H, that is, if the angle component data of one time slot before and this time are equal, the data of the previous time and this time are equal, and the outputs of the arithmetic units 83 and 84 are 80H, that is, the angle component data of one time slot before and this time. If the phase is inverted, it is determined that the previous and current data are different.

【0013】以下に、前記遅延検波部8A,8Bにおけ
る演算原理である二重差動符号化通信方式について詳述
する。Δφを位相角初期値、Δωを周波数誤差による1
タイムスロットあたりの位相誤差、S1,S2を一次差
動位相差として、前記直交成分導出手段7により導出さ
れた2タイムスロット前の直交検波出力を (cos(Δφ),sin(Δφ))、 1タイムスロット前の直交検波出力を (cos(Δφ+Δω+S2),sin(Δφ+Δω+S2)) 現在の直交検波出力を (cos(Δφ+2Δω+S1+S2),sin(Δφ+2Δω+S1+S2) ) とすると、 2タイムスロット前の遅延検波演算は、 I2’=cos(Δφ)・cos(Δφ+Δω+S2) +sin(Δφ)・sin(Δφ+Δω+S2) =cos(Δω+S2) Q2’=cos(Δφ)・sin(Δφ+Δω+S2) −sin(Δφ)・cos(Δφ+Δω+S2) =sin(Δω+S2) 同様に、1タイムスロット前の遅延検波演算は、 I1’=cos(Δφ+Δω+S2)・cos(Δφ+2Δω+S1+S2) +sin(Δφ+Δω+S2)・sin(Δφ+2Δω+S1+S2) =cos(Δω+S1) Q1’=cos(Δφ+Δω+S2)・sin(Δφ+2Δω+S1+S2) −sin(Δφ+Δω+S2)・cos(Δφ+2Δω+S1+S2) =sin(Δω+S1) となり一次遅延検波でΔφの項が消去される。 これらをさらに遅延検波すると、 I1=cos(Δω+S2)・cos(Δω+S1) +sin(Δω+S2)・sin(Δω+S1) =cos(S1−S2) Q1=cos(Δω+S2)・sin(Δω+S1) −sin(Δω+S2)・cos(Δω+S1) =sin(S1−S2) となり、二次遅延検波ではΔωの項が消去される。即
ち、周波数誤差による位相誤差が除去されるのである。
The double differential encoding communication system , which is the operation principle of the differential detection units 8A and 8B, will be described in detail below.
I do. Δφ is a phase angle initial value, and Δω is 1 due to a frequency error.
Assuming that the phase error per time slot and S1 and S2 are primary differential phase differences, the quadrature detection output two time slots before derived by the quadrature component deriving means 7 is (cos (Δφ), sin (Δφ)), 1 If the quadrature detection output before the time slot is (cos (Δφ + Δω + S2), sin (Δφ + Δω + S2)) and the current quadrature detection output is (cos (Δφ + 2Δω + S1 + S2), sin (Δφ + 2Δω + S1 + S2)), the delay detection two time slots before is obtained. The calculation is: I2 ′ = cos (Δφ) · cos (Δφ + Δω + S2) + sin (Δφ) · sin (Δφ + Δω + S2) = cos (Δω + S2) Q2 ′ = cos (Δφ) · sin (Δφ + Δω + S2) −sin (Δφ + cos (Δφ) · cos (Δφ) ) = Sin (Δω + S2) Similarly, the differential detection operation one time slot before is represented by I1 ′ cos (Δφ + Δω + S2) · cos (Δφ + 2Δω + S1 + S2) + sin (Δφ + Δω + S2) · sin (Δφ + 2Δω + S1 + S2) = cos (Δω + S1) Q1 '= cos (Δφ + Δω + S2) · sin (Δφ + 2Δω + S1 + S2) -sin (Δφ + Δω + S2) · cos (Δφ + 2Δω + S1 + S2) = sin (Δω + S1), and the term of Δφ is eliminated by the first-order differential detection. If these are further delayed detected, I1 = cos (Δω + S2) · cos (Δω + S1) + sin (Δω + S2) · sin (Δω + S1) = cos (S1-S2) Q1 = cos (Δω + S2) · sin (Δω + S1) −sin (Δω + S2) Cos (Δω + S1) = sin (S1−S2), and the term of Δω is eliminated in the second-order differential detection. That is, the phase error due to the frequency error is removed.

【0014】前記遅延検波手段8の一部を構成する前記
ROM81には、前記直交成分導出手段7によりA/D
変換されたベースバンド信号に対応する評価用の振幅デ
ータを入力してあり、前記アクセス回路(図示せず)を
介して前記直交成分導出手段7によりπ/2位相を異な
らせてA/D変換された二つの直交成分データからその
タイミングでの振幅データが前記ROM81から出力さ
れる。その振幅データは前段の遅延検波部8Aに入力さ
れ、今回の振幅データと1タイムスロット前の 振幅デー
タとが判別手段11に入力され、さらに、後段の遅延検
波部8Bを介して2タイムスロット前の振幅データが判
別手段11に入力されるように構成してある。前記判別
手段11は、前記遅延検波手段8により周波数FC−FL
でビートするベースバンド信号からπ/2間隔で演算導
出された変調デジタル信号に対して、そのタイミング
おける振幅データが、1タイムスロットの振幅データの
最大値の50%の値より大であれば、その変調デジタル
信号の値を採用し、1周期の振幅データの最大値の50
%の値より小であれば、その変調デジタル信号の値を破
棄するように構成してある。即ち、図2に示すように、
1タイムスロット内での振幅最大値の50%以上の範
囲でのデータが有効データとなり、50%以下の範囲で
のデータが無効データとなる。特に、シンボルの切替り
時に演算導出されたデータが無効データになりやすい。
[0014] The constituting a part of said delay detection unit 8
The A / D is stored in the ROM 81 by the orthogonal component deriving means 7.
The amplitude data for evaluation corresponding to the converted baseband signal is input, and the access circuit (not shown) is
The π / 2 phase is changed by the orthogonal component deriving means 7 through
From the two orthogonal component data A / D converted
The amplitude data at the timing is output from the ROM 81.
It is. The amplitude data is input to the delay detection section 8A in the preceding stage.
Is, this time of the amplitude data and one time slot before the amplitude Day
Is input to the discriminating means 11, and further, a delay detection
The amplitude data two time slots before is determined through the wave portion 8B.
It is configured to be input to the separate means 11. The discrimination
The means 11 uses the differential detection means 8 to control the frequency F C -F L
For the modulated digital signal calculated and derived at intervals of π / 2 from the baseband signal beat at
If the amplitude data at the time is greater than 50% of the maximum value of the amplitude data of one time slot, the value of the modulated digital signal is adopted and the maximum value of the amplitude data of one cycle is 50%.
If the value is smaller than the value of% , the configuration is such that the value of the modulated digital signal is discarded . That is, as shown in FIG.
Data within a range of 50% or more of the maximum value of the amplitude within one time slot is valid data, and data within a range of 50% or less is invalid data. In particular, data derived at the time of symbol switching is likely to become invalid data.

【0015】上述の二重差動符号化通信方式を採用した
送信装置は、図3に示すように、伝送すべきデジタル信
号を1タイムスロット遅延させて加算する第一差動手段
1と、その第一差動手段1により生成された第一変調信
号を再度1タイムスロット遅延させて加算する第二差動
手段2と、その第二差動手段2により生成された第二変
調信号により搬送波の位相を変調するリング変調器等で
なる位相変調手段3と、その位相変調手段3により生成
された信号を送信する送信手段4とから構成してある。
前記第一差動手段1及び第二差動手段2は、伝送すべき
デジタル信号を1タイムスロット遅延するシフトレジス
タ等のデジタル遅延素子と、現信号と遅延信号とをmo
d.2で加算する加算器で構成してある。
As shown in FIG. 3, the transmitting apparatus adopting the above-mentioned double differential encoding communication system comprises a first differential means 1 for delaying and adding a digital signal to be transmitted by one time slot, The second differential means 2 adds the first modulated signal generated by the first differential means 1 after delaying it by one time slot again, and the second modulated signal generated by the second differential means 2 generates a carrier wave. It comprises a phase modulating means 3 such as a ring modulator for modulating the phase, and a transmitting means 4 for transmitting a signal generated by the phase modulating means 3.
The first differential means 1 and the second differential means 2 are a digital delay element such as a shift register for delaying a digital signal to be transmitted by one time slot, and the current signal and the delayed signal are mo
d. It is composed of an adder for adding by 2.

【0016】以下に別実施例を説明する。先の実施例で
は、データ伝送速度(シンボルレートFB)1Mbps
の変調デジタル信号で2相位相変調〔BPSK〕された
周波数150MHzの高周波信号を周波数146MHz
の参照信号で位相検波するシングルミキサー方式の直交
検波回路について説明したが、データ伝送速度、搬送波
周波数はこれらの値に限定するものではなく任意であ
り、参照波周波数は、|FC−FL|≧(1/2)・N・
Bを満たす周波数FLであれば任意である。先の実施例
では、2相位相変調〔BPSK〕について説明したが、
これに限定するものではなく任意の位相変調に適用で
き、例えば4相位相変調〔QPSK〕であってもよい。
この場合は、演算器83,84の出力は、0,π/2,
π,3π/2に対応して00B,10B,11B,01
のバイナリーデータが得られる。
Another embodiment will be described below. In the above embodiment, the data transmission rate (symbol rate F B ) is 1 Mbps.
A high-frequency signal with a frequency of 150 MHz that has been subjected to two-phase modulation (BPSK) with a modulated digital signal of
Has been described in the reference signal for the orthogonal detection circuit of the single mixer method of phase detection, data transmission speed, the carrier frequency is optional rather than limited to these values, the reference wave frequency, | F C -F L | ≧ (1/2) ・ N ・
Any frequency F L that satisfies F B is applicable. In the above embodiment, two-phase modulation [BPSK] has been described.
The present invention is not limited to this, and can be applied to any phase modulation. For example, quadrature phase modulation [QPSK] may be used.
In this case, the outputs of the arithmetic units 83 and 84 are 0, π / 2,
00B, 10B, 11B, 01 corresponding to π, 3π / 2
B binary data is obtained.

【0017】先の実施例では、遅延検波手段として、直
交成分データを角度成分データに変換して、その角度成
分データと1タイムスロット前の角度成分データとから
変調デジタル信号を演算導出するように構成した二重差
動符号化通信方式を採用したものに判別手段11を設け
るものを説明したが、遅延検波手段としては、図4に示
すように、直交成分導出部にて導出された直交成分デー
タを1タイムスロット遅延させるシフトレジスタSR
0,・・・,SR8と、以下の演算を行う演算部OPと
構成して、その演算の結果導出された変調デジタル信
号について有効無効を判断する判別手段11を設けるも
のであってもよい。 I(n)=Si (n)・Si-1 (n)+Si (n−1)・Si-1 (n−1) Q(n)=−Si (n)・Si-1 (n−1)+Si (n−1)・Si-1 (n) この他、本発明の判別手段は、|F C −F L |≧(1/
2)・F B を満たす周波数FLでベースバンド信号を検波
する方式の任意の回路構成においても採用可能である。
[0017] In the previous example, the differential detection circuit, the quadrature component data is converted to an angle component data, as calculates and derives a modulated digital signal from its angular component data and one time slot before the angular component data The discriminating means 11 is provided in the one adopting the configured double differential encoding communication system.
It has been described shall delay as the detection means, as shown in FIG. 4, the shift register SR to the quadrature component data derived by quadrature component deriving unit one time slot delayed
0,..., SR8 and an operation unit OP for performing the following operation, and the modulated digital signal derived as a result of the operation.
A determination means 11 for determining whether the signal is valid or invalid is provided.
It may be. I (n) = S i (n) · S i−1 (n) + S i (n−1) · S i−1 (n−1) Q (n) = − S i (n) · S i− 1 (n-1) + S i (n-1) · S i-1 (n) in addition, determination means of the present invention is, | F C -F L | ≧ (1 /
2) at the frequency F L that satisfies F B can also be employed in any circuit configuration of the method for detecting a baseband signal.

【0018】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】デジタル信号受信装置のブロック構成図FIG. 1 is a block diagram of a digital signal receiving apparatus.

【図2】タイミングチャートFIG. 2 is a timing chart.

【図3】デジタル信号送信装置のブロック構成図FIG. 3 is a block diagram of a digital signal transmission device.

【図4】別実施例を示すデジタル信号受信装置のブロッ
ク構成図
FIG. 4 is a block diagram showing a digital signal receiving apparatus according to another embodiment.

【符号の説明】[Explanation of symbols]

6 位相検波手段 7 直交成分導出手段 8 遅延検波手段 11 判別手段 6 phase detecting means 7 orthogonal component deriving means 8 delay detecting means 11 discriminating means

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 搬送波の周波数FC、変調デジタル信号
のシンボルレート B に対して、 |F C −F L |≧(1/2)・F B なる関係を有する周波数FLの参照信号で受信高周波信
号からベースバンド信号を検波する位相検波手段(6)
と、 前記位相検波手段(6)により検波され周波数FC−FL
で位相が回転するベースバンド信号に対してπ/2間隔
でA/D変換する直交成分導出手段(7)と、 前記直交成分導出手段(7)により変換された直交成分
データと1タイムスロット前の直交成分データとから変
調デジタル信号を演算導出する遅延検波手段(8)とを
備えて構成してあるデジタル信号受信装置であって、 前記遅延検波手段(8)に、演算導出された変調デジタ
ル信号が有意であるか否かを前記ベースバンド信号の振
幅値に基づき判断して、有意と判断された信号を出力す
る判別手段(11)を設けてあるデジタル信号受信装
置。
Frequency F C of claim 1. A carrier for the symbol rate F B of the modulated digital signal, | at ≧ (1/2) · F reference signal of a frequency F L with B the relationship | F C -F L Phase detection means (6) for detecting a baseband signal from a received high-frequency signal
When the is detected by the phase detection means (6) frequency F C -F L
Orthogonal component deriving means (7) for performing A / D conversion at an interval of π / 2 with respect to the baseband signal whose phase is rotated by the orthogonal component data and the orthogonal component data converted by the orthogonal component deriving means (7) one time slot before And a delay detection means (8) for calculating and deriving a modulated digital signal from the quadrature component data of the digital signal receiving apparatus. A digital signal receiving apparatus comprising: a determination unit (11) that determines whether a signal is significant based on the amplitude value of the baseband signal and outputs a signal determined to be significant.
JP4010695A 1992-01-24 1992-01-24 Digital signal receiver Expired - Lifetime JP2744542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4010695A JP2744542B2 (en) 1992-01-24 1992-01-24 Digital signal receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4010695A JP2744542B2 (en) 1992-01-24 1992-01-24 Digital signal receiver

Publications (2)

Publication Number Publication Date
JPH05207087A JPH05207087A (en) 1993-08-13
JP2744542B2 true JP2744542B2 (en) 1998-04-28

Family

ID=11757422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4010695A Expired - Lifetime JP2744542B2 (en) 1992-01-24 1992-01-24 Digital signal receiver

Country Status (1)

Country Link
JP (1) JP2744542B2 (en)

Also Published As

Publication number Publication date
JPH05207087A (en) 1993-08-13

Similar Documents

Publication Publication Date Title
US6205169B1 (en) Spread spectrum pulse position modulation communication system
JPS60112344A (en) Radio wave receiver and demodulating method
US5475705A (en) Demodulator for Manchester-coded FM signals
EP0837582B1 (en) Symbol synchronization in a DAB receiver
US5923701A (en) Spread spectrum pulse position modulation system
JP3087459B2 (en) FSK data demodulator
JP3792098B2 (en) Timing reproducing apparatus, demodulating apparatus and timing reproducing method using the same
JP2837982B2 (en) Delay detection demodulator
EP0836304A2 (en) Tracking of sampling frequency in a DAB receiver
JP2744542B2 (en) Digital signal receiver
JPH09214574A (en) Phase detector for data synchronization device and its operating method
JPH1056486A (en) Demodulator
JP2885052B2 (en) Automatic frequency control device
JP2744541B2 (en) Double differential coded communication device
JP3595478B2 (en) Frequency deviation detector and frequency deviation detection method
JP2876906B2 (en) Unique word detection circuit and demodulation circuit
JP3850887B2 (en) Method and apparatus for use with phase modulated signals
US6697437B1 (en) Receiving apparatus
JP3232919B2 (en) Time diversity receiver
JP2903539B2 (en) Demodulator
JP2744123B2 (en) Digital signal receiver
JPH08186606A (en) Reception device
JP2958612B2 (en) Multi-level QAM demodulator
JP2744540B2 (en) Digital signal receiver
JPH10173715A (en) Fsk demodulator