JP2742573B2 - Polymer / liquid crystal composite film and manufacturing method thereof - Google Patents

Polymer / liquid crystal composite film and manufacturing method thereof

Info

Publication number
JP2742573B2
JP2742573B2 JP26362089A JP26362089A JP2742573B2 JP 2742573 B2 JP2742573 B2 JP 2742573B2 JP 26362089 A JP26362089 A JP 26362089A JP 26362089 A JP26362089 A JP 26362089A JP 2742573 B2 JP2742573 B2 JP 2742573B2
Authority
JP
Japan
Prior art keywords
polymer
liquid crystal
film
composite film
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26362089A
Other languages
Japanese (ja)
Other versions
JPH03124704A (en
Inventor
和男 浜
元治 江▲ばた▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP26362089A priority Critical patent/JP2742573B2/en
Publication of JPH03124704A publication Critical patent/JPH03124704A/en
Application granted granted Critical
Publication of JP2742573B2 publication Critical patent/JP2742573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は高分子材料膜の中に液晶の粒子を分散させ
た高分子・液晶複合膜及びその製造方法に関する。
The present invention relates to a polymer / liquid crystal composite film in which liquid crystal particles are dispersed in a polymer material film, and a method for producing the same.

「従来の技術」 従来の高分子・液晶複合膜の製造方法は、液晶と高分
子との共通溶媒にこれらを溶解させ、この溶液を透明導
電性フィルムの電極側に膜厚が一定となるように流して
広げ、その後、溶媒を蒸発させて高分子・液晶複合膜を
得ていた。その複合膜に別の透明導電性フィルムを電極
側より張り付けて可撓性液晶フィルムを得ている。
[Prior art] The conventional method for producing a polymer / liquid crystal composite film involves dissolving a liquid crystal and a polymer in a common solvent and dissolving the solution on the electrode side of the transparent conductive film so that the film thickness becomes constant. And then evaporate the solvent to obtain a polymer / liquid crystal composite film. A flexible liquid crystal film is obtained by attaching another transparent conductive film to the composite film from the electrode side.

別の製造方法は良溶媒と貧溶媒との混合溶媒に高分子
と液晶とを混合溶解し、この溶液を水面上に展開して良
溶媒を水中に溶解し、貧溶媒を蒸発させて、水面から取
りあげて高分子・液晶複合膜を得ている。この高分子・
液晶複合膜を2枚の透明導電性フィルムでその電極面を
内側として挾み込み可撓性液晶フィルムとしている。
Another production method is to mix and dissolve a polymer and liquid crystal in a mixed solvent of a good solvent and a poor solvent, develop this solution on the water surface, dissolve the good solvent in water, evaporate the poor solvent, and To obtain a polymer / liquid crystal composite film. This polymer
The liquid crystal composite film is sandwiched between two transparent conductive films with the electrode surface inside, thereby forming a flexible liquid crystal film.

「発明が解決しようとする課題」 高分子・液晶複合膜において、高分子の導電率を
σ、液晶の導電率をσLC、高分子にかゝる電圧をEP
液晶にかゝる電圧をELCとすると、低周波数では次式が
成立つ(九州大学、高分子予稿集、Vol.38、No.3、198
9)。
[Problems to be Solved by the Invention] In the polymer / liquid crystal composite film, the conductivity of the polymer is σ P , the conductivity of the liquid crystal is σ LC , the voltage applied to the polymer is E P ,
When E LC a Ru voltage or a liquid crystal, at low frequencies the following equation holds (Kyushu University, polymer Proceedings, Vol.38, Nanba3,198
9).

従って液晶に印加される電界は高分子、液晶の導電率
の比により決まり、液晶の導電率σLCが一定の場合は高
分子の導電率σが大きい程大きく、低周波での低電圧
駆動が可能となる。
Therefore, the electric field applied to the liquid crystal is determined by the ratio between the conductivity of the polymer and the liquid crystal. When the conductivity σ LC of the liquid crystal is constant, the larger the conductivity σ P of the polymer is, the larger the electric field is. Becomes possible.

しかるに、従来の高分子・液晶複合膜に用いられてい
た高分子材料は導電率が低い絶縁材料であり、例えば抵
抗率(導電率の逆数)が1015Ωcm程度であり、このため
低周波においては液晶に印加される電圧が小さく、低電
圧駆動ができず、電界のオン、オフで透過率の変化が小
さく、大きなコントラスト比が得られず、使用に供し得
ない欠点があった。
However, the polymer material used in the conventional polymer / liquid crystal composite film is an insulating material having a low conductivity, for example, having a resistivity (the reciprocal of the conductivity) of about 10 15 Ωcm. Has a drawback that the voltage applied to the liquid crystal is small, low-voltage driving cannot be performed, the change in transmittance is small when the electric field is turned on and off, a large contrast ratio cannot be obtained, and the device cannot be used.

また従来の高分子・液晶複合膜は膜厚が5〜10μm程
度と比較的厚いため大きな駆動電圧を必要とし、しかも
膜厚が不均一で透過率にむらがあった。更に高分子の配
列が不規則であるため、電界のオンオフに対し液晶分子
が容易に動かず応答性が悪かった。
Further, the conventional polymer / liquid crystal composite film has a relatively thick film thickness of about 5 to 10 μm, and thus requires a large driving voltage, and has a non-uniform film thickness and uneven transmittance. Furthermore, since the arrangement of the polymers was irregular, the liquid crystal molecules did not easily move with respect to the on / off of the electric field, resulting in poor responsiveness.

「課題を解決するための手段」 この発明によれば脱イオン化されたモノマー材料の電
解重合膜のイオンが抜けた孔に液晶が充填されている。
[Means for Solving the Problems] According to the present invention, the liquid crystal is filled in the holes from which the ions of the electrolytically polymerized film of the deionized monomer material have escaped.

またこの発明によれば電解重合法により高分子膜を形
成し、その高分子膜から電解質イオンを除去し、その高
分子膜のイオンが抜けた孔に液晶を含浸させる。
Further, according to the present invention, a polymer film is formed by an electrolytic polymerization method, electrolyte ions are removed from the polymer film, and liquid crystal is impregnated into the holes of the polymer film from which ions have escaped.

「実施例」 この発明の実施例を図面を参照して説明しよう。この
発明では先ず電解重合法により高分子膜を形成する。例
えば第1図に示すように、容器11内に溶液12を入れる。
溶液12は、反応して高分子となるべきモノマー材料と、
電解質と溶媒とからなり、例えばモノマー材料は3−メ
チルチオフェン、電解質は過塩素酸リチウム、溶媒はプ
ロピレンカーボネイトである。その他、モノマー材料と
してピロール、チオフェンなど、電解質としてテトラブ
チルアンモニウムパークロレートなど、溶媒としてアセ
トニトリル、ベンゼンなどを使用することもできる。
Embodiment An embodiment of the present invention will be described with reference to the drawings. In the present invention, a polymer film is first formed by an electrolytic polymerization method. For example, as shown in FIG.
The solution 12 is a monomer material to be reacted to become a polymer,
For example, the monomer material is 3-methylthiophene, the electrolyte is lithium perchlorate, and the solvent is propylene carbonate. In addition, pyrrole and thiophene can be used as a monomer material, tetrabutylammonium perchlorate and the like can be used as an electrolyte, and acetonitrile and benzene can be used as a solvent.

この溶液12内に透明導電性フィルム13を入れる。透明
導電性フィルム13は例えばポリエチレンテレフタレート
フィルム14の片面にITOなどの透明電極15を蒸着したも
のである。この透明導電性フィルム13と対向して対極16
を溶液12内に入れる。対極16としては白金板、金板、フ
エロ板などを使用する。透明導電性フィルム13と対極16
との間に定電流直流電源17を接続する。この時、電源17
の正極を透明導電性フィルム13側とする。必要に応じて
電源17と直列に電流計18を挿入する。実際には透明導電
性フィルム13と対極16とを容器11内にセットした状態で
溶液12を容器11内に入れる。
The transparent conductive film 13 is put in the solution 12. The transparent conductive film 13 is formed, for example, by depositing a transparent electrode 15 such as ITO on one surface of a polyethylene terephthalate film. The counter electrode 16 faces the transparent conductive film 13.
Into solution 12. As the counter electrode 16, a platinum plate, a gold plate, a ferro plate, or the like is used. Transparent conductive film 13 and counter electrode 16
Is connected to the constant current DC power supply 17. At this time, power supply 17
The positive electrode is made the transparent conductive film 13 side. An ammeter 18 is inserted in series with the power supply 17 as necessary. Actually, the solution 12 is put in the container 11 with the transparent conductive film 13 and the counter electrode 16 set in the container 11.

溶液12を通じて透明導電性フィルム13と対極16との間
に一定電流、例えば5mA/cm2を流し、電解重合反応を起
させると、透明導電性フィルム13の電極15に高分子膜
(電解重合膜)19が均一な膜厚で形成される。高分子膜
19の膜厚が5000Å程度になった状態で電解重合反応を停
止させる。
When a constant current, for example, 5 mA / cm 2 is passed between the transparent conductive film 13 and the counter electrode 16 through the solution 12 to cause an electrolytic polymerization reaction, a polymer film (electropolymerized film) is applied to the electrode 15 of the transparent conductive film 13. 19) is formed with a uniform film thickness. Polymer membrane
The electropolymerization reaction is stopped when the film thickness of 19 becomes about 5000 °.

次に得られた高分子膜19から電解質イオンを除去す
る。例えば第2図に第1図と対応する部分に同一符号を
付けて示すように、容器11内に高分子膜19が形成された
透明導電性フィルム13と対極16をセットし、容器11内に
溶液21を入れ、電源17により透明導電性フィルム13と対
極16との間に定電流を流す。この場合溶液21としては電
解重合の際の溶液12からモノマー材料を除いたものを用
い、かつ電源17の正極を対極16に接続して、電解重合の
際とは逆に電流を流す。これにより高分子膜19中の電解
質イオンが除去される。この通電時間は例えば1〜2時
間程度である。その後、必要に応じて脱イオンを完全に
するため、高分子膜19が付いた透明導電性フィルム13を
メチルアルコール中に24時間程度浸漬する。なお以上の
電解重合及び脱イオンは従来知られている技術を適用で
きる。
Next, electrolyte ions are removed from the obtained polymer film 19. For example, as shown in FIG. 2 by attaching the same reference numerals to parts corresponding to FIG. 1, a transparent conductive film 13 having a polymer film 19 formed thereon and a counter electrode 16 are set in a container 11, and The solution 21 is charged, and a constant current is supplied between the transparent conductive film 13 and the counter electrode 16 by the power supply 17. In this case, a solution obtained by removing the monomer material from the solution 12 at the time of the electrolytic polymerization is used as the solution 21, and the positive electrode of the power supply 17 is connected to the counter electrode 16, and a current flows in the opposite direction to that at the time of the electrolytic polymerization. Thereby, the electrolyte ions in the polymer film 19 are removed. The current supply time is, for example, about 1 to 2 hours. Thereafter, in order to complete deionization as necessary, the transparent conductive film 13 with the polymer film 19 is immersed in methyl alcohol for about 24 hours. For the above-mentioned electrolytic polymerization and deionization, a conventionally known technique can be applied.

次に脱イオンした高分子膜が付いた透明導電性フィル
ムを液晶中に入れて液晶を、高分子膜のイオンが抜けた
孔に含浸させる。この際、圧力を加えて含浸を速め、か
つ確実にさせることもできる。このようにして高分子・
液晶複合膜が得られる。この液晶が含浸した高分子膜に
別の透明導電性フィルムをその電極側より張り合せて可
撓性液晶フィルムを得る。
Next, a transparent conductive film provided with a deionized polymer film is put into a liquid crystal, and the liquid crystal is impregnated into the pores of the polymer film from which ions have escaped. At this time, pressure can be applied to speed up and ensure the impregnation. In this way, the polymer
A liquid crystal composite film is obtained. Another transparent conductive film is adhered to the polymer film impregnated with the liquid crystal from the electrode side to obtain a flexible liquid crystal film.

なお上述において高分子膜19の膜厚を5000Åより大き
く厚くすると、透明導電性フィルム13との密着強度が低
下し、剥れ易くなるおせれがあり、逆に膜厚が薄過ぎる
と、高分子膜19内に含浸する液晶が少なくなり、透過率
のON,OFF比が大きくとれなくなる。電解質として過塩素
酸リチウムを使用すると、イオンが大きく、多くの液晶
を含浸させることができ、かつ、高分子膜19内でイオン
が動き易く、脱イオンを容易に行うことができる。
In the above description, if the thickness of the polymer film 19 is larger than 5000 Å, the adhesive strength with the transparent conductive film 13 is reduced, and there is a tendency that the polymer film 19 is easily peeled off. The amount of liquid crystal impregnated in the film 19 decreases, and the ON / OFF ratio of the transmittance cannot be increased. When lithium perchlorate is used as the electrolyte, the ions are large, many liquid crystals can be impregnated, the ions easily move in the polymer film 19, and deionization can be easily performed.

「発明の効果」 以上述べたようにこの発明によれば電解重合膜の脱イ
オン化したものに液晶を含浸させたものであり、電解重
合膜の脱イオン化したものの導電率は従来のものの高分
子膜よりも導電率が高く、例えば抵抗率が1010Ωcm程度
であり、導電率が5桁程度高く、低周波数で液晶に大き
な電圧が印加されるため、低電圧駆動が可能である。
[Effects of the Invention] As described above, according to the present invention, the deionized electrolytic polymerized film is impregnated with liquid crystal, and the conductivity of the deionized electrolytic polymerized film is a conventional polymer film. Since the conductivity is higher than that of the liquid crystal, for example, the resistivity is about 10 10 Ωcm, the conductivity is about five digits higher, and a large voltage is applied to the liquid crystal at a low frequency, low voltage driving is possible.

また電解重合膜(高分子膜)は先きに述べたように厚
さが0.5μ程度で十分であり、従来のものよりも薄いも
のでよいから、それだけ低電圧駆動が可能である。しか
も電解重合膜は従来のものよりも膜厚が均一であり、コ
ントラストむらがない。脱イオン化により多数の細い孔
が密に高分子膜に生じ、その孔に液晶が充填されている
ため、膜厚が薄くても、高いコントラスト比が得られ
る。更に電解重合膜はモノマー分子が規則正しく配列さ
れて出来ているため、電界をかけた時に液晶分子が、そ
のモノマー分子の配列にそろうように動き易く、高速応
答性のものが得られる。
Further, as described above, the thickness of the electrolytic polymer film (polymer film) of about 0.5 μm is sufficient, and may be thinner than the conventional one, so that low voltage driving is possible. Moreover, the thickness of the electropolymerized film is more uniform than that of the conventional one, and there is no unevenness in contrast. A large number of fine holes are densely formed in the polymer film by deionization, and the holes are filled with liquid crystal, so that a high contrast ratio can be obtained even if the film thickness is small. Further, since the electrolytic polymer film is formed by regularly arranging the monomer molecules, when an electric field is applied, the liquid crystal molecules easily move so as to be aligned with the arrangement of the monomer molecules, and a high-speed responsive one can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は電解重合膜作製装置の概略を示す図、第2図は
脱イオン装置の概略を示す図である。
FIG. 1 is a view schematically showing an electrolytic polymerized film production apparatus, and FIG. 2 is a view schematically showing a deionization apparatus.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】脱イオン化されたモノマー材料の電解重合
膜のイオンが抜けた孔に液晶が充填されている高分子・
液晶複合膜。
1. A polymer in which liquid crystal is filled into pores from which ions of an electrolytic polymerized film of a deionized monomer material have escaped.
Liquid crystal composite film.
【請求項2】電解重合法により高分子膜を形成し、 その高分子膜から電解質イオンを除去し、 その高分子膜のイオンが抜けた孔に液晶を含浸させる高
分子・液晶複合膜の製造方法。
2. A polymer / liquid crystal composite film in which a polymer film is formed by an electrolytic polymerization method, electrolyte ions are removed from the polymer film, and liquid crystal is impregnated into pores of the polymer film from which ions have escaped. Method.
JP26362089A 1989-10-09 1989-10-09 Polymer / liquid crystal composite film and manufacturing method thereof Expired - Lifetime JP2742573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26362089A JP2742573B2 (en) 1989-10-09 1989-10-09 Polymer / liquid crystal composite film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26362089A JP2742573B2 (en) 1989-10-09 1989-10-09 Polymer / liquid crystal composite film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03124704A JPH03124704A (en) 1991-05-28
JP2742573B2 true JP2742573B2 (en) 1998-04-22

Family

ID=17392065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26362089A Expired - Lifetime JP2742573B2 (en) 1989-10-09 1989-10-09 Polymer / liquid crystal composite film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2742573B2 (en)

Also Published As

Publication number Publication date
JPH03124704A (en) 1991-05-28

Similar Documents

Publication Publication Date Title
KR900003155B1 (en) Polymer film with conductive pattern and method of manufacturing the same
US4864472A (en) Solid electrolyte capacitor
EP0307114A3 (en) Improved light modulating material and method for preparing same
Watanabe et al. In-plane growth of poly (3, 4-ethylenedioxythiophene) films on a substrate surface by bipolar electropolymerization
JP2742573B2 (en) Polymer / liquid crystal composite film and manufacturing method thereof
JPS62106923A (en) Production of five-membered heterocyclic compound polymer
JPS60137922A (en) Apparatus for electrolytic polymerization
JPH0523292B2 (en)
JPH0361400A (en) Production of color filter
JPS5931565A (en) Polymer covering electrode
JPS613742A (en) Conductive high-molecular sheet and manufacture thereof
JPH047521B2 (en)
JP2650777B2 (en) Method for producing polyaniline
JPS62100524A (en) Production of electroconductive polymeric membrane
JPS62115023A (en) Production of electroconductive polymer membrane
JPS62174399A (en) Production of electrically conductive polymer film
JPH01119689A (en) Electrolytic oxide film and production thereof
JPH0578575B2 (en)
JPH0473622A (en) Electrochromic display device
JPS612204A (en) Conductive polymer film material and method of producing same
JPH01111892A (en) Patternized electrolytically oxidized film and its formation
JPS61224203A (en) Anisotropic conducting film
JPH056288B2 (en)
JPS62170494A (en) Production of conductive resin sheet
JPS63266708A (en) Anisotropic conductive film and its manufacture