JPH01119689A - Electrolytic oxide film and production thereof - Google Patents
Electrolytic oxide film and production thereofInfo
- Publication number
- JPH01119689A JPH01119689A JP27329987A JP27329987A JPH01119689A JP H01119689 A JPH01119689 A JP H01119689A JP 27329987 A JP27329987 A JP 27329987A JP 27329987 A JP27329987 A JP 27329987A JP H01119689 A JPH01119689 A JP H01119689A
- Authority
- JP
- Japan
- Prior art keywords
- film
- substrate
- electrolytic
- aromatic compound
- monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000178 monomer Substances 0.000 claims abstract description 74
- 239000000758 substrate Substances 0.000 claims abstract description 58
- 239000004020 conductor Substances 0.000 claims abstract description 36
- 239000003792 electrolyte Substances 0.000 claims abstract description 32
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 21
- 230000003647 oxidation Effects 0.000 claims abstract description 19
- 150000001491 aromatic compounds Chemical class 0.000 claims description 56
- 239000000203 mixture Substances 0.000 claims description 10
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 27
- 229920006254 polymer film Polymers 0.000 abstract description 9
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052697 platinum Inorganic materials 0.000 abstract description 6
- 238000001771 vacuum deposition Methods 0.000 abstract description 4
- 229910052783 alkali metal Inorganic materials 0.000 abstract description 3
- 150000001340 alkali metals Chemical class 0.000 abstract description 3
- 235000010290 biphenyl Nutrition 0.000 abstract description 3
- 239000004305 biphenyl Substances 0.000 abstract description 3
- 150000003839 salts Chemical class 0.000 abstract description 3
- 239000011521 glass Substances 0.000 abstract description 2
- 229910052737 gold Inorganic materials 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 239000004033 plastic Substances 0.000 abstract description 2
- 229920003023 plastic Polymers 0.000 abstract description 2
- 239000011810 insulating material Substances 0.000 abstract 2
- 229910052804 chromium Inorganic materials 0.000 abstract 1
- 239000010408 film Substances 0.000 description 108
- 239000000243 solution Substances 0.000 description 29
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 26
- 229920000642 polymer Polymers 0.000 description 15
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 15
- 238000006116 polymerization reaction Methods 0.000 description 13
- 239000012528 membrane Substances 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 239000008151 electrolyte solution Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 8
- -1 polycyclic aromatic compounds Chemical class 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 229920001940 conductive polymer Polymers 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 5
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 238000007738 vacuum evaporation Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- GEZGAZKEOUKLBR-UHFFFAOYSA-N 1-phenylpyrrole Chemical compound C1=CC=CN1C1=CC=CC=C1 GEZGAZKEOUKLBR-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000002468 redox effect Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- LLEMOWNGBBNAJR-UHFFFAOYSA-N biphenyl-2-ol Chemical group OC1=CC=CC=C1C1=CC=CC=C1 LLEMOWNGBBNAJR-UHFFFAOYSA-N 0.000 description 2
- 150000001716 carbazoles Chemical class 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- XJKSTNDFUHDPQJ-UHFFFAOYSA-N 1,4-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC=CC=2)C=C1 XJKSTNDFUHDPQJ-UHFFFAOYSA-N 0.000 description 1
- WSQIUQGZWDQMEL-UHFFFAOYSA-N 1-methylazulene Chemical compound C1=CC=CC=C2C(C)=CC=C21 WSQIUQGZWDQMEL-UHFFFAOYSA-N 0.000 description 1
- KXSFECAJUBPPFE-UHFFFAOYSA-N 2,2':5',2''-terthiophene Chemical compound C1=CSC(C=2SC(=CC=2)C=2SC=CC=2)=C1 KXSFECAJUBPPFE-UHFFFAOYSA-N 0.000 description 1
- NFEBPMFFSGVANX-UHFFFAOYSA-N 9-ethynylcarbazole Chemical compound C1=CC=C2N(C#C)C3=CC=CC=C3C2=C1 NFEBPMFFSGVANX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 239000012769 display material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- MRNHPUHPBOKKQT-UHFFFAOYSA-N indium;tin;hydrate Chemical compound O.[In].[Sn] MRNHPUHPBOKKQT-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical compound CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000010292 orthophenyl phenol Nutrition 0.000 description 1
- 229930184652 p-Terphenyl Natural products 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920000909 polytetrahydrofuran Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- WGHUNMFFLAMBJD-UHFFFAOYSA-M tetraethylazanium;perchlorate Chemical compound [O-]Cl(=O)(=O)=O.CC[N+](CC)(CC)CC WGHUNMFFLAMBJD-UHFFFAOYSA-M 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は改良された電解酸化膜とその作製方法に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improved electrolytic oxide film and a method for producing the same.
ある種の芳香族化合物は電解質を添加した溶媒中に溶解
して、これを電解酸化することにより、導電性の高分子
膜を電極基板上に形成させることができる。このような
芳香族化合物としては、ピロール類、チオフェン類等の
複素環式化合物、アズレン、ピレン、トリフェニレン等
の多環芳香族化合物が知られている〔例えば、J、パー
ボン(J、 Bargon)、S、モーマント(B、
Mohmand)、R,、T、ウォルトW 7 (R,
J、 Waltman)、IBM ジャーナル オブ
リサーチ アンド デペロップメント(よりM Jo
urnalof Re5earch & Develo
p−ment)第27巻 第4号 第550頁(191
35年)参照〕。A conductive polymer film can be formed on an electrode substrate by dissolving a certain type of aromatic compound in a solvent containing an electrolyte and electrolytically oxidizing the compound. As such aromatic compounds, heterocyclic compounds such as pyrroles and thiophenes, and polycyclic aromatic compounds such as azulene, pyrene, and triphenylene are known [for example, J, Bargon, S, Mormant (B,
Mohmand), R, T, Walt W 7 (R,
J. Waltman), IBM Journal of Research and Development (M. Jo
urnalof Re5earch & Develo
p-ment) Volume 27, Issue 4, Page 550 (191
35)].
しかしながら、電極基板上での直接電解酸化により高分
子膜を形成する方法では、以下に述べるような種々の欠
点があつ念。However, the method of forming a polymer film by direct electrolytic oxidation on an electrode substrate has various drawbacks as described below.
まず第1に、使用可能な芳香族モノマーの制限の問題が
ある。すなわち、導電性高分子膜は、通常電極基板をア
セトニトリル等の有機溶媒中に、モノマーとなる芳香族
系化合物と通電させるための電解質とを溶解させた溶液
中に、対向電極と共に入れ、両電極間に通電させること
により形成される。したがって、芳香族系化合物モノマ
ーは電解酸化を行う溶液に可溶であるという条件を満た
す必要がある。また、電極基板表面で形成された芳香族
系高分子の溶解度が、モノマーの溶解度と同程度の場合
には、咳高分子が溶液中に溶解し、電極基板上に安定な
高分子系膜を形成することが困難である。このように、
従来の溶液からの作製法には、電極基板上に安定に膜を
形成することが可能な芳香族系化合物モノマーに限りが
あるという欠点があった。First of all, there is the problem of limitations on the aromatic monomers that can be used. In other words, a conductive polymer film is usually formed by placing an electrode substrate together with a counter electrode in a solution in which an aromatic compound as a monomer and an electrolyte for conducting electricity are dissolved in an organic solvent such as acetonitrile. It is formed by passing current between them. Therefore, the aromatic compound monomer needs to satisfy the condition that it is soluble in the solution for electrolytic oxidation. In addition, if the solubility of the aromatic polymer formed on the electrode substrate surface is similar to the solubility of the monomer, the cough polymer will dissolve in the solution and form a stable polymer film on the electrode substrate. Difficult to form. in this way,
The conventional solution-based production method has the drawback that there is a limit to the amount of aromatic compound monomers that can stably form a film on the electrode substrate.
第2に、従来の溶液中からの電解酸化による析出で作製
した膜は、一般に基板上の複数の部分から成長した塊状
の高分子の集合体であるためピンホールが存在し、更に
、大きな凹凸があるため表面の高い平滑性が期待できな
い。また、電極表面性状の影響を強く受けるため島状に
析出する例が多く、このため均質な膜を得るには電極の
表面の処理、洗浄、電解酸化条件等の管理に多大な労力
を必要とするなどの問題があった。Second, films produced by conventional electrolytic oxidation deposition from a solution are generally aggregates of bulk polymers grown from multiple parts of the substrate, so they have pinholes and large irregularities. Therefore, high surface smoothness cannot be expected. In addition, because it is strongly affected by the electrode surface properties, there are many cases where island-like precipitation occurs, and therefore, in order to obtain a homogeneous film, a great deal of effort is required to control the electrode surface treatment, cleaning, electrolytic oxidation conditions, etc. There were problems such as.
第5に、電解反応により消費される芳香族系化合物モノ
マーは電解溶液中に存在するもののごく一部であり、更
に、重合しても基板に固定されずに溶液中に溶出する高
分子の割合が大きいため、溶液の汚染が大きい。このた
め、電解溶液を頻繁に交換する必要があり、原料や溶媒
の経済的使用の面での問題があった。Fifth, the aromatic compound monomer consumed by the electrolytic reaction is only a small part of what is present in the electrolytic solution, and furthermore, even when polymerized, the proportion of polymers that are not fixed to the substrate and elutes into the solution. is large, resulting in large contamination of the solution. Therefore, it is necessary to frequently replace the electrolytic solution, which poses a problem in terms of economical use of raw materials and solvents.
第4に、従来の溶液中からの電解酸化による析出を利用
した膜の形成においては、電極上への析出時に芳香族系
化合物モノマーの重合反応と酸化反応の両方が競合して
起きている。流れる電流は、両方の反応に必要な電子数
の和で観測てれる。したがって、膜の形成時に流れる電
流をモニターしても、電極基板上への芳香族系高分子の
正確な析出量を見積ることはできない。Fourth, in the conventional film formation using electrolytic oxidation deposition from a solution, both the polymerization reaction and the oxidation reaction of the aromatic compound monomer compete with each other during deposition on the electrode. The flowing current can be observed as the sum of the number of electrons required for both reactions. Therefore, even if the current flowing during film formation is monitored, it is not possible to accurately estimate the amount of aromatic polymer deposited on the electrode substrate.
このため、膜形成プロセスの管理を直接的に行うことが
困難であるという問題があった。Therefore, there has been a problem in that it is difficult to directly manage the film formation process.
一方、近年、液晶表示を始めとしたディジタル表示装置
や、タッチベン方式の手書き入力装置、ファクシミリ装
置等の急激な需要の増加が見られる。これらの宅内装置
の入出力部品の表示部、コネクター、例えば液晶表示装
置やエレクトロクロミック表示装置の表示部、電極取出
部の接続、タッチベンの入力、ファクシミリにおけるイ
メージセンサ−の出力取出し等に任意のパターン状に高
導電性を有する安価なフィルムが要求されている。また
、センサー素子においても年々小型化とソリッドステー
ト化が進められ、例えばイオンセンサーについても微少
な電極部分に任意のパターン状に導電性や酸化還元性の
ある均質なフィルムを作製することが要求されている。On the other hand, in recent years, there has been a rapid increase in demand for digital display devices such as liquid crystal displays, touch pen type handwriting input devices, facsimile devices, and the like. Arbitrary patterns can be used for display parts and connectors of input/output parts of these home devices, such as display parts of liquid crystal display devices and electrochromic display devices, connection of electrode extraction parts, input of touch pens, output extraction of image sensors in facsimile machines, etc. There is a need for an inexpensive film with high conductivity. In addition, sensor elements are becoming smaller and more solid-state year by year, and for example, for ion sensors, it is required to create a homogeneous film with electrical conductivity and redox properties in an arbitrary pattern on minute electrode parts. ing.
従来、導電性の高分子フィルムとしては、各種の熱可塑
性樹脂に導電性光てん材を混入し、それを成形してフィ
ルム化したもの、及び高分子フィルムの表面に導電性の
材料を蒸着、スプレー塗布、又はメツキしたもの等が使
用されてきた。これらいずれのフィルムでも、均一な導
電性のフィルムを得ることは容易であるが、所望のパタ
ーン状にのみ導電性を付与したフィルムを得るには、フ
ィルムに何らかのパターン成形工程を施す必要がある。Conventionally, conductive polymer films have been produced by mixing various thermoplastic resins with conductive optical fibers and molding them into films, and by vapor-depositing conductive materials on the surface of polymer films. Spray coating or plating have been used. Although it is easy to obtain a uniformly conductive film with any of these films, in order to obtain a film that is imparted with conductivity only in a desired pattern, it is necessary to subject the film to some kind of pattern forming process.
他方、このような金属やカーボンと各種樹脂との複合系
とは異なり、前述のような高分子材自体が導電性を有す
る導電性高分子材が、その高い導電性から注目を浴びて
いる。これらの高分子は、導電性を示す以外にも可逆な
酸化還元性を持ち、エレクトロクロミズム性を示し、電
池や表示、センサー材料としても注目されている。しか
しながら、電極基板上での電解酸化により高分子膜を形
成する方法では、形成される高分子の溶解度のため使用
可能なモノマーが制限される、形成された膜の均質性が
低い、形成される膜の量に比較して使用するモノマーの
量が多い、電解溶媒の汚染が著しい、等の種々の問題が
あることは既に述べたとおりである。また、得られる導
電性高分子のフィルムは一般にもろく、成形加工が難し
いため、これをパターン化する技術は確立されていなか
った。更に、このようなモノマー溶液からの電解重合で
は溶液中のモノマーが電極表面に拡散して重合するが、
電極面では中心と周辺でのモノマーの拡散状態が異なる
ために重合速度が異なり、電極上の各位置で均質な重合
膜を得ることが難しい。On the other hand, unlike such composite systems of metals or carbon and various resins, the aforementioned conductive polymer materials, in which the polymer material itself is electrically conductive, are attracting attention because of their high electrical conductivity. In addition to exhibiting electrical conductivity, these polymers have reversible redox properties and electrochromism, and are attracting attention as materials for batteries, displays, and sensors. However, in the method of forming a polymer film by electrolytic oxidation on an electrode substrate, the monomers that can be used are limited due to the solubility of the formed polymer, the homogeneity of the formed film is low, and the formation As already mentioned, there are various problems such as the amount of monomer used is large compared to the amount of membrane, and the electrolytic solvent is significantly contaminated. Furthermore, the resulting conductive polymer film is generally fragile and difficult to mold, so no technology has been established for patterning it. Furthermore, in such electrolytic polymerization from a monomer solution, the monomer in the solution diffuses onto the electrode surface and polymerizes.
On the electrode surface, the diffusion state of monomers differs between the center and the periphery, resulting in different polymerization rates, making it difficult to obtain a homogeneous polymer film at each position on the electrode.
パターン状電極を用いた場合には1.ハターンの大小や
パターン密度によシモノマーの拡散状態が複雑になるた
め均一な膜とはならず、重合の制御も難しい。最近、パ
ターン化され九導電部位を持つ基板上にポリ塩化ビニル
のごとき汎用高分子を塗布し、これを電極として七ツマ
ー溶液中で電解酸化する方法が見出されている。When using patterned electrodes, 1. Because the diffusion state of the monomer becomes complicated depending on the size of the pattern and the pattern density, a uniform film cannot be obtained and it is difficult to control polymerization. Recently, a method has been discovered in which a general-purpose polymer such as polyvinyl chloride is coated on a patterned substrate having nine conductive sites, and this is used as an electrode for electrolytic oxidation in a 7-mer solution.
しかし、この方法で得られたパターン状導電性高分子膜
は、導電性高分子が汎用高分子中に分散されたものとな
り、導電性が極度に小さくなるほか、酸化還元速度も小
さくなり、エレクトロクロミズム性やセンサーとしての
感受性も低下する。また、重合自体も汎用高分子中のモ
ノマーの拡散に依存しており、これに伴う重合の不均一
性の問題は何ら解決されていない。However, in the patterned conductive polymer film obtained by this method, the conductive polymer is dispersed in a general-purpose polymer, and the conductivity is extremely low, the redox rate is also low, and the electroconductive polymer is dispersed in a general-purpose polymer. Chromism and sensitivity as a sensor also decrease. Moreover, the polymerization itself also depends on the diffusion of monomers in general-purpose polymers, and the problem of nonuniformity of polymerization associated with this has not been solved at all.
本発明はこれらの欠点を除去するためになされたもので
あり、その目的は高い均質性を有する高分子膜あるいは
パターン状高分子膜、及びそれらの効率よい作製方法を
提供することにある。The present invention has been made to eliminate these drawbacks, and its purpose is to provide a highly homogeneous polymer film or patterned polymer film, and an efficient method for producing the same.
本発明を概説すれば、本発明の第1の発明は電解酸化膜
の作製方法の発明であって、基板上に芳香族系化合物上
ツマ−の膜を作製する工程、該芳香族系化合物モノマー
の膜上に互いに導通しない1対以上の導電性を有する導
電体−を形成させる工程、該芳香族系化合物モノマーを
電解酸化する工程、の各工程を包含することを特徴とす
る。To summarize the present invention, the first invention of the present invention is an invention of a method for producing an electrolytic oxide film, which includes a step of producing a film on an aromatic compound on a substrate, and a step of producing a film on an aromatic compound monomer. The method is characterized in that it includes the following steps: forming one or more pairs of conductors having conductivity that are not electrically conductive to each other on the film, and electrolytically oxidizing the aromatic compound monomer.
また、本発明の第2の発明は、他のパターン状電解酸化
膜の作製方法の発明であって、基板上に芳香族系化合物
モノマーと電解質の混合膜を作製する工程、該芳香族系
化合物モノマーと電解質の混合膜上に互いに導通しない
1対以上の導電性を有する導電体を形成させる工程、該
芳香族系化合物モノマーを電解酸化する工程、の各工程
を包含することを特徴とする。Further, a second invention of the present invention is an invention of another method for producing a patterned electrolytic oxide film, which includes a step of producing a mixed film of an aromatic compound monomer and an electrolyte on a substrate; It is characterized by including the following steps: forming one or more pairs of electrically conductive materials that are not electrically conductive to each other on a mixed film of monomer and electrolyte, and electrolytically oxidizing the aromatic compound monomer.
そして、本発明の第5の発明は、電解酸化膜の発明であ
って、基板上に、基板上での芳香族系化合物モノマーの
電解酸化によって形成した電解酸化膜を有することを特
徴とする。A fifth invention of the present invention is an invention of an electrolytic oxide film, and is characterized by having an electrolytic oxide film formed on a substrate by electrolytic oxidation of an aromatic compound monomer on the substrate.
そして更に、本発明の第4の発明は、他の電解酸化膜の
発明であって、基板上に1基板上での芳香族系化合物モ
ノマーと電解質の混合物の電解酸化によって形成した電
解酸化膜を有することを特徴とする。Furthermore, a fourth invention of the present invention is another invention of an electrolytic oxide film, in which an electrolytic oxide film is formed on a substrate by electrolytic oxidation of a mixture of an aromatic compound monomer and an electrolyte. It is characterized by having.
すなわち、従来室われてきた高分子膜の作製は、芳香族
系化合物モノマーの溶液からの電解重合の方法によって
おり、作製したフィルムへの煩雑なパターン形成工程、
溶解度に起因する使用可能モノマーの制限、電解溶媒の
汚染等の多くの問題を伴っている。これに対し、本発明
では、あらかじめ基板上に平滑な芳香族系化合物モノマ
ーの膜を塗布法、真空蒸着法などにより作製する。次い
で、該芳香族系化合物モノマーの膜上に導電性を有する
1対以上の導電体を形成、例えば真空蒸着、スパッタリ
ング、CVD法等の手法を用いて作製、又はあらかじめ
作製しておいた導電性を有する1対以上の導電体を接触
させる。なお、あらかじめ基板上に導電体を形成してお
いた場合にはこの工程は不要である。この膜を有する基
板を電解溶液に浸漬し、導電体の一部を正極、残りを負
極として適当な直流電圧を印加することにより、電解酸
化膜を得るものである。あるいは、芳香族系化合物上ツ
マ−の膜を作製する代りに、芳香族系化合物モノマーと
電解質の混合物の膜を作製し、その上又は基板上に1対
以上の導電体を真空蒸着、スパッタリング、CtVD法
等の手法を用いて作製、又はあらかじめ作製しておいた
パターン状に導電性を有する導電体を接触させる。次い
で、導電体の一部を正極、残シを負極として適当な直流
電圧を印加することにより、無溶媒でパターン状電解酸
化膜を得るものである。In other words, the conventional method of producing polymer membranes is electrolytic polymerization from a solution of aromatic compound monomers, which requires a complicated pattern formation process on the produced film.
It is accompanied by many problems such as limitations on usable monomers due to solubility and contamination of electrolytic solvents. In contrast, in the present invention, a smooth film of an aromatic compound monomer is prepared in advance on a substrate by a coating method, a vacuum evaporation method, or the like. Next, one or more pairs of electrical conductors having electrical conductivity are formed on the film of the aromatic compound monomer, for example, produced using a method such as vacuum evaporation, sputtering, or CVD, or a conductive material that has been produced in advance. one or more pairs of conductors having Note that this step is not necessary if a conductor is formed on the substrate in advance. An electrolytic oxide film is obtained by immersing a substrate having this film in an electrolytic solution and applying an appropriate DC voltage to a part of the conductor as a positive electrode and the rest as a negative electrode. Alternatively, instead of producing a film on an aromatic compound, a film of a mixture of an aromatic compound monomer and an electrolyte may be produced, and one or more pairs of conductors may be deposited on the film or on the substrate by vacuum evaporation, sputtering, A conductive material having electrical conductivity is brought into contact with a pattern formed using a method such as a CtVD method or prepared in advance. Next, by applying an appropriate DC voltage to a part of the conductor as a positive electrode and the remaining part as a negative electrode, a patterned electrolytic oxide film is obtained without using a solvent.
本発明の方法によれば、芳香族系化合物モノマーあるい
は芳香族系化合物上ツマ−と電解質の複合膜と1対以上
の導電性を有する導電体を付着した基板上でも電解酸化
反応が進行し、従来の均一溶液系からの高分子膜作製が
困難なモノマーを用いた場合でも、基板上に安定な電解
酸化膜を作製でき、また、重合反応時に流れる電流を調
整し、かつ導電体の形状を任意のパターン状にすること
で、パターン状の電解酸化膜が得られる。なお、本発明
で言う「高分子」とは、該モノマーが二つ以上結合した
状態を示す。According to the method of the present invention, the electrolytic oxidation reaction proceeds even on a substrate on which a composite film of an aromatic compound monomer or an aromatic compound monomer and an electrolyte and one or more pairs of electrically conductive materials are attached, Even when using monomers that are difficult to produce polymer films from conventional homogeneous solution systems, stable electrolytic oxide films can be created on substrates, and the current flow during the polymerization reaction can be adjusted and the shape of the conductor can be controlled. A patterned electrolytic oxide film can be obtained by forming an arbitrary pattern. Note that the term "polymer" as used in the present invention refers to a state in which two or more of the monomers are bonded together.
以下、本発明の電解酸化膜及びその作製方法をより詳細
に説明する。Hereinafter, the electrolytic oxide film of the present invention and its manufacturing method will be explained in more detail.
本発明の電解酸化膜を作製するに必要な芳香族系化合物
モノマーは、電解酸化可能なものであれば特に限定され
ないが、例えば、ビフェニル、p−ターフェニル、0−
ターフェニル、p−クォータフェニル、2−ヒドロキシ
ビフェニル、N−ビニルカルバゾール、N−エチニルカ
ルバソール、ターチオフェン、N−フェニルビロールな
ど、通常の電解酸化による重合で用いられているモノマ
ー類や、これらの誘導体、数量体のオリゴマー状態にな
ったものを用いることができる。通常液状のモノマーで
も、誘導体やオリゴマー状態で固体膜にできるものであ
れば使用可能である。The aromatic compound monomer necessary for producing the electrolytic oxide film of the present invention is not particularly limited as long as it can be electrolytically oxidized, but examples include biphenyl, p-terphenyl, 0-
Monomers used in ordinary electrolytic oxidation polymerization such as terphenyl, p-quarterphenyl, 2-hydroxybiphenyl, N-vinylcarbazole, N-ethynylcarbazole, terthiophene, N-phenylvirol, etc. Derivatives and quantified oligomers can be used. Normally liquid monomers can be used as long as they can be made into a solid film in the form of derivatives or oligomers.
基板上の芳香族系化合物モノマー膜は電解酸化時にはく
離しない程度の密着力で基板上に付着していれば良く、
例えば、該芳香族系化合物モノマーを基板上に真空蒸着
する、あるいは、該芳香族系化合物モノマーを含む溶液
を基板上にスピンコードしたのち乾燥する、あるいは、
該溶液中に基板を浸漬したのち乾燥することにより作製
することができる。基板上に芳香族系化合物モノマーの
膜を作製する代りに、芳香族系化合物モノマーと電解質
の混合物からなる膜を作製する場合にも、同様の方法を
用いることができる。すなわち、本発明において芳香族
系化合物モノマー膜の作製方法は限定されるものではな
い。It is sufficient that the aromatic compound monomer film on the substrate is adhered to the substrate with sufficient adhesion to not peel off during electrolytic oxidation.
For example, the aromatic compound monomer is vacuum-deposited onto the substrate, or a solution containing the aromatic compound monomer is spin-coded onto the substrate and then dried;
It can be produced by immersing a substrate in the solution and then drying it. A similar method can be used when producing a film made of a mixture of an aromatic compound monomer and an electrolyte instead of producing a film of an aromatic compound monomer on a substrate. That is, in the present invention, the method for producing the aromatic compound monomer film is not limited.
基板としては、絶縁性であシ、かつ、電解反応溶液によ
り侵食されないものであれば特に限定されない。例えば
、ガラス、プラスチク/フィルム、セラミックス、紙、
鉱物、あるいは、これらの材質を組合せたものを用いる
ことができる。The substrate is not particularly limited as long as it is insulative and not corroded by the electrolytic reaction solution. For example, glass, plastic/film, ceramics, paper,
Minerals or a combination of these materials can be used.
本発明の芳香族系化合物モノマーと混合する電解質とし
ては、芳香族系化合物モノマー膜中に拡散可能な電解質
であれば特に限定されないが、例えばアルカリ、アルカ
リ土類金属の各種塩類〔アニオンが、ニー、Br−10
2−1工(ム2,0.)−1−−1P! 8q −,0
71803−1O10,−,8011−1BF、−1N
O3−1c馬coo″″、など〕やテテトラアルキルア
ンモニラのフルオロボレート、バークロレート、サルフ
ェート、スルホネート、あるいはそれらの誘導体、1’
bBrl 、Ag(80i0I’s)t 、Zn(日0
.OF’、)、、ZnO1,、Ag0104 などの
各種塩類を用いることができる。また、それらと共に電
解質の拡散を助ける低分子あるいは高分子のマトリクス
材料を含有させることもできる。そのようなマトリクス
材料としては、例えばクラウンエーテル等の低分子イオ
ンキャリア、ポリエチレンオキシド、ポリエチレンオキ
シド、ポリテトラヒドロフラン、ポリ〔(アルコキシ)
ホスファゼン〕、ポリ(N−アセチルエチレンイミン)
、ポリビニルアセテート、ポリエチレンイミン等の高分
子、イオンキャリアを担持した高分子等を挙げることが
できる。The electrolyte to be mixed with the aromatic compound monomer of the present invention is not particularly limited as long as it can be diffused into the aromatic compound monomer film. , Br-10
2-1 engineering (mu 2,0.)-1--1P! 8q −,0
71803-1O10,-,8011-1BF,-1N
O3-1c horse coo'''', etc.], tetraalkylammonyl fluoroborate, barchlorate, sulfate, sulfonate, or derivatives thereof, 1'
bBrl, Ag(80i0I's)t, Zn(day 0
.. Various salts such as OF', ), ZnO1, and Ag0104 can be used. In addition, a low-molecular or high-molecular matrix material that aids electrolyte diffusion can also be included. Such matrix materials include, for example, low molecular weight ion carriers such as crown ether, polyethylene oxide, polyethylene oxide, polytetrahydrofuran, poly[(alkoxy)
Phosphazene], poly(N-acetylethyleneimine)
Examples include polymers such as polyvinyl acetate, polyethyleneimine, and polymers supporting ion carriers.
上記の方法により得られる芳香族系化合物モツマー膜、
あるいは芳香族系化合物モノマーと電解質の混合膜の上
に作製する導電体の材質としては、金、白金、パラジウ
ム等の貴金属、ニッケル、クロム、ステンレス等の卑金
属、酸化スズ、酸化インジウム、スズ−インジウム酸化
物(工TO)等の導電性金属酸化物が使用できる。また
、これらの材質を組合せたものも同様に用いることがで
きる。Aromatic compound motsumer membrane obtained by the above method,
Alternatively, the materials for the conductor fabricated on the mixed film of aromatic compound monomer and electrolyte include noble metals such as gold, platinum, and palladium, base metals such as nickel, chromium, and stainless steel, tin oxide, indium oxide, and tin-indium oxide. Conductive metal oxides such as oxides (TO) can be used. Furthermore, a combination of these materials can also be used.
該芳香族系化合物モノマー膜上に、これらの材質の1対
以上の導電体を形成するには、真空蒸着、スパッタリン
グ、avn法等の手法と、微細なパターンを有するマス
ク等を組合せて用いることができる。また、あらかじめ
作製しておいた導電性を有する導電体を1対以上該芳香
族系化合物モノマー膜上に付着、接触させても良い。す
なわち、本発明においてパターン状に導電性を有する導
電体の形成方法は限定されるものではない。To form one or more pairs of conductors made of these materials on the aromatic compound monomer film, a combination of methods such as vacuum evaporation, sputtering, and AVN methods and a mask having a fine pattern may be used. Can be done. Further, one or more pairs of conductors having electrical conductivity prepared in advance may be attached and brought into contact with the aromatic compound monomer film. That is, in the present invention, the method for forming a conductive material having electrical conductivity in a pattern is not limited.
第1図及び第2図に、本発明における芳香族系化合物モ
ノマー膜あるいは芳香族系化合物モノマーと゛電解質の
混合膜及びパターン状に導電性を有する導電体の一例の
構成の概略図を示す。FIGS. 1 and 2 are schematic diagrams of the structure of an example of an aromatic compound monomer film or a mixed film of an aromatic compound monomer and an electrolyte, and a patterned conductor according to the present invention.
第1−1図及び第1−2図は芳香族系化合物モノマー膜
を単独で使用する場合を例示したものであり、第1−1
図は平面図、第1−2図は側面図である。各図において
符号1は絶縁性基板、2は芳香族系化合物モノマー膜、
S及び4はパターン状に導電性を有する導電体であって
、3はパターン状に導電性を有する導電体の正極となる
部分、4はパターン状に導電性を有する導電体の負極と
なる部分を意味する。また、第2−1図及び第2−2図
は芳香族、系化合物モノマーと電解質を混合した膜を使
用する場合を例示したものであり、第2−1図は平面図
、第2−2図は側面図である。各図において符号1.3
.4は第1図と同義であり、5は芳香族系化合物上ツマ
−と電解質の混合膜を意味する。Figures 1-1 and 1-2 illustrate the case where the aromatic compound monomer membrane is used alone;
The figure is a plan view, and Figures 1-2 are side views. In each figure, numeral 1 is an insulating substrate, 2 is an aromatic compound monomer film,
S and 4 are conductors that have conductivity in a pattern, 3 is a portion that becomes a positive electrode of the conductor that has conductivity in a pattern, and 4 is a portion that becomes a negative electrode of the conductor that has conductivity in a pattern. means. In addition, Figures 2-1 and 2-2 illustrate the case where a membrane containing a mixture of aromatic compound monomer and electrolyte is used; Figure 2-1 is a plan view, and Figure 2-2 is a plan view. The figure is a side view. Code 1.3 in each figure
.. 4 has the same meaning as in FIG. 1, and 5 means a mixed membrane of an aromatic compound and an electrolyte.
上述の方法により作製された芳香族系化合物モノマー膜
とパターン状に導電性を有する導電体からなる基板を、
対向電極と共に電解溶液に浸漬し、導電体の一方を正極
、他方を負極として、適当な直流電圧を印加することに
より、−方の導電体の近傍にのみパターン状の電解酸化
膜を作製することができる。A substrate made of an aromatic compound monomer film prepared by the above method and a conductor having conductivity in a pattern,
A pattern-shaped electrolytic oxide film is created only in the vicinity of the negative conductor by immersing it in an electrolytic solution together with the counter electrode, and applying an appropriate DC voltage to one of the conductors as a positive electrode and the other as a negative electrode. Can be done.
電解溶液の通電に必要な電解質としては、例えば、アル
カリ金属やテトラアルキルアンモニウムのハロゲン化物
、フルオロボレート、バークロレート、サルフェート、
スルホネート等ヲ用いることができる。Examples of electrolytes necessary for energizing the electrolytic solution include alkali metal and tetraalkylammonium halides, fluoroborates, barchlorates, sulfates,
Sulfonates and the like can be used.
また、芳香族系化合物モノマーと電解質の混合膜と1対
以上の導電体からなる基板を使用する場合には、電解溶
液を使用せずに、導電体の一方を正極、他方を負極とし
て、適当な直流電圧を印加することによシ、一方の導電
体の近傍にのみパターン状の電解酸化膜を作製すること
ができる。In addition, when using a substrate consisting of a mixed film of aromatic compound monomer and electrolyte and one or more pairs of conductors, one conductor can be used as a positive electrode and the other as a negative electrode without using an electrolytic solution. By applying a direct current voltage, a patterned electrolytic oxide film can be formed only in the vicinity of one conductor.
このようにして得られた電解酸化膜は、基板上に作製さ
れたピンホールや凹凸のない七ツマー膜あるいはモノマ
ーと電解質の混合膜がそのまま電解酸化されたものであ
り、元の七ツマー膜と同様の良質の構造を保っている。The electrolytically oxidized film obtained in this way is a seven-layer film without pinholes or irregularities produced on a substrate, or a monomer-electrolyte mixture film that is electrolytically oxidized as it is, and is different from the original seven-layer film. It maintains the same high quality construction.
導電体は必要に応じて除去してよい。また電解酸化膜を
モノマーと電解質の混合膜を用いて作製した場合には、
電解酸化膜を電解質と複合化された状態で利用すること
が可能であるが、電解質を溶解する溶媒に浸漬して電解
質を除去することにより、電解酸化膜のみを取出して単
独で利用することも可能である。また、電解反応に必要
な原料モノマーとしては基板表面に存在するものしか必
要とせず、更に、従来の均一溶液系のよ起こることもな
い。したがって、電極基板上に形成する電解酸化膜の量
、膜厚等をあらかじめ設定しておくことも可能となる。The conductor may be removed if necessary. In addition, when the electrolytic oxide film is made using a mixed film of monomer and electrolyte,
Although it is possible to use the electrolytic oxide membrane in a composite state with an electrolyte, it is also possible to take out only the electrolytic oxide membrane and use it alone by immersing it in a solvent that dissolves the electrolyte and removing the electrolyte. It is possible. In addition, as raw material monomers necessary for electrolytic reactions, only those present on the substrate surface are required, and furthermore, unlike in conventional homogeneous solution systems, this reaction does not occur. Therefore, it is also possible to set the amount, film thickness, etc. of the electrolytic oxide film to be formed on the electrode substrate in advance.
また、重合反応時に流れる電流を調整し、かつ導電体の
形状を任意のパターン状にすることで、パターン状の電
解酸化膜を得ることも可能である。Further, it is also possible to obtain a patterned electrolytic oxide film by adjusting the current flowing during the polymerization reaction and forming the conductor into an arbitrary pattern.
以下、本発明を実施例により更に具体的に説明するが、
本発明はそれらに限定されるものではない。Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited thereto.
実施例1
石英ガラス基板上に真空蒸着法によりピレン薄膜(膜厚
(L5μm)を作製し、更にその膜上にメタルマスクを
密着させて白金をスパッタリングすることによシ、1瓢
ピツチのくし形電極を作製した。このピレンとくし形電
極を蒸着し九基板を電解溶液中に浸漬し、くシ形電極の
一方を正極、他方を負極として、2.5vの定電圧でピ
レンの電解酸化を行った。電解液は水/エタノール混合
溶媒に電解塩(過塩素酸テトラエチルアンモニウム)α
1Mを溶解させたものとした。約3分の電圧印加により
、正極のくし形電極の周辺から徐々に重合した。この膜
を水で十分洗浄し、−夜乾燥したのち、顕微鏡観察を行
ったところ、従来の溶液法によるものに比較して、非常
に均質性に優れたパターン状の電解酸化ピレン膜が形成
されていることが確認された。Example 1 A thin pyrene film (thickness: 5 μm) was prepared on a quartz glass substrate by vacuum evaporation, and a metal mask was placed on the film and platinum was sputtered to form a 1-pitch comb shape. An electrode was prepared.This pyrene and a comb-shaped electrode were vapor-deposited, the nine substrates were immersed in an electrolytic solution, and pyrene was electrolytically oxidized at a constant voltage of 2.5 V using one of the comb-shaped electrodes as a positive electrode and the other as a negative electrode. The electrolyte was an electrolytic salt (tetraethylammonium perchlorate) α in a water/ethanol mixed solvent.
It was assumed that 1M was dissolved. By applying voltage for about 3 minutes, polymerization gradually occurred from the periphery of the comb-shaped positive electrode. After thoroughly washing this film with water and drying it overnight, microscopic observation revealed that an electrolytically oxidized pyrene film was formed in a pattern with much better homogeneity than that obtained using the conventional solution method. It was confirmed that
実施例2
石英ガラス基板上に溶液塗布法によりカルバゾール薄膜
(膜厚Q、4μ鴨)を作製し、更にその膜上に、5鴇ピ
ツチのくし形のステンレス製電極1対を対向して密着固
定した。このカルバゾール膜とパターン状電極を有する
基板を実施例1と同様の電解溶液中に浸漬し、パターン
状電極の一方を正極、他方を負極として、2.57の定
電圧でカルバゾールの電解酸化を行った。約5分の電圧
印加により、正極のパターン状電極の周辺から徐々に暗
緑色に変化した。との膜を水で十分洗浄し、−夜乾燥し
たのち、顕微鏡観察を行ったところ、従来の溶液法によ
るものに比較して、非常に均質性に優れたパターン状の
電解酸化カルバゾール膜が形成されていることが確認さ
れた。Example 2 A carbazole thin film (thickness Q, 4 μm) was prepared on a quartz glass substrate by a solution coating method, and a pair of comb-shaped stainless steel electrodes with a 5-pitch pitch were fixed in close contact with each other on the film. did. The substrate having this carbazole film and patterned electrodes was immersed in the same electrolyte solution as in Example 1, and one of the patterned electrodes was used as a positive electrode and the other as a negative electrode, and carbazole was electrolytically oxidized at a constant voltage of 2.57. Ta. After about 5 minutes of voltage application, the periphery of the positive patterned electrode gradually turned dark green. After thoroughly washing the film with water and drying it overnight, microscopic observation revealed that a patterned electrolytically oxidized carbazole film was formed that was much more homogeneous than that produced by the conventional solution method. It was confirmed that
実施例5〜10
石英ガラス基板上に溶液塗布法あるいは真空蒸着法によ
りインチアナフテン(実施例5)、アズレン(実施例4
)、メチルアズレン(実施例5)、N−フェニルビロー
ル(実施例6)、ナフタレン(実施例7)、トリフエニ
レ/(実m例8)、ビフェニル(実m例?)、m−ビニ
ルカルバゾール(実施例10)の薄膜を作製した。次い
で、それらの膜上に実施例1と同様の白金のくし形電極
を作製するか、あるいは、実施例2と同様のステンレス
製電極対を密着させ、パターン状電極の一方を正極、他
方を負極として、2.5Vの定電圧で芳香族系化合物モ
ノマーの電解酸化を行った。約5分の電圧印加ののち、
これらの膜を水で十分洗浄し、−夜乾燥したのち、顕微
鏡観察を行った。この結果、従来の溶液法によるものに
比較して、非常に均質性に優れた電解酸化膜が形成され
ていることが確認された。実施条件を第1表に示す。Examples 5 to 10 Inchanaphthene (Example 5) and azulene (Example 4) were deposited on a quartz glass substrate by a solution coating method or a vacuum evaporation method.
), methyl azulene (Example 5), N-phenylpyrrole (Example 6), naphthalene (Example 7), triphenyl/(Example 8), biphenyl (Example 8), m-vinylcarbazole ( A thin film of Example 10) was produced. Next, a platinum comb-shaped electrode similar to that in Example 1 is made on these films, or a pair of stainless steel electrodes similar to that in Example 2 are brought into close contact with each other, with one of the patterned electrodes being a positive electrode and the other being a negative electrode. Electrolytic oxidation of aromatic compound monomers was carried out at a constant voltage of 2.5V. After applying voltage for about 5 minutes,
These membranes were thoroughly washed with water and dried overnight before microscopic observation. As a result, it was confirmed that an electrolytic oxide film with extremely superior homogeneity was formed compared to that obtained using the conventional solution method. The implementation conditions are shown in Table 1.
実施例11
石英ガラス蒸板上に真空蒸着法によりピレン、トリフル
オロメタンスルホン酸リチウム、ポリオキシエチレンの
混合物の薄膜を作製し、更にその膜上に実施例1と同様
にメタルマスクを密着させて”白金をスパーツタリング
することにより、11filピツチのくし形電極を作製
し念。次いで、くし形電極の一方を正極、他方を負極と
して、2.5vの定電圧でピレンの電解酸化を行った。Example 11 A thin film of a mixture of pyrene, lithium trifluoromethanesulfonate, and polyoxyethylene was prepared on a quartz glass evaporation plate by vacuum evaporation, and then a metal mask was closely attached to the film in the same manner as in Example 1. An 11 fil pitch comb-shaped electrode was prepared by sputtering platinum.Next, pyrene was electrolytically oxidized at a constant voltage of 2.5V using one of the comb-shaped electrodes as a positive electrode and the other as a negative electrode.
約2分の電圧印加により、正極のくし形電極の周辺から
徐々に重合した。この膜の顕微碗観察を行ったところ、
従来の溶液法によるものに比較して、非常に均質性に優
れたパターン状の電解酸化ピレン混合膜が形成されてい
ることが確認された。By applying voltage for about 2 minutes, polymerization gradually occurred from the periphery of the comb-shaped positive electrode. When we observed this film using a microscope, we found that
It was confirmed that an electrolytically oxidized pyrene mixed film was formed in a pattern with much better homogeneity than that produced by the conventional solution method.
実施例12
石英ガラス基板上に溶液塗布法によりカルバゾール、ト
リフルオロメタンスルホン酸リチウム、ポリオキシエチ
レンの混合物の膜ヲ作製し、更にその膜上に実施例2で
使用したと同様の形状を有するステンレス製電極対を密
着固定した。Example 12 A film of a mixture of carbazole, lithium trifluoromethanesulfonate, and polyoxyethylene was prepared on a quartz glass substrate by a solution coating method, and a stainless steel film having the same shape as that used in Example 2 was further applied on the film. The electrode pair was tightly fixed.
次いで、電極の一方を正極、他方を負極として、2.5
vの定電圧でカルバゾールの電解酸化を行った。約5分
の電圧印加により、正極のパターン状電極の周辺から徐
々に暗緑色に変化した。Next, one of the electrodes was set as a positive electrode and the other as a negative electrode, and 2.5
Electrolytic oxidation of carbazole was performed at a constant voltage of v. After about 5 minutes of voltage application, the periphery of the positive patterned electrode gradually turned dark green.
この膜の顕微鏡観察を行ったところ、従来の溶液法によ
るものに比較して、非常に均質性に優れたパターン状の
電解酸化カルバゾール混合膜が形成されていることが確
認された。When this film was observed under a microscope, it was confirmed that an electrolytically oxidized carbazole mixed film was formed in a pattern with much better homogeneity than that produced by the conventional solution method.
実施例15〜15
石英ガラス基板上に溶液塗布法あるいは真空蒸着法によ
りイソチアナフチy(実施例15)、アスレン(実mf
lJ14)、N−フェニルビロール(実施例15)と電
解質の混合膜を作製した。Examples 15 to 15 Isothia naphthi y (Example 15) and asrene (actual mf) were deposited on a quartz glass substrate by solution coating or vacuum deposition.
lJ14), a mixed membrane of N-phenylpyrrole (Example 15) and an electrolyte was prepared.
次いで、それらの膜上に実施例1と同様の白金のくし形
電極を作製するか、あるいは、実施例2と同様のステン
レス製電極対を密着させ、電極の一方を正極、他方を負
極として、2−5vの定電圧で芳香族系化合物モノマー
の電解酸化を行った。約5分の電圧印加ののち、これら
の膜の顕微鏡観察を行ったところ、従来の溶液法による
ものに比較して、非常に均質性に優れたパターン状の電
解酸化混合膜が形成されていることが確認された。実施
条件を第2表に示す。Next, a platinum comb-shaped electrode similar to that in Example 1 was fabricated on these films, or a stainless steel electrode pair similar to that in Example 2 was brought into close contact with the membrane, with one of the electrodes being the positive electrode and the other being the negative electrode. Electrolytic oxidation of aromatic compound monomers was performed at a constant voltage of 2-5V. After about 5 minutes of voltage application, these films were observed under a microscope, and it was found that a patterned electrolytic oxidation mixed film was formed that was much more homogeneous than that made using the conventional solution method. This was confirmed. The implementation conditions are shown in Table 2.
実施例16
石英ガラス基板上に溶液塗布法によりカルバゾール薄膜
(膜厚cL4μ溝)を作製し、更にその膜上に、5■ピ
ツチのくし形のステンレス製電極1対を対向して密着固
定した。このカルバゾール膜とパターン状電極を有する
基板を実施例1と同様の電解溶液中に浸漬し、パターン
状電極の一方を正極、他方を負極として、2.5vの定
電圧でカルバゾールの電解酸化を行った。約1分の電圧
印加により、正極のパターン状電極の周辺が徐々に無色
から暗緑色に変化した。この膜を水で十分洗浄し、−夜
乾燥したのち、顕微鏡観察を行ったところ、従来の溶液
法によるものに比較して、非常に均質性に優れたパター
ン状電解酸化カルバゾール膜が形成されていることが確
認された。Example 16 A carbazole thin film (film thickness cL 4 μm groove) was prepared on a quartz glass substrate by a solution coating method, and a pair of comb-shaped stainless steel electrodes having a pitch of 5 cm were closely fixed on the film, facing each other. The substrate having this carbazole film and patterned electrodes was immersed in the same electrolytic solution as in Example 1, and one of the patterned electrodes was used as a positive electrode and the other as a negative electrode, and carbazole was electrolytically oxidized at a constant voltage of 2.5V. Ta. By applying voltage for about 1 minute, the area around the patterned positive electrode gradually changed from colorless to dark green. After thoroughly washing this film with water and drying it overnight, microscopic observation revealed that a patterned electrolytically oxidized carbazole film was formed that was much more homogeneous than that made using the conventional solution method. It was confirmed that there is.
実施例17
石英ガラス基板上に溶液塗布法によりカルバゾール、ト
リフルオロメタンスルホン酸リチウム、ポリオキシエチ
レンの混合物の膜を作製し、更にその膜上に実施例2で
使用したと同様の形状を有するステンレス製電極対を密
着固定した。Example 17 A film of a mixture of carbazole, lithium trifluoromethanesulfonate, and polyoxyethylene was prepared on a quartz glass substrate by a solution coating method, and a stainless steel film having the same shape as that used in Example 2 was further applied on the film. The electrode pair was tightly fixed.
次いで、電極の一方を正極、他方を負極として、2.5
vの定電圧でカルバゾールの電解酸化を行った。約1分
の電圧印加により、正極のパターン状電極の周辺が徐々
に無色から暗緑色に変化した。この膜の顕微鏡観察を行
ったところ、従来の溶液法によるものに比較して、非常
に均質性に優れたパターン状電解酸化カルバゾール混合
膜が形成されていることが確認された。Next, one of the electrodes was set as a positive electrode and the other as a negative electrode, and 2.5
Electrolytic oxidation of carbazole was performed at a constant voltage of v. By applying voltage for about 1 minute, the area around the patterned positive electrode gradually changed from colorless to dark green. When this film was observed under a microscope, it was confirmed that a patterned electrolytically oxidized carbazole mixed film had been formed which was much more homogeneous than that produced by the conventional solution method.
以上説明したように、本発明によれば、均質性に優れた
電解酸化膜を簡便に作製することが可能であるという格
別顕著な効果が奏せられる。As explained above, according to the present invention, it is possible to easily produce an electrolytic oxide film with excellent homogeneity, which is a particularly remarkable effect.
得られる電解酸化膜は、通常の電解重合で得られる膜と
同様に1導電性の向上や、酸化還元性、エレクトロクロ
ミズム性を有する。したがって、2次電池、とシわけ薄
膜電池、更に、センサー、表示用材料として有用である
。The resulting electrolytic oxide film has improved conductivity, redox properties, and electrochromism, similar to films obtained by ordinary electrolytic polymerization. Therefore, it is useful as a secondary battery, a thin film battery, a sensor, and a display material.
第1−1図及び第1−2図は、本発明における芳香族系
化合物モノマー膜を単独で使用する場合を例示した概略
図、第2−1図及び第2−2図は、本発明における芳香
族系化合物モノマーと電解質を混合した膜を使用する場
合を例示した概略図であり、第1−1図及び第2−1図
は平面圀、第1−2図及び第2−2図は側面図である。
1:絶縁性基板、2:芳香族系化合物モノマー膜、3及
び4:パターン状に導電性を有する導電体、5:芳香族
系化合物モノマーと電解質の混合膜
特許出願人 日本電信電話株式会社Figures 1-1 and 1-2 are schematic diagrams illustrating the case where the aromatic compound monomer membrane of the present invention is used alone, and Figures 2-1 and 2-2 are 1-1 and 2-1 are plan views, and FIGS. 1-2 and 2-2 are schematic diagrams illustrating a case where a membrane containing a mixture of an aromatic compound monomer and an electrolyte is used. FIG. 1: Insulating substrate, 2: Aromatic compound monomer film, 3 and 4: Conductor having conductivity in a pattern, 5: Mixed film of aromatic compound monomer and electrolyte Patent applicant Nippon Telegraph and Telephone Corporation
Claims (1)
程、該芳香族系化合物モノマーの膜上に互いに導通しな
い1対以上の導電性を有する導電体を形成させる工程、
該芳香族系化合物モノマーを電解酸化する工程、の各工
程を包含することを特徴とする電解酸化膜の作製方法。 2、基板上に芳香族系化合物モノマーと電解質の混合膜
を作製する工程、該芳香族系化合物モノマーと電解質の
混合膜上に互いに導通しない1対以上の導電性を有する
導電体を形成させる工程、該芳香族系化合物モノマーを
電解酸化する工程、の各工程を包含することを特徴とす
る電解酸化膜の作製方法。 3、基板上に、基板上での芳香族系化合物モノマーの電
解酸化によつて形成した電解酸化膜を有することを特徴
とする電解酸化膜。 4、基板上に、基板上での芳香族系化合物モノマーと電
解質の混合物の電解酸化によつて形成した電解酸化膜を
有することを特徴とする電解酸化膜。[Claims] 1. A step of producing a film of an aromatic compound monomer on a substrate, a step of forming one or more pairs of conductors having conductivity that are not electrically conductive to each other on the film of an aromatic compound monomer. ,
A method for producing an electrolytically oxidized film, comprising the steps of electrolytically oxidizing the aromatic compound monomer. 2. A step of producing a mixed film of an aromatic compound monomer and an electrolyte on a substrate, a step of forming one or more pairs of conductors having conductivity that are not electrically conductive to each other on the mixed film of an aromatic compound monomer and an electrolyte. A method for producing an electrolytically oxidized film, comprising the steps of: , electrolytically oxidizing the aromatic compound monomer. 3. An electrolytic oxide film comprising, on a substrate, an electrolytic oxide film formed by electrolytic oxidation of an aromatic compound monomer on the substrate. 4. An electrolytic oxide film comprising, on a substrate, an electrolytic oxide film formed by electrolytic oxidation of a mixture of an aromatic compound monomer and an electrolyte on the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27329987A JPH01119689A (en) | 1987-10-30 | 1987-10-30 | Electrolytic oxide film and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27329987A JPH01119689A (en) | 1987-10-30 | 1987-10-30 | Electrolytic oxide film and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01119689A true JPH01119689A (en) | 1989-05-11 |
Family
ID=17525921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27329987A Pending JPH01119689A (en) | 1987-10-30 | 1987-10-30 | Electrolytic oxide film and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01119689A (en) |
-
1987
- 1987-10-30 JP JP27329987A patent/JPH01119689A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900003155B1 (en) | Polymer film with conductive pattern and method of manufacturing the same | |
MacDiarmid | Polyaniline and polypyrrole: where are we headed? | |
US5128013A (en) | Deposition of electroactive polymers | |
US5161048A (en) | Electrochromic window with metal grid counter electrode and acidic polyelectrolyte | |
Ren et al. | Ionic and electronic conductivity of poly‐(3‐methylpyrrole‐4‐carboxylic acid) | |
KR900005138B1 (en) | Electrocatalytic deposition of metals in solid polymeric matrices | |
EP0381927A2 (en) | Bidirectional non-linear resistor, active matrix liquid-crystal panel using the same, and method for its production | |
US4830903A (en) | Catalytic deposition of metals in solid matrices | |
JPH01119689A (en) | Electrolytic oxide film and production thereof | |
JPH01111893A (en) | Patternized electrolytic oxide film and its formation | |
JPH01119690A (en) | Patterned electrolytic oxide film and its production | |
JPH01112607A (en) | Pattern-shaped electrolytic oxidated film and its manufacture | |
JPH01119691A (en) | Patterned electrolytic oxide film and its production | |
JPH0523292B2 (en) | ||
JPS63269415A (en) | Manufacture of transparent composite conductor | |
Roullier et al. | The electrochemical behaviour of vinylferrocene and N-vinylcarbazole copolymer modified electrodes in aqueous and nonaqueous media | |
JPH01119692A (en) | Patterned high-polymer film and its production | |
JPH01111892A (en) | Patternized electrolytically oxidized film and its formation | |
JPH0610267B2 (en) | Polymer thin film and method for producing the same | |
JPH0750106A (en) | Micron and submicron order solid microelectrode of conductive polymer and its manufacture | |
JPH0124236B2 (en) | ||
JPH01123743A (en) | Electrolytically oxidized film sheet and its manufacturing method | |
JPH0610268B2 (en) | Polymer thin film and method for producing the same | |
JP2742573B2 (en) | Polymer / liquid crystal composite film and manufacturing method thereof | |
JPH03231932A (en) | Porous film produced by electrolytic polymerization and production thereof |