JP2740815B2 - Two-stage hydrocracking method for petroleum heavy oil - Google Patents

Two-stage hydrocracking method for petroleum heavy oil

Info

Publication number
JP2740815B2
JP2740815B2 JP8065789A JP8065789A JP2740815B2 JP 2740815 B2 JP2740815 B2 JP 2740815B2 JP 8065789 A JP8065789 A JP 8065789A JP 8065789 A JP8065789 A JP 8065789A JP 2740815 B2 JP2740815 B2 JP 2740815B2
Authority
JP
Japan
Prior art keywords
oil
heavy oil
weight
hydrotreating
petroleum heavy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8065789A
Other languages
Japanese (ja)
Other versions
JPH02258893A (en
Inventor
勲 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP8065789A priority Critical patent/JP2740815B2/en
Publication of JPH02258893A publication Critical patent/JPH02258893A/en
Application granted granted Critical
Publication of JP2740815B2 publication Critical patent/JP2740815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (技術分野) 本発明は、石油系重質油を、2段階の水素化処理工程
により水素化分解して軽質化炭化水素油を製造する方法
に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a lightened hydrocarbon oil by hydrocracking petroleum heavy oil in a two-stage hydrotreatment step.

(従来技術及びその問題点) 石油系重質油を2段階水素化処理工程によって処理す
る方法は知られている(特開昭53-98308号等)。しか
し、従来の石油系重質油の2段階水素化処理法の多く
は、石油系重質油中に含まれる金属成分や、硫黄成分及
び窒素成分等の汚染物質を除去することを目的としたも
ので、重質油の水素化分解を目的としたものではない。
このような2段階水素化処理においては、通常、第1段
の水素化処理工程は脱金属を目的とし、第2段の水素化
工程は脱硫を目的としている。
(Prior art and its problems) A method of treating petroleum heavy oil by a two-stage hydrotreating process is known (JP-A-53-98308, etc.). However, many of the conventional two-stage hydrotreating processes for petroleum heavy oils are aimed at removing contaminants such as metal components and sulfur components and nitrogen components contained in petroleum heavy oils. It is not intended for hydrocracking of heavy oil.
In such a two-stage hydrotreating, the first-stage hydrotreating step is usually aimed at demetallization, and the second-stage hydrogenation step is desulfurized.

石油系重質油を水素化分解するために、平均細孔直径
が140Å以上の触媒を用い、水素加圧下、410〜490℃で
重質油を水素化処理する方法は知られている(特開昭58
-179291号)。しかし、このような一段の水素化分解方
法においては、水素化分解率を高めると、触媒劣化が起
りやすい上に、分解生成油中にドライスラッヂが生じ、
分解生成油の安定性及び品質を悪化させるという問題を
生起する。
In order to hydrocrack petroleum heavy oil, there is known a method of hydrotreating heavy oil at 410 to 490 ° C under a hydrogen pressure using a catalyst having an average pore diameter of 140 mm or more. Kaisho 58
-179291). However, in such a single-stage hydrocracking method, when the hydrocracking rate is increased, catalyst deterioration is likely to occur, and dry sludge is generated in the cracked oil,
This causes a problem of deteriorating the stability and quality of the cracked oil.

(発明の課題) 本発明は、石油系重質油の水素化分解において見られ
る前記問題を解決することをその課題とする。
(Problems of the Invention) It is an object of the present invention to solve the above-mentioned problems observed in hydrocracking of petroleum heavy oil.

(課題を解決するための手段) 本発明者らは、前記課題を解決すべく鋭意研究を重ね
た結果、本発明を完成するに到った。
(Means for Solving the Problems) The present inventors have conducted intensive studies to solve the above problems, and as a result, completed the present invention.

即ち、本発明によれば、石油系重質油を、平均細孔直
径が150Å以上である大細孔系の水素化触媒を用いて2
段階水素化処理することからなり、第1水素化処理工程
を、温度400℃以下、水素圧100kg/cm2G以上、及びヘキ
サン不溶でベンゼン可溶成分の減少率が90%以上及び沸
点540℃以上の留分の分解率が10%以下の条件で行い、
かつ第2水素化処理工程を、温度400〜460℃、水素圧80
kg/cm2G以上及び沸点540℃以上の留分の全分解率が少な
くとも60%の条件で行い、スラッジを実質的に含有しな
い水素化分解生成油を得ることを特徴とする石油系重質
油の2段階水素化分解方法が提供される。
That is, according to the present invention, heavy petroleum oil is converted to a heavy oil by using a large pore hydrogenation catalyst having an average pore diameter of 150 ° or more.
The first hydrotreating step is performed at a temperature of 400 ° C. or less, a hydrogen pressure of 100 kg / cm 2 G or more, and a hexane-insoluble, benzene-soluble component reduction rate of 90% or more and a boiling point of 540 ° C. Performed under the conditions that the decomposition rate of the above fraction is 10% or less,
And the second hydrotreating step is performed at a temperature of 400 to 460 ° C. and a hydrogen pressure of 80
A petroleum-based heavy oil which is obtained under the condition that the total cracking rate of a fraction of kg / cm 2 G or more and a boiling point of 540 ° C. or more is at least 60% to obtain a hydrocracking oil substantially containing no sludge. A two-stage hydrocracking method for oil is provided.

本発明で用いる石油系重質油としては、常圧残油、減
圧残油等が挙げられ、沸点540℃以上の成分を20重量%
以上含み、ヘキサン不溶でベンゼン可溶成分を、通常、
2〜18重量%含有するものである。
Examples of the petroleum heavy oil used in the present invention include atmospheric residual oil, vacuum residual oil, and the like.
Containing hexane-insoluble and benzene-soluble components,
It contains 2 to 18% by weight.

本発明においては、このような重質油を原料油として
用い、これを水素化分解して軽質化油とするために、以
下に示すような2段階の水素化処理工程を行うものであ
る。
In the present invention, such a heavy oil is used as a feedstock oil, and a two-stage hydrotreating process as described below is performed in order to hydrocrack it into a lightened oil.

(第1水素化処理工程) この第1水素化処理工程は、原料油を、温度400℃以
下、好ましくは350〜390℃、水素圧100kg/cm2G以上、好
ましくは120〜150kg/cm2Gの条件下、水素化触媒を用い
て高度に水素化処理する工程である。この水素化工程で
用いる水素化触媒は、芳香核への水素添加を主目的とし
たもので、その水素化度は、ヘキサン不溶でベンゼン可
溶成分(以下、HI-BS成分という)の減少割合が90重量
%以上、好ましくは95〜100重量%の割合となるように
行う。また、この第1段水素化処理工程における重質油
中の沸点540℃以上の留分の分解率〔f(I)〕(以
下、単に分解率とも言う)は、10%以下であり、通常5
〜10%の範囲である。
(First Hydrotreating Step) In the first hydrotreating step, the feed oil is heated at a temperature of 400 ° C. or less, preferably 350 to 390 ° C., and a hydrogen pressure of 100 kg / cm 2 G or more, preferably 120 to 150 kg / cm 2. This is a step of highly hydrotreating using a hydrogenation catalyst under the conditions of G. The hydrogenation catalyst used in this hydrogenation process is mainly for the purpose of hydrogenation of aromatic nuclei, and the degree of hydrogenation is the rate of decrease in hexane-insoluble and benzene-soluble components (hereinafter referred to as HI-BS components). Is 90% by weight or more, preferably 95 to 100% by weight. The decomposition rate [f (I)] (hereinafter, also simply referred to as the decomposition rate) of the fraction having a boiling point of 540 ° C. or higher in the heavy oil in the first-stage hydrotreating step is 10% or less, and is usually 10% or less. 5
It is in the range of ~ 10%.

なお、本明細書で言うHI-BS成分の減少率R及び分解
率F(I)は次の式で定義される。
The HI-BS component reduction rate R and decomposition rate F (I) referred to in this specification are defined by the following equations.

A:重質油中のHI-BS成分の重量% B:水素化生成油中のHI-BS成分の重量% C:原料重質油中の沸点540℃以上の留分の重量% D:第1水素化生成油中の沸点540℃以上の留分の重量% この第1水素化処理工程で用いる水素化触媒は、多孔
性担体にV、Mo、W、Ni、Co、Pd、Pt、Re、Ru、Rh等の
金属を担持させたものが用いられ、特に、Ni-Co-Mo、Ni
-Mo等の組合せを担持させたものを用いるのが好まし
い。多孔性担体としては、アルミナ、シリカ、チタニ
ア、アルミナシリカ、アルミナチタニア、アルミナジル
コニア、シリカマグネシア等の各種のものが用いられ
る。好ましい担体は、アルミナ、チタニア等である。担
持金属は通常、酸化物及び/又は硫化物の形で担体上に
存在する。この水素化処理工程で用いる触媒は、平均細
孔直径が150Å以上の細孔径を有するものが用いられ
る。
A: wt% of HI-BS component in heavy oil B: wt% of HI-BS component in hydrogenated oil C: weight% of the fraction having a boiling point of 540 ° C. or higher in the raw heavy oil D: weight% of the fraction having a boiling point of 540 ° C. or higher in the first hydrogenation product oil The hydrogenation catalyst used in the first hydrotreating step Is a porous carrier that supports a metal such as V, Mo, W, Ni, Co, Pd, Pt, Re, Ru, and Rh. In particular, Ni-Co-Mo, Ni
It is preferable to use one carrying a combination such as -Mo. As the porous carrier, various carriers such as alumina, silica, titania, alumina silica, alumina titania, alumina zirconia, and silica magnesia are used. Preferred carriers are alumina, titania and the like. The supported metal is usually present on the support in oxide and / or sulfide form. As the catalyst used in this hydrotreating step, one having an average pore diameter of 150 ° or more is used.

(第2水素化処理工程) この工程は、前記第1水素化処理工程で得られた水素
化生成油を、温度400〜460℃、好ましい430〜450℃、水
素圧80kg/cm2G以上、好ましくは100kg/cm2G以上の条件
下において、水素化触媒を用いて水素化処理する工程で
ある。この水素化処理工程は、第1水素化生成油の水素
化分解を主目的とするもので、前記したように、その反
応温度としては第1水素化処理工程よりも高い温度を用
いる。この第2水素化処理工程における分解率f(II)
は、通常60〜80%であり、全分解率f(T)は、通常、
70〜90%である。なお、分解率f(II)及び全分解率f
(T)は次式で定義される。
(Second Hydrotreating Step) In this step, the hydrogenated oil obtained in the first hydrotreating step is treated at a temperature of 400 to 460 ° C, preferably 430 to 450 ° C, and a hydrogen pressure of 80 kg / cm 2 G or more, Preferably, it is a step of hydrotreating using a hydrogenation catalyst under a condition of 100 kg / cm 2 G or more. The main purpose of this hydrotreating step is to hydrocrack the first hydrogenated oil, and as described above, the reaction temperature is higher than that of the first hydrotreating step. Decomposition rate f (II) in the second hydrotreating step
Is usually 60 to 80%, and the total decomposition rate f (T) is usually
70-90%. Note that the decomposition rate f (II) and the total decomposition rate f
(T) is defined by the following equation.

E:第2水素化生成油中の沸点540℃以上の留分の重量% この第2水素化処理触媒としては、前記第1水素化工
程で示したのと同様の性状を示すもの、即ち、多孔性担
体としてアルミナ、シリカ、チタニア、アルミナシリ
カ、アルミナチタニア、アルミナジルコニア、シリカマ
グネシア等の各種のものが用い、担持金属としてV、M
o、W、Ni、Co等の金属を用い、平均細孔直径150Å以上
の大細孔径を有する触媒が用いられる。特に好ましい触
媒としては、担持金属として、Ni-Moや、Ni−Wを担持
させたシリカアルミナ等が用いられる。
E: Weight% of the fraction having a boiling point of 540 ° C or higher in the second hydrogenated oil As the second hydrotreating catalyst, one having the same properties as those shown in the first hydrogenation step, that is, as a porous carrier, alumina, silica, titania, alumina silica, alumina titania, alumina zirconia, silica Various materials such as magnesia are used, and V, M
A catalyst having a large pore diameter of 150 ° or more in average pore diameter using a metal such as o, W, Ni, and Co is used. As a particularly preferred catalyst, Ni-Mo, silica-alumina supporting Ni-W, or the like is used as a supported metal.

この第2水素化処理工程においては、全分解率を高め
るとともにスラッジの生成を防止するために、芳香族性
油を反応液中に2〜20重量%添加するのが好ましい。芳
香族性油としては、沸点200〜400℃の芳香族化合物(例
えば、メチルナフタレン、ナフタレン、エチルナフタレ
ン、プロピルナフタレン等)又はこれらを少なくとも50
重量%含むもの等が挙げられる。
In the second hydrotreating step, it is preferable to add 2 to 20% by weight of an aromatic oil to the reaction solution in order to increase the total decomposition rate and prevent sludge formation. As the aromatic oil, an aromatic compound having a boiling point of 200 to 400 ° C. (for example, methylnaphthalene, naphthalene, ethylnaphthalene, propylnaphthalene, or the like) or at least 50
% By weight.

(発明の効果) 本発明によれば、重質油を、大細孔径触媒を用い、第
1水素化処理工程で高度に水素化した後、水素化分解処
理することから、スラッジの生成を回避して重質油を高
度に水素化分解することができる。本発明で得られる生
成物(軽質化炭化水素油)は、スラッジを実質的に含ま
ない高品質のもので、安定性の良いものである。
(Effects of the Invention) According to the present invention, heavy oil is highly hydrogenated in a first hydrotreating step using a large pore diameter catalyst and then hydrocracked, so that sludge generation is avoided. To hydrocrack heavy oil to a high degree. The product (lightened hydrocarbon oil) obtained in the present invention is of high quality, substantially free of sludge, and has good stability.

(実施例) 次に本発明を実施例によりさらに詳細に説明する。(Example) Next, the present invention will be described in more detail with reference to examples.

実施例 原料重質油として、アラビアンライト原油の減圧残渣
油を用いた。この減圧残渣油は、ヘキサン可溶(HS)成
分:91重量%、ヘキサン不溶でベンゼン可溶(HI-BS)成
分:9重量%、ベンゼン不溶(BI)成分:0重量%からなる
ものであった。また、その沸点540℃以上の留分の割合
は95重量%であった。
Example A vacuum residue of Arabian light crude oil was used as a raw material heavy oil. This vacuum residue oil was composed of 91% by weight of a hexane-soluble (HS) component, 9% by weight of a hexane-insoluble and benzene-soluble (HI-BS) component, and 0% by weight of a benzene-insoluble (BI) component. Was. The ratio of the fraction having a boiling point of 540 ° C. or higher was 95% by weight.

この原料油10重量部をオートクレーブに入れ、水素化
処理触媒1重量部を添加し、温度:390℃、水素圧:150kg
/cm2Gで3時間反応を行った。その反応結果を表−1に
示す。
10 parts by weight of this raw material oil was placed in an autoclave, 1 part by weight of a hydrotreating catalyst was added, and the temperature was 390 ° C. and the hydrogen pressure was 150 kg.
The reaction was carried out at / cm 2 G for 3 hours. Table 1 shows the results of the reaction.

なお、この水素化処理工程で用いた水素化触媒は、Ni
O:1.0重量%、MoO3:5.0重量%含むシリカアルミナ触媒
であり、比表面積:147m2/g、比細孔容積:0.71ml/g及び
平均細孔直径:168Åを有するものであった。このもの
は、あらかじめ5%H2Sを含む水素ガスを用い、360℃で
6時間予備硫化処理して用いた。
The hydrogenation catalyst used in this hydrotreating step was Ni
A silica-alumina catalyst containing 1.0% by weight of O and 5.0% by weight of MoO 3 , having a specific surface area of 147 m 2 / g, a specific pore volume of 0.71 ml / g and an average pore diameter of 168 °. This was preliminarily sulfurized at 360 ° C. for 6 hours using hydrogen gas containing 5% H 2 S before use.

次に、前記で得た水素化生成油10重量部をオートクレ
ーブに入れ、前記で示したのと同じ水素化触媒1重量部
を添加し、温度:420℃、水素圧:150kg/cm2Gで1時間反
応を行った。その反応結果を表−1に示す。
Next, 10 parts by weight of the hydrogenated oil obtained above was placed in an autoclave, 1 part by weight of the same hydrogenation catalyst as described above was added, and the temperature was 420 ° C. and the hydrogen pressure was 150 kg / cm 2 G. The reaction was performed for one hour. Table 1 shows the results of the reaction.

実施例2 実施例1において、第2水素化処理工程における反応
時間を3時間とした以外は同様にして実験を行った。そ
の結果、全分解率〔f(T)〕70%の成績が得られた。
この場合、生成油中のスラッジの生成が極く微量認めら
れたが、生成油の品質は良好であると判断された。
Example 2 An experiment was performed in the same manner as in Example 1, except that the reaction time in the second hydrotreating step was changed to 3 hours. As a result, a result of a total decomposition rate [f (T)] of 70% was obtained.
In this case, the generation of sludge in the produced oil was extremely small, but the quality of the produced oil was judged to be good.

実施例3 実施例1において、第2水素化処理工程における温度
を440℃とし、第1水素化生成油に対し1−メチルナフ
タレンを10重量%添加した以外は同様にして実験を行っ
た。その結果、全分解率〔f(T)〕81%の成績が得ら
れ、生成油中にはスラッジの生成が実質的に認められな
かった。
Example 3 An experiment was carried out in the same manner as in Example 1 except that the temperature in the second hydrotreating step was 440 ° C., and 10% by weight of 1-methylnaphthalene was added to the first hydrogenated oil. As a result, a result of a total decomposition rate [f (T)] of 81% was obtained, and substantially no sludge was found in the produced oil.

比較例1 実施例1で示した原料重質油10重量部をオートクレー
ブに入れ、実施例1で示した触媒1重量部を添加し、反
応温度420℃、水素圧:150kg/cm2Gで4時間反応を行っ
た。その結果、分解率74%の成績が得られたが、この場
合には多量のスラッジが生成した。
Comparative Example 1 10 parts by weight of the raw material heavy oil shown in Example 1 was placed in an autoclave, 1 part by weight of the catalyst shown in Example 1 was added, and the reaction temperature was 420 ° C., and the hydrogen pressure was 150 kg / cm 2 G. A time reaction was performed. As a result, a decomposition rate of 74% was obtained. In this case, a large amount of sludge was generated.

比較例2 実施例1において、第1及び第2水素化処理工程にお
ける触媒として、NiO:3.1重量%、MoO3:15重量%を含有
するアルミナ触媒で、比表面積:273m2/g、比細孔容積0.
52ml/g、平均細孔直径100Å以下の性状を有するものを
あらかじめ5%H2Sを含む水素ガスを用い、360℃で6時
間予備硫化処理して用いた以外は同様にして実験を行っ
た。その結果、全分解率〔f(T)〕63%の成績が得ら
れたが、この場合には多量のスラッジの生成が認められ
た。
Comparative Example 2 In Example 1, an alumina catalyst containing 3.1% by weight of NiO and 15% by weight of MoO 3 was used as a catalyst in the first and second hydrotreating steps. The specific surface area was 273 m 2 / g, Pore volume 0.
An experiment was performed in the same manner except that a material having a property of 52 ml / g and an average pore diameter of 100 ° or less was preliminarily sulfurized at 360 ° C. for 6 hours using hydrogen gas containing 5% H 2 S. . As a result, a result of a total decomposition rate [f (T)] of 63% was obtained. In this case, a large amount of sludge was generated.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】石油系重質油を、平均細孔直径が150Å以
上である大細孔径の水素化触媒を用いて2段階水素化処
理することからなり、第1水素化処理工程を、温度400
℃以下、水素圧100kg/cm2G以上、及びヘキサン不溶でベ
ンゼン可溶成分の減少率が90%以上及び沸点540℃以上
の留分の分解率が10%以下の条件で行い、かつ第2水素
化処理工程を、温度400〜460℃、水素圧80kg/cm2G以上
及び沸点540℃以上の留分の全分解率が少なくとも60%
の条件で行い、スラッジを実質的に含有しない水素化分
解生成油を得ることを特徴とする石油系重質油の2段階
水素化分解方法。
1. A petroleum heavy oil is subjected to a two-stage hydrogenation treatment using a large pore diameter hydrogenation catalyst having an average pore diameter of 150 ° or more. 400
At a hydrogen pressure of 100 kg / cm 2 G or more, a benzene-insoluble fraction of benzene-soluble components reduced by 90% or more and a boiling point of 540 ° C or more at a decomposition rate of 10% or less. The hydrotreating step is performed at a temperature of 400 to 460 ° C, hydrogen pressure of 80 kg / cm 2 G or more and a boiling point of 540 ° C or more.
A two-stage hydrocracking method for petroleum heavy oil, characterized in that a hydrocracking product oil containing substantially no sludge is obtained.
JP8065789A 1989-03-30 1989-03-30 Two-stage hydrocracking method for petroleum heavy oil Expired - Lifetime JP2740815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8065789A JP2740815B2 (en) 1989-03-30 1989-03-30 Two-stage hydrocracking method for petroleum heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8065789A JP2740815B2 (en) 1989-03-30 1989-03-30 Two-stage hydrocracking method for petroleum heavy oil

Publications (2)

Publication Number Publication Date
JPH02258893A JPH02258893A (en) 1990-10-19
JP2740815B2 true JP2740815B2 (en) 1998-04-15

Family

ID=13724428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8065789A Expired - Lifetime JP2740815B2 (en) 1989-03-30 1989-03-30 Two-stage hydrocracking method for petroleum heavy oil

Country Status (1)

Country Link
JP (1) JP2740815B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5535845B2 (en) * 2010-09-14 2014-07-02 Jx日鉱日石エネルギー株式会社 Process for producing aromatic hydrocarbons

Also Published As

Publication number Publication date
JPH02258893A (en) 1990-10-19

Similar Documents

Publication Publication Date Title
US3852207A (en) Production of stable lubricating oils by sequential hydrocracking and hydrogenation
JPH08503234A (en) Lubricating base oil manufacturing method
JP4383659B2 (en) Combined hydrogen conversion process with reverse hydrogen flow
JP2004504479A (en) Flexible method for producing base oils and middle distillates from feedstocks containing heteroatoms
JPH0598270A (en) Catalytic hydrogenation of heavy hydrocarbon oil
JPH10251666A (en) Method for hydrotreating hydrocarbon feedstock contaminated with metal
JPS62101689A (en) Stabilization of lubricant base stock
EP1511824A1 (en) Multi-stage hydrocracker with kerosene recycle
JP2019505630A (en) Deasphalting and gasification of integrated residual oil
AU2002325233B2 (en) Process to prepare a base oil from slack-wax
US3666657A (en) Oil stabilizing sequential hydrocracking and hydrogenation treatment
US4608151A (en) Process for producing high quality, high molecular weight microcrystalline wax derived from undewaxed bright stock
EP0550079B1 (en) Process for upgrading a hydrocarbonaceous feedstock
JP2740815B2 (en) Two-stage hydrocracking method for petroleum heavy oil
KR100808041B1 (en) Process to prepare water-white lubricant base oil
AU2003299215B2 (en) Process to prepare a base oil having a viscosity index of between 80 and 140
JPH0753968A (en) Hydrotreatment of heavy hydrocarbon oil
JP3634041B2 (en) Light oil quality treatment method
KR20210044226A (en) Heavy base oil and manufacturing method without haze at 0℃
JPS63258985A (en) Hydrogenation treatment of heavy oil
US11891300B2 (en) Clean liquid fuels hydrogen carrier processes
JPH0762357A (en) Hydrotreatment of heavy oil
JPH07102266A (en) Process for reducing sulfur content of petroleum distillate
JPH05112785A (en) Treatment of heavy hydrocarbon oil
JPH05230473A (en) Treatment of heavy hydrocarbon oil