JPH02258893A - Two-stage hydrogenolysis of petroleum-based heavy oil - Google Patents

Two-stage hydrogenolysis of petroleum-based heavy oil

Info

Publication number
JPH02258893A
JPH02258893A JP8065789A JP8065789A JPH02258893A JP H02258893 A JPH02258893 A JP H02258893A JP 8065789 A JP8065789 A JP 8065789A JP 8065789 A JP8065789 A JP 8065789A JP H02258893 A JPH02258893 A JP H02258893A
Authority
JP
Japan
Prior art keywords
oil
petroleum
heavy oil
hydrogenolysis
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8065789A
Other languages
Japanese (ja)
Other versions
JP2740815B2 (en
Inventor
Isao Mochida
勲 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP8065789A priority Critical patent/JP2740815B2/en
Publication of JPH02258893A publication Critical patent/JPH02258893A/en
Application granted granted Critical
Publication of JP2740815B2 publication Critical patent/JP2740815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To avoid formation of sludge, to highly carry out hydrogenolysis and to obtain a high-quality hydrocarbon oil having excellent stability by subjecting a petroleum-based heavy oil to two-stage hydrogenolysis under a specific condition by using a hydrogenating catalyst having large pore diameters. CONSTITUTION:A petroleum-based heavy oil such as normal-pressure residual oil, reduced-pressure residual oil, etc., is subjected to two-stage hydrogenolysis by using a hydrogenating catalyst (prepared by supporting a combination such as Ni-Co or Ni-Mo on a carrier such as alumina or titania) having >=150Angstrom average pore diameter. In the operation, the first hydrogenolysis process is done at <=400 deg.C under >=100kg/cm<2>G in >=90% reduction ratio of hexane-soluble and benzene-soluble component and <=10% decomposition ratio of fraction having >=540 deg.C boiling point and the second hydrogenolysis process is carried out at 400-460 deg.C under >=80kg/cm<2>G hydrogen pressure and in >=60% total decomposition ratio of fraction having >=540 deg.C boiling point to give the aimed light hydrocarbon oil.

Description

【発明の詳細な説明】 (技術分野) 本発明は、石油系重質油を、2段階の水素化処理工程に
より水素化分解して軽質化炭化水素油を製造する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for producing light hydrocarbon oil by hydrocracking petroleum heavy oil through a two-stage hydrotreating process.

(従来技術及びその問題点) 石油系重質油を2段階水素化処理工程によって処理する
方法は知られている(特開昭53−98308号等)、
シかし、従来の石油系重質油の2段階水素化処理法の多
くは、石油系重質油中に含まれる金属成分や、硫黄成分
及び窒素成分等の汚染物質を除去することを目的とした
もので1重質油の水素化分解を目的としたものではない
、このような2段階水素化処理においては1通常、第1
段の水素化処理工程は脱金属を目的とし、第2段の水素
化工程は脱硫を目的としている。
(Prior art and its problems) A method of treating petroleum-based heavy oil by a two-stage hydrotreating process is known (Japanese Patent Application Laid-Open No. 53-98308, etc.).
However, most of the conventional two-stage hydrotreatment methods for petroleum-based heavy oil are aimed at removing pollutants such as metal components, sulfur components, and nitrogen components contained in petroleum-based heavy oil. In such a two-stage hydrotreating process, which is not intended for hydrocracking of heavy oil, the first
The hydrogenation step of the stage is aimed at demetallization, and the hydrogenation step of the second stage is aimed at desulfurization.

石油系重質油を水素化分解するために、平均細孔直径が
140Å以上の触媒を用い、水素加圧下、410−49
0℃で重質油を水素化処理する方法は知られている(特
開昭58−179291号)、シかし、このような−段
の水素化分解方法においては、水素化分解率を高めると
、触媒劣化が起りやすい上に、分解生成油中にドライス
ラッヂが生じ、分解生成油の安定性及び品質を悪化させ
るという問題を生起する。
In order to hydrocrack petroleum-based heavy oil, a catalyst with an average pore diameter of 140 Å or more is used, and under hydrogen pressure, 410-49
A method of hydrotreating heavy oil at 0°C is known (Japanese Unexamined Patent Publication No. 179291/1983), but in such a one-stage hydrocracking method, it is possible to increase the hydrocracking rate. This causes a problem in that catalyst deterioration is likely to occur and dry sludge is generated in the decomposed oil, deteriorating the stability and quality of the decomposed oil.

(発明の課題) 本発明は1石油系重質油の水素化分解において見られる
前記問題を解決することをその課題とする。
(Problem of the Invention) An object of the present invention is to solve the above-mentioned problems observed in the hydrocracking of petroleum heavy oil.

(課題を解決するための手段) 本発明者らは、前記課題を解決すべく鋭意研究を重ねた
結果、本発明を完成するに到った。
(Means for Solving the Problems) The present inventors have completed the present invention as a result of intensive research to solve the above problems.

即ち1本発明によれば1石油系重質油を、平均細孔直径
が150Å以上である大細孔径の水素化触媒を用いて2
段階水素化処理することからなり、第1水素化処理工程
を、温度400℃以下、水素圧100kg/aJG以上
、及びヘキサン不溶でベンゼン可溶成分の減少率が90
%以上及び沸点540℃以上の留分の分解率が10気以
下の条件で行い、かつ第2水素化処理工程を、温度40
0〜460℃、水素圧80kg/aJG以上及び沸点5
40℃以上の留分の全分解率が少なくとも60%の条件
で行い、スラッジを実質的に含有しない水素化分解生成
油を得ることを特徴とする石油系重質油の2段階水素化
分解方法が提供される。
That is, according to the present invention, 1 petroleum-based heavy oil is heated to 2 using a large pore hydrogenation catalyst having an average pore diameter of 150 Å or more.
The first hydrogenation step is carried out at a temperature of 400°C or less, a hydrogen pressure of 100kg/aJG or more, and a reduction rate of 90% in hexane-insoluble and benzene-soluble components.
% or more and the decomposition rate of the fraction with a boiling point of 540°C or more is 10 atmospheres or less, and the second hydrogenation step is carried out at a temperature of 40 degrees Celsius or less.
0 to 460℃, hydrogen pressure 80kg/aJG or more, and boiling point 5
A two-step hydrocracking method for petroleum heavy oil, which is carried out under conditions where the total cracking rate of fractions of 40° C. or higher is at least 60%, to obtain a hydrocracking oil that does not substantially contain sludge. is provided.

本発明で用いる石油系重質油としては、常圧残油、減圧
残油等が挙げられ、沸点540℃以上の成分を20重量
%以上含み、ヘキサン不溶でベンゼン可溶成分を1通常
、2〜18重量%含有するものである。
Examples of the petroleum heavy oil used in the present invention include atmospheric residual oil, vacuum residual oil, etc., which contain 20% by weight or more of components with a boiling point of 540°C or higher, and usually contain 1 or 2% of components insoluble in hexane and soluble in benzene. It contains ~18% by weight.

本発明においては、このような重質油を原料油として用
い、これを水素化分解して軽質化油とするために、以下
に示すような2段階の水素化処理工程を行うものである
In the present invention, such heavy oil is used as a feedstock oil, and in order to hydrocrack it to produce a light oil, a two-stage hydrotreating process as shown below is performed.

(第1水素化処理工程) この第1水素化処理工程は、原料油を、温度400℃以
下、好ましくは350−390℃、水素圧100kg/
aJG以上、好ましくは120〜150kg/aJGの
条件下、水素化触媒を用いて高度に水素化処理する工程
である。
(First Hydrotreating Step) In this first hydrotreating step, the feedstock oil is treated at a temperature of 400°C or less, preferably 350-390°C, and a hydrogen pressure of 100kg/
This is a step of highly hydrogenating using a hydrogenation catalyst under conditions of aJG or more, preferably 120 to 150 kg/aJG.

この水素化工程で用いる水素化触媒は、芳香核への水素
添加を主目的としたもので、その水素化度は、ヘキサン
不溶でベンゼン可溶成分(以下、HI−BS成分という
)の減少割合が90重量%以上、好ましくは95〜10
0重量での割合となるように行う、また、この第1段水
素化工程における重質油中の沸点540℃以上の留分の
分解率(f(+))(以下、単に分解率とも言う)は、
10以下であり、通常5−10gの範囲である。
The hydrogenation catalyst used in this hydrogenation process is mainly intended for hydrogenation to aromatic nuclei, and its degree of hydrogenation is determined by the rate of decrease in hexane-insoluble and benzene-soluble components (hereinafter referred to as HI-BS components). is 90% by weight or more, preferably 95-10%
The decomposition rate (f(+)) of the fraction with a boiling point of 540°C or higher in the heavy oil in this first stage hydrogenation step (hereinafter also simply referred to as decomposition rate) )teeth,
10 or less, usually in the range of 5-10 g.

なお、本明細書で言うll−85成分の減少率R及び分
解率f(1)は次の式で定義される。
Note that the reduction rate R and decomposition rate f(1) of the ll-85 component referred to in this specification are defined by the following equations.

−B R=X100(1) A:重質油中のHI−BS成分の重量%B:水素化生成
油中の)!l−05成分の11−D f(D=    xlOO(2) C:原料重質油中の沸点540℃以上の留分の重量X D:水素化生成油中の沸点540℃以上の留分の重量〆 この第1水素化処理工程で用いる水素化触媒は、多孔性
担体にV%No、W%Ni、Co、 Pd、 Pt、 
Re、 Ru。
-B R=X100 (1) A: Weight % of HI-BS component in heavy oil B: in hydrogenated oil)! 11-D f (D = xlOO(2) of l-05 component) C: Weight of the fraction with a boiling point of 540°C or higher in the raw material heavy oil Weight: The hydrogenation catalyst used in this first hydrogenation step contains V%No, W%Ni, Co, Pd, Pt,
Re, Ru.

Rh等の金属を担持させたものが用いられ、特に。Those on which metals such as Rh are supported are used, in particular.

N1−Go、NL−No等の組合せを担持させたものを
用いるが好ましい、多孔性担体としては、アルミナ、シ
リカ、チタニア、アルミナシリカ、アルミナチタニア、
アルミナジルコニア、シリカマグネシア等の各種のもの
が用いられる。好ましい担体は。
It is preferable to use a porous carrier supporting a combination of N1-Go, NL-No, etc., such as alumina, silica, titania, alumina-silica, alumina-titania,
Various materials such as alumina zirconia and silica magnesia are used. A preferred carrier is.

アルミナ、チタニ、ア等である。担持金属は通常。These include alumina, titanium, and alumina. Supported metals are normal.

激化物及び/又は硫化物の形で担体上に存在する。It is present on the carrier in the form of an intensifier and/or a sulfide.

この水素化処理工程で用いる触媒は、平均細孔直径が1
50Å以上の細孔径を有するものが用いられる。
The catalyst used in this hydrotreating step has an average pore diameter of 1
A material having a pore diameter of 50 Å or more is used.

(第2水素化工程) この工程は、前記第1水素化処理工程で得られた水素化
生成油を、温度400〜460℃、好ましくは430−
450℃、水素圧80kg/ ci 0以上、好ましく
は100kg/aJG以上の条件下において、水素化触
媒を用いて水素化処理する工程である。この水素化処理
工程は、脂肪族系炭化水素の水素化分解を主目的とする
もので、前記したように、その反応温度としては第水素
化処理工程よりも高い温度を用いる。
(Second hydrogenation step) In this step, the hydrogenated oil obtained in the first hydrogenation step is heated at a temperature of 400 to 460°C, preferably 430-460°C.
This is a step of hydrogenating using a hydrogenation catalyst under conditions of 450° C. and a hydrogen pressure of 80 kg/ci 0 or higher, preferably 100 kg/aJG or higher. The main purpose of this hydrotreating step is the hydrocracking of aliphatic hydrocarbons, and as described above, the reaction temperature is higher than that in the first hydrotreating step.

この第2水素化処理工程における分解率f (II ’
)は、通常60〜80%であり、全分解率f (T)は
5通常、70〜90%である。なお、分解率f(n)及
び全分解率f(T)は次式で定義される。
Decomposition rate f (II'
) is usually 60-80%, and the total decomposition rate f (T) is usually 70-90%. Note that the decomposition rate f(n) and the total decomposition rate f(T) are defined by the following equations.

−E f(II)=    X100        (3)
D=第1水素化生成油中の沸点540℃以上の留分の重
量% E:第2水素化生成油中の沸点540℃以上の留分の重
量% −E f(T)=    X100        (3)A
:fjK料重質油中の沸点540℃以上の留分の重量算 E:第2水素化生成油中の沸点540℃以上の留分の重
量% この第2水素化処理触媒としては、前記第1水素化工程
で示したのと同様の性状を示すもの、即ち。
−E f(II)=X100 (3)
D = Weight % of the fraction with a boiling point of 540°C or higher in the first hydrogenated oil E: Weight % of the fraction with a boiling point of 540°C or higher in the second hydrogenated oil -E f (T) = X100 (3 )A
: Weight calculation of the fraction with a boiling point of 540° C. or higher in the fjK feed heavy oil E: Weight % of the fraction with a boiling point of 540° C. or higher in the second hydrogenated oil 1 exhibiting properties similar to those shown in the hydrogenation step, ie.

多孔性担体としてアルミナ、シリカ、チタニア、アルミ
ナシリカ、アルミナチタニア、アルミナジルコニア、シ
リカマグネシア等の各種のものを用い、担体金属として
V、にo、 W、 Ni、Co等の金属を用い、平均細
孔直径150Å以上の大細孔径を有する触媒が用いられ
る。特に好ましい触媒としては、担持金属として、 N
i−Moや、 N1−Itを担持させたシリカアルミナ
等が用いられる。
Various materials such as alumina, silica, titania, alumina silica, alumina titania, alumina zirconia, and silica magnesia are used as porous carriers, and metals such as V, Ni, W, Ni, and Co are used as carrier metals. A catalyst having a large pore diameter of 150 Å or more is used. Particularly preferred catalysts include N as a supported metal.
i-Mo, silica alumina supported with N1-It, etc. are used.

この第2水素化処理工程においては、全分解率を高める
とともにスラッジの生成を防止するために、芳香族性油
を反応液中に2〜20重量%添加するのが好ましい、芳
香族性油としては、沸点200〜400℃の芳香族化合
物(例えば、メチルナフタレン。
In this second hydrotreating step, in order to increase the total decomposition rate and prevent the formation of sludge, it is preferable to add 2 to 20% by weight of aromatic oil to the reaction liquid. is an aromatic compound with a boiling point of 200 to 400°C (for example, methylnaphthalene).

ナフタレン、エチルナフタレン、プロピルナフタレン等
)又はこれらを少なくとも50重量%含むもの等が挙げ
られる。
naphthalene, ethylnaphthalene, propylnaphthalene, etc.) or those containing at least 50% by weight of these.

(発明の効果) 本発明によれば、重質油を、大細孔径触媒を用い、第1
水素化処理工程で高度に水素化した後、水素化分解処理
することから、スラッジの生成を回避して重質油を高度
に水素化分解することができる1本発明で得られる生成
油(軽質化炭化水素油)は、スラッジを実質的に含まな
い高品質のもので、安定性の良いものである。
(Effects of the Invention) According to the present invention, heavy oil is
The produced oil (light (carbonized hydrocarbon oil) is of high quality, substantially free of sludge, and has good stability.

(実施例) 次に本発明を実施例によりさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail with reference to Examples.

実施例 原料重質油として、アラビアンライト原油の減圧残渣油
を用いた。この減圧残渣油は、ヘキサン可溶(H3)成
分=91重量%、ヘキサン不溶でベンゼン可溶(l(I
−BS)成分:9重量%、ベンゼン不溶(8I)成分:
0重量%からなるものであった。また、その沸点540
℃以上の留分の割合は95重量%であった。
Example As raw material heavy oil, vacuum residue oil of Arabian Light crude oil was used. This vacuum residue oil has a hexane-soluble (H3) component of 91% by weight, a hexane-insoluble and benzene-soluble (l(I)
-BS) component: 9% by weight, benzene insoluble (8I) component:
It consisted of 0% by weight. Also, its boiling point is 540
The fraction of fractions with a temperature of 95% by weight or higher was 95% by weight.

この原料油10重量部をオートクレーブに入れ、水素化
処理触媒1重量部を添加し、温度=390℃。
10 parts by weight of this raw oil was put into an autoclave, 1 part by weight of a hydrotreating catalyst was added, and the temperature was 390°C.

水素圧:150kg/a#Gで3時間反応を行った。そ
の反応結果を表−1に示す。
The reaction was carried out at hydrogen pressure: 150 kg/a#G for 3 hours. The reaction results are shown in Table-1.

なお、この水素化処理工程で用いた水素化触媒は、 N
iO:1.0重量%、 MOO3: 5.0重量%含む
シリカアルミナ触媒であり、比表面積:147rrr/
g、比細孔容積:0.71mQ/g及び平均細孔直径:
168人を有するものであった。このものは、あらかじ
め5%H,Sを含む水素ガスを用い、360℃で6時間
予備硫化処理して用いた。
The hydrogenation catalyst used in this hydrogenation process was N
A silica alumina catalyst containing iO: 1.0% by weight, MOO3: 5.0% by weight, specific surface area: 147rrr/
g, specific pore volume: 0.71 mQ/g and average pore diameter:
It had 168 people. This material was pre-sulfurized using hydrogen gas containing 5% H and S at 360° C. for 6 hours before use.

次に、前記で得た水素化生成油10重量部をオートクレ
ーブに入れ、前記で示したのと同じ水素化触媒1重量部
を添加し、温度:420℃、水素圧:150kg/cj
Gで1時間反応を行った。その反応結果を表−1に示す
Next, 10 parts by weight of the hydrogenated oil obtained above was put into an autoclave, 1 part by weight of the same hydrogenation catalyst as shown above was added, temperature: 420°C, hydrogen pressure: 150 kg/cj
The reaction was carried out at G for 1 hour. The reaction results are shown in Table-1.

表−1 実施例2 実施例1において、第2水素化処理工程における反応時
間を3時間とした以外は同様にして実験を行った。その
結果、全分解率(f (T) )70%の成績が得られ
た。この場合、生成油中のスラッジの生成が極く微量認
められたが、生成油の品質は良好であると判断された。
Table 1 Example 2 An experiment was conducted in the same manner as in Example 1 except that the reaction time in the second hydrogenation step was changed to 3 hours. As a result, a total decomposition rate (f(T)) of 70% was obtained. In this case, although a very small amount of sludge was observed in the produced oil, the quality of the produced oil was judged to be good.

実施例3 実施例1において、第2水素化処理工程における温度を
440℃とし、第1水素化生成油に対し1−メチルナフ
タレンを10重量X添加した以外は同様にして実験を行
った。その結果、全分解率(f(T))81%の成績が
得られ、生成油中にはスラッジの生成は実質的に認めら
れなかった。
Example 3 An experiment was conducted in the same manner as in Example 1 except that the temperature in the second hydrogenation step was 440° C. and 10 weight X of 1-methylnaphthalene was added to the first hydrogenated oil. As a result, a total decomposition rate (f(T)) of 81% was obtained, and virtually no sludge was observed in the produced oil.

比較例1 実施例1で示した原料重質油10重量部をオートクレー
ブに入れ、実施例1で示した触媒1重量部を添加し1反
応温度420℃、水素圧:150kg/a#Gで4時間
反応を行った。その結果1分解率74瓢の成績が得られ
たが、この場合には多量のスラッジが生成した。
Comparative Example 1 10 parts by weight of the raw material heavy oil shown in Example 1 was put into an autoclave, 1 part by weight of the catalyst shown in Example 1 was added, and the mixture was heated at a reaction temperature of 420°C and a hydrogen pressure of 150 kg/a#G. A time reaction was performed. As a result, a decomposition rate of 74 gourds was obtained, but in this case a large amount of sludge was produced.

比較例2 実施例1において、第1及び第2水素化処理工程におけ
る触媒として、NiO:3.1重量%、 MoO2:1
5重量%を含有するアルミナ触媒で、比表面積: 27
3 rI?/g、比細孔容積0.52d/g、平均細孔
直径100Å以下の性状を有するものをあらかじめ5%
H1Sを含む水素ガスを用い、360℃で6時間予mv
it化処理して用いた以外は同様にして実験を行った。
Comparative Example 2 In Example 1, NiO: 3.1% by weight, MoO2: 1 were used as catalysts in the first and second hydrogenation treatment steps.
Specific surface area: 27 with alumina catalyst containing 5% by weight
3 rI? /g, specific pore volume 0.52 d/g, average pore diameter 100 Å or less.
Premv at 360°C for 6 hours using hydrogen gas containing H1S
The experiment was conducted in the same manner except that it was subjected to IT processing.

その結果、全分解率(4(T))63%省成績が得られ
たが、この場合には多量のスラッジの生成が認められた
As a result, a total decomposition rate (4(T)) of 63% was obtained, but in this case, a large amount of sludge was observed to be produced.

特許出願人 千代田化工建設株式会社Patent applicant: Chiyoda Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)石油系重質油を、平均細孔直径が150Å以上で
ある大細孔径の水素化触媒を用いて2段階水素化処理す
ることからなり、第1水素化処理工程を、温度400℃
以下、水素圧100kg/cm^2G以上、及びヘキサ
ン不溶でベンゼン可溶成分の減少率が90%以上及び沸
点540℃以上の留分の分解率が10%以下の条件で行
い、かつ第2水素化処理工程を、温度400〜460℃
、水素圧80kg/cm^2G以上及び沸点540℃以
上の留分の全分解率が少なくとも60%の条件で行い、
スラッジを実質的に含有しない水素化分解生成油を得る
ことを特徴とする石油系重質油の2段階水素化分解方法
(1) Petroleum-based heavy oil is subjected to two-stage hydrogenation treatment using a large pore hydrogenation catalyst with an average pore diameter of 150 Å or more, and the first hydrogenation step is carried out at a temperature of 400°C.
Hereinafter, the hydrogen pressure was 100 kg/cm^2G or more, the reduction rate of hexane-insoluble and benzene-soluble components was 90% or more, the decomposition rate of the fraction with a boiling point of 540°C or more was 10% or less, and the second hydrogen The temperature of the chemical treatment process is 400 to 460℃.
, carried out under conditions where the total decomposition rate of the fraction with a hydrogen pressure of 80 kg/cm^2 G or more and a boiling point of 540° C. or more is at least 60%,
A two-step hydrocracking method for petroleum-based heavy oil, characterized in that a hydrocracking product oil containing substantially no sludge is obtained.
JP8065789A 1989-03-30 1989-03-30 Two-stage hydrocracking method for petroleum heavy oil Expired - Lifetime JP2740815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8065789A JP2740815B2 (en) 1989-03-30 1989-03-30 Two-stage hydrocracking method for petroleum heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8065789A JP2740815B2 (en) 1989-03-30 1989-03-30 Two-stage hydrocracking method for petroleum heavy oil

Publications (2)

Publication Number Publication Date
JPH02258893A true JPH02258893A (en) 1990-10-19
JP2740815B2 JP2740815B2 (en) 1998-04-15

Family

ID=13724428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8065789A Expired - Lifetime JP2740815B2 (en) 1989-03-30 1989-03-30 Two-stage hydrocracking method for petroleum heavy oil

Country Status (1)

Country Link
JP (1) JP2740815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036186A1 (en) * 2010-09-14 2012-03-22 Jx日鉱日石エネルギー株式会社 Aromatic hydrocarbon production process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036186A1 (en) * 2010-09-14 2012-03-22 Jx日鉱日石エネルギー株式会社 Aromatic hydrocarbon production process
US9446997B2 (en) 2010-09-14 2016-09-20 Jx Nippon Oil & Energy Corporation Method for producing aromatic hydrocarbons

Also Published As

Publication number Publication date
JP2740815B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US4992159A (en) Upgrading waxy distillates and raffinates by the process of hydrotreating and hydroisomerization
JP2004518012A (en) Slurry-hydrotreatment using supported slurry catalyst to upgrade heavy oil
JP2004504479A (en) Flexible method for producing base oils and middle distillates from feedstocks containing heteroatoms
US3732155A (en) Two-stage hydrodesulfurization process with hydrogen addition in the first stage
JPH08503234A (en) Lubricating base oil manufacturing method
JP2012255158A (en) Coherent heavy oil upgrading process and in-line hydrofinishing process
JPH0598270A (en) Catalytic hydrogenation of heavy hydrocarbon oil
JPH0115559B2 (en)
JPH08511302A (en) Treatment method by hydroisomerization of feedstock produced by Fischer-Tropsch method
JPH06116572A (en) Production of low-viscosity base oil having high viscosity index for lubricating oil
CN116745387A (en) Co-processing route for hydroprocessing polymer waste based materials
JPS5898387A (en) Preparation of gaseous olefin and monocyclic aromatic hydrocarbon
EP0272038A2 (en) Method for hydrocracking heavy fraction oils
JP2005505681A (en) Improved quality of pretreated used oil
US3915841A (en) Process for hydrodesulfurizing and hydrotreating lubricating oils from sulfur-containing stock
JP3843345B2 (en) Catalyst based on noble metals and silica-alumina, and process for hydrofeeding heavy feeds
JP2002513848A (en) Multi-stage hydrotreatment of middle distillates to avoid hue bodies
JPWO2003078549A1 (en) Oil refining method and refiner
JPH02258893A (en) Two-stage hydrogenolysis of petroleum-based heavy oil
JP2004504441A (en) Method for producing colorless lubricating base oil
JPH0753968A (en) Hydrotreatment of heavy hydrocarbon oil
US4396494A (en) Process for reducing ramsbottom carbon test of asphalt
SU1681735A3 (en) Process for preparing kerosene and/or gas oil
EP0403087A1 (en) Conversion increase of vacuum residuums
JPH02153992A (en) Method for hydrocracking of hydrocarbon stock