JP2739362B2 - Manganese dry cell - Google Patents
Manganese dry cellInfo
- Publication number
- JP2739362B2 JP2739362B2 JP1306695A JP30669589A JP2739362B2 JP 2739362 B2 JP2739362 B2 JP 2739362B2 JP 1306695 A JP1306695 A JP 1306695A JP 30669589 A JP30669589 A JP 30669589A JP 2739362 B2 JP2739362 B2 JP 2739362B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- mercury
- manganese dry
- cationic surfactant
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y02E60/12—
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
- Primary Cells (AREA)
Description
【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はマンガン乾電池の負極亜鉛または亜鉛合金の
腐食抑制に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to the inhibition of corrosion of a negative electrode zinc or zinc alloy of a manganese dry battery.
(従来の技術) 一般にマンガン乾電池の負極材として、化学的に比較
的安定で加工性に富み安価であることから、鉛、カドミ
ウム等を少量添加した亜鉛缶が使用されている。しか
し、そのまま使用すると亜鉛の腐食が激しく、長期保存
後の電池は性能の劣化が起き易くなる。従って通常のマ
ンガン乾電池には、亜鉛缶の有効面積当り0.01〜0.2mg/
cm2程度の水銀が添加されている。(Prior Art) As a negative electrode material of a manganese dry battery, a zinc can to which a small amount of lead, cadmium or the like is added is generally used because it is relatively stable chemically, has good workability and is inexpensive. However, if used as it is, the corrosion of zinc is severe, and the battery after long-term storage tends to deteriorate in performance. Therefore, for a normal manganese dry battery, 0.01 to 0.2 mg /
About 2 cm2 of mercury is added.
(発明が解決しようとする課題) しかし、この程度の量の水銀を含有するマンガン乾電
池は、廃棄されても環境汚染は起こらないとされている
が、これからの社会環境ではより安全な水銀無添加また
は水銀低減化マンガン乾電池か必要となり、亜鉛の防食
技術の確立が不可欠となっている。(Problems to be solved by the invention) However, manganese batteries containing this amount of mercury are said to not cause environmental pollution even if they are disposed of. However, in a future social environment, it is safer to add no mercury. Alternatively, a mercury-reduced manganese dry battery is required, and the establishment of zinc corrosion prevention technology is indispensable.
本発明は前述の問題を解決するためになされたもの
で、負極として用いられる亜鉛または亜鉛合金の腐食を
極力抑えたマンガン乾電池を提供することを目的とす
る。The present invention has been made to solve the above-described problem, and has as its object to provide a manganese dry battery in which corrosion of zinc or a zinc alloy used as a negative electrode is suppressed as much as possible.
[発明の構成] (課題を解決するための手段) 本発明者は前述の目的を達成するため鋭意研究したと
ころ、電解液等に炭素数16のアルキル基が、含有アルキ
ル基の90基数%以上であるカチオン界面活性剤モノアル
キル第四級アンモニウムクロライドを特定量添加するこ
とにより、正極の二酸化マンガンの電位を劣化させるこ
となく、亜鉛の腐食を極力抑えることを見い出し、本発
明に至った。[Constitution of the Invention] (Means for Solving the Problems) The present inventor has conducted intensive studies in order to achieve the above-mentioned object. By adding a specific amount of the cationic surfactant monoalkyl quaternary ammonium chloride, it was found that the corrosion of zinc was suppressed as much as possible without deteriorating the potential of manganese dioxide of the positive electrode, and the present invention was reached.
すなわち、本発明は塩化亜鉛溶液及び/または塩化ア
ンモニウム溶液を主成分とする電解液を用いるマンガン
乾電池において、電池内に該カチオン界面活性剤を電解
液に対して、0.002〜0.2容積%存在させたことを特徴と
するマンガン乾電池である。That is, in the present invention, in a manganese dry battery using an electrolytic solution containing a zinc chloride solution and / or an ammonium chloride solution as a main component, the cationic surfactant is present in the battery in an amount of 0.002 to 0.2% by volume based on the electrolytic solution. A manganese dry battery characterized in that:
該カチオン界面活性剤の添加範囲については、電解液
に対して0.002〜0.2容積%が好ましく、0.002容積%よ
り少ない場合は添加効果が小さく、また0.2容積%を越
える場合は腐食を抑制する効果は有るものの正極の二酸
化マンガンの電位劣化が大きくなるので好ましくない。The addition range of the cationic surfactant is preferably 0.002 to 0.2% by volume with respect to the electrolytic solution. If the amount is less than 0.002% by volume, the effect of addition is small. However, it is not preferable because the potential deterioration of manganese dioxide of the positive electrode increases.
また、該カチオン界面活性剤の添加によって、水銀無
添加の亜鉛または亜鉛合金において腐食が充分抑制され
るが、水銀を少量加えた汞化亜鉛または汞化亜鉛合金に
おいても同等の効果がある。Further, the addition of the cationic surfactant sufficiently suppresses corrosion in zinc or zinc alloy containing no mercury. However, the same effect can be obtained in zinc-containing mercury or zinc-containing alloy containing a small amount of mercury.
(作用) 本発明のカチオン界面活性剤の添加効果については、
亜鉛表面に吸着したカチオン界面活性剤のアルキル基
が、水素ガス発生反応を阻害することによって腐食を抑
制していると考えられる。(Action) Regarding the effect of adding the cationic surfactant of the present invention,
It is considered that the alkyl group of the cationic surfactant adsorbed on the zinc surface inhibits the hydrogen gas generation reaction, thereby suppressing corrosion.
(実施例) 以下、本発明を実施例、比較例及び参考例にもとづ
き、詳細に説明する。(Examples) Hereinafter, the present invention will be described in detail based on examples, comparative examples, and reference examples.
実施例1〜10、比較例1〜4及び参考例1 R20亜鉛缶を用いて、縦5.0cm×横9.6cm×厚さ0.04cm
の試験片を作り、そのままのもの(水銀無添加)と、Hg
Cl2溶液を用いて水銀0.005mg/cm2−亜鉛になるように、
表面をアマルガム化したものとの2種類を試験に供し
た。腐食試験は電解液として、ZnCl2:NH4Cl:H2Oの質
量比が、26:3:71のものを用いて、試験片1枚に対して
電解液60ccの割合で実施した。Examples 1 to 10, Comparative Examples 1 to 4 and Reference Example 1 Using a R20 zinc can, length 5.0 cm x width 9.6 cm x thickness 0.04 cm
And test specimens (with no mercury added) and Hg
So that the zinc, - Cl 2 solution mercury 0.005 mg / cm 2 using a
Two types, one with the surface amalgamated, were subjected to the test. The corrosion test was carried out using an electrolyte having a mass ratio of ZnCl 2 : NH 4 Cl: H 2 O of 26: 3: 71 at a ratio of 60 cc of the electrolyte to one test piece.
そして、炭素数16のアルキル基が、含有アルキル基の
90基数%以上であるカチオン界面活性剤モノアルキル第
四級アンモニウムクロライド(ライオンアクソ社製、商
品名アーカード16-50)の添加量を、電解液に対して0
〜0.2容積%の範囲の中で種々に変量し、電解液中への
添加試験を行った(実施例1〜10及び比較例1〜4)。And the alkyl group having 16 carbon atoms is
The amount of the cationic surfactant monoalkyl quaternary ammonium chloride (manufactured by Lion Axo Co., Ltd., trade name Arcard 16-50) having 90% by number or more is set to 0 with respect to the electrolytic solution.
The amount was varied variously in the range of 0.20.2% by volume, and the addition test into the electrolytic solution was performed (Examples 1 to 10 and Comparative Examples 1 to 4).
また参考として、水銀0.2mg/cm2−亜鉛になるように
アマルガム化した試験片を用い、かつカチオン界面活性
剤無添加のものも同様に試験に供した(参考例1)。For reference, a test piece amalgamated so as to obtain 0.2 mg of mercury / cm 2 -zinc and without a cationic surfactant was also used for the test (Reference Example 1).
腐食試験の評価は、45℃に15日間保存した後の腐食減
量を測定し、3枚の平均値の腐食減量を単位面積当り
(mg/cm2−亜鉛)で示した。各々の水銀添加量、カチオ
ン界面活性剤添加率及び腐食減量を表1に示す。In the evaluation of the corrosion test, the weight loss after storage at 45 ° C. for 15 days was measured, and the average weight loss of the three pieces was shown in terms of unit area (mg / cm 2 -zinc). Table 1 shows the mercury addition amount, the cationic surfactant addition ratio, and the corrosion weight loss.
実施例11〜20、比較例5〜8及び参考例2 電解液として、ZnCl2:NH4Cl:H2Oの質量比が、10:2
2:68のものを用いた以外は実施例1と同様な腐食試験を
行い、それらの結果を表2に示した。 Examples 11 to 20, Comparative Examples 5 to 8 and Reference Example 2 As an electrolytic solution, the mass ratio of ZnCl 2 : NH 4 Cl: H 2 O was 10: 2.
A corrosion test was conducted in the same manner as in Example 1 except that a sample of 2:68 was used, and the results are shown in Table 2.
実施例21〜30、比較例9〜12及び参考例3 電解液として実施例1と同一組成のものについて、負
極の亜鉛として水銀無添加のものと、水銀0.005mg/cm2
−亜鉛になるように電解液にHgCl2を添加したものとを
使用し、該カチオン界面活性剤添加量を電解液に対し
て、0〜0.5容積%の範囲内で種々に変量し、R20形マン
ガン乾電池を各々10個ずつ試作した。この試作電池を45
℃に3ケ月間保存し、二酸化マンガンの電位劣化を開路
電圧で、亜鉛に対する腐食効果を4Ω連続放電の0.9Vま
での持続時間で評価した(実施例21〜30、比較例9〜1
4)。 Example 21-30, for those having the same composition as in Example 1 as Comparative Examples 9 to 12 and Reference Example 3 electrolytic solution as mercury not added as a zinc negative electrode, mercury 0.005 mg / cm 2
- using a material obtained by adding HgCl 2 in the electrolyte solution so that the zinc, the cationic surfactant additive amount of the electrolyte solution, variously and variable in the range of 0 to 0.5 volume%, R20 form Ten prototype manganese batteries were manufactured. 45 of this prototype battery
C. for 3 months, the potential degradation of manganese dioxide was evaluated by the open circuit voltage, and the corrosion effect on zinc was evaluated by the duration of 4Ω continuous discharge up to 0.9 V (Examples 21 to 30, Comparative Examples 9-1)
Four).
なお参考として、負極が水銀0.2mg/cm2−亜鉛になる
ように、予じめ電解液にHgCl2を添加し、上記と同様に
マンガン乾電池を試作し、開路電圧及び4Ω連続放電持
続時間を同様に評価した(参考例3)。各々の水銀添加
量、カチオン界面活性剤添加率、開路電圧(平均値)及
び4Ω連続放電持続時間(平均値)を表3に示す。As a reference, HgCl 2 was added to the electrolyte in advance so that the negative electrode became 0.2 mg / cm 2 -zinc mercury. Evaluation was made similarly (Reference Example 3). Table 3 shows the mercury addition amount, cationic surfactant addition ratio, open circuit voltage (average value) and 4Ω continuous discharge duration (average value).
実施例31,32 電解液として実施例1と同一組成のものを用い、亜鉛
缶内面にカチオン界面活性剤を、電解液に対して0.05容
積%になる量を塗布したもの(実施例31)、セパレータ
ーに同様に0.05容積%添加したもの(実施例32)とを用
いて、R20形マンガン乾電池を試作した。これらの乾電
池を用い、実施例21と同様に開路電圧及び4Ω連続放電
持続時間を評価し、それらの結果を表3に示した。Examples 31 and 32 The same composition as in Example 1 was used as the electrolytic solution, and a cationic surfactant was applied to the inner surface of the zinc can in an amount of 0.05% by volume based on the electrolytic solution (Example 31). An R20-type manganese dry battery was trial-produced by using a separator similarly added to 0.05% by volume (Example 32). Using these dry batteries, the open circuit voltage and the continuous discharge duration of 4Ω were evaluated in the same manner as in Example 21, and the results are shown in Table 3.
実施例33〜42、比較例15〜20及び参考例4 電解液として実施例11と同一組成のものを用い、実施
例21と同様な方法でマンガン乾電池を試作し、開路電圧
及び4Ω連続放電持続時間を評価した(実施例33〜42、
比較例15〜20)。 Examples 33 to 42, Comparative examples 15 to 20 and Reference example 4 Using an electrolyte having the same composition as in Example 11, a manganese dry battery was prototyped in the same manner as in Example 21, and the open circuit voltage and 4Ω continuous discharge sustained. The time was evaluated (Examples 33-42,
Comparative Examples 15 to 20).
なお、参考例として負極が水銀0.2mg/cm2−亜鉛にな
るように、予じめ電解液にHgCl2を添加し、上記と同様
にマンガン乾電池を試作し、開路電圧及び4Ω連続放電
持続時間を評価した(参考例4)。As a reference example, HgCl 2 was added to the electrolyte in advance so that the negative electrode became mercury 0.2 mg / cm 2 -zinc, a manganese dry battery was prototyped in the same manner as above, and the open circuit voltage and 4Ω continuous discharge duration Was evaluated (Reference Example 4).
各々の水銀添加量、カチオン界面活性剤添加率、開路
電圧及び4Ω連続放電持続時間を表4に示す。Table 4 shows the mercury addition amount, cationic surfactant addition ratio, open circuit voltage and 4Ω continuous discharge duration.
実施例43,44 電解液として実施例11と同一組成のものを用い、亜鉛
缶内面に該カチオン界面活性剤を電解液に対して0.05容
積%になる量を塗布したもの(実施例43)、セパレータ
ーに同様に0.05容積%になる量を添加したもの(実施例
44)を用いて、実施例31、32と同様な方法でマンガン乾
電池を試作した。Examples 43 and 44 The same composition as in Example 11 was used as the electrolytic solution, and the cationic surfactant was applied to the inner surface of the zinc can in an amount of 0.05% by volume based on the electrolytic solution (Example 43). A separator to which an amount of 0.05% by volume was similarly added (Example
44), a manganese dry battery was prototyped in the same manner as in Examples 31 and 32.
これらの電池を用い実施例21と同様に開路電圧及び4
Ω連続放電持続時間を評価し、それらの結果を表4に示
す。Using these batteries, open circuit voltage and 4
The continuous discharge duration of Ω was evaluated, and the results are shown in Table 4.
表1〜4に示されるごとく、該カチオン界面活性剤を
電解液に対して、0.002〜0.2容積%の範囲で添加したも
のは、亜鉛または亜鉛合金の腐食が著しく抑制され、ま
たマンガン乾電池においては、貯蔵後の開路電圧の劣化
が少なく、放電持続時間が伸びていることから、マンガ
ン乾電池の正極作用物質である二酸化マンガンを劣化さ
せることなく、負極である亜鉛缶の腐食を著しく抑制し
ていることが判る。また、カチオン界面活性剤を電解液
に添加するだけでなく、負極亜鉛缶内に塗布及びセパレ
ーターに添加することによっても、同様の効果が得られ
ることが判る。 As shown in Tables 1 to 4, when the cationic surfactant was added in the range of 0.002 to 0.2% by volume with respect to the electrolytic solution, the corrosion of zinc or zinc alloy was remarkably suppressed. Because the deterioration of the open circuit voltage after storage is small and the discharge duration is extended, the corrosion of the zinc can, which is the negative electrode, is significantly suppressed without deteriorating the manganese dioxide, which is the positive electrode active material of the manganese dry battery. You can see that. Further, it can be seen that the same effect can be obtained not only by adding the cationic surfactant to the electrolytic solution but also by applying it to the negative electrode zinc can and adding it to the separator.
[発明の効果] 以上、説明したごとく、電池内に電解液に対して、特
定量の炭素数16のアルキル基が、含有アルキル基の90基
数%以上であるカチオン界面活性剤モノアルキル第四級
アンモニウムクロライドを存在させる本発明のマンガン
乾電池は、低水銀化あるいは水銀無添加の場合において
も、正極作用物質である二酸化マンガンを劣化させるこ
となく、負極として用いられる亜鉛または亜鉛合金の腐
食を大幅に低減化でき、工業的価値が大である。[Effects of the Invention] As described above, the cationic surfactant monoalkyl quaternary in which the specific amount of the alkyl group having 16 carbon atoms is 90% or more of the contained alkyl group in the electrolyte solution in the battery. The manganese dry battery of the present invention in the presence of ammonium chloride can significantly reduce the corrosion of zinc or a zinc alloy used as a negative electrode without deteriorating manganese dioxide, which is a positive electrode active substance, even in the case of low mercury or no mercury added. It can be reduced and has great industrial value.
Claims (1)
ム溶液を主成分とする電解液を用いるマンガン乾電池に
おいて、該電池内に、炭素数16のアルキル基が、含有ア
ルキル基の90基数%以上であるカチオン界面活性剤モノ
アルキル第四級アンモニウムクロライドを、該電解液に
対して、0.002〜0.2容積%存在させたことを特徴とする
マンガン乾電池。1. A manganese dry battery using an electrolytic solution containing a zinc chloride solution and / or an ammonium chloride solution as a main component, wherein the number of alkyl groups having 16 carbon atoms is 90% or more of the contained alkyl groups in the battery. A manganese dry battery characterized in that a cationic surfactant monoalkyl quaternary ammonium chloride is present in an amount of 0.002 to 0.2% by volume based on the electrolytic solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1306695A JP2739362B2 (en) | 1989-11-28 | 1989-11-28 | Manganese dry cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1306695A JP2739362B2 (en) | 1989-11-28 | 1989-11-28 | Manganese dry cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03167756A JPH03167756A (en) | 1991-07-19 |
JP2739362B2 true JP2739362B2 (en) | 1998-04-15 |
Family
ID=17960196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1306695A Expired - Lifetime JP2739362B2 (en) | 1989-11-28 | 1989-11-28 | Manganese dry cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2739362B2 (en) |
-
1989
- 1989-11-28 JP JP1306695A patent/JP2739362B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03167756A (en) | 1991-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2001041247A1 (en) | Non-aqueous electrolyte cell | |
CA1256158A (en) | Process for stabilizing primary electrochemical generators with reactive anodes made from zinc, aluminium or magnesium and an anode for such a generator stabilized by this process | |
JP3216311B2 (en) | Lithium battery | |
JP2002343427A (en) | Nonaqueous electrolyte lithium secondary battery | |
JP2739362B2 (en) | Manganese dry cell | |
JP2739363B2 (en) | Manganese dry cell | |
JP2739360B2 (en) | Manganese dry cell | |
JP2739359B2 (en) | Manganese dry cell | |
JP2739361B2 (en) | Manganese dry cell | |
JP2739355B2 (en) | Manganese dry cell | |
JP2525719B2 (en) | Electrochemical primary battery having a stabilized reactive negative electrode made of zinc, aluminum or magnesium, and its stabilized negative electrode | |
KR20150040645A (en) | Electrolytes containing sulfone compound for lithium-sulfur cells | |
US3963520A (en) | Primary cell corrosion inhibitor | |
JPS60131768A (en) | Organic electrolyte battery | |
JP3512826B2 (en) | Button type alkaline battery | |
JPS6037656A (en) | Nonaqueous chemical battery | |
JPS6035461A (en) | Organic electrolyte battery | |
JPH0317181B2 (en) | ||
JP2869162B2 (en) | Glue for manganese dry batteries | |
JPS62213067A (en) | Manganese dry cell | |
JPH06223834A (en) | Button type alkaline battery | |
JP2964802B2 (en) | Glue-type manganese dry battery | |
JP2798972B2 (en) | Gelled negative electrode for alkaline batteries | |
JP2798680B2 (en) | Alkaline battery | |
JP2796154B2 (en) | Zinc negative electrode for alkaline batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |