JP2735525B2 - Chemical vapor deposition method - Google Patents

Chemical vapor deposition method

Info

Publication number
JP2735525B2
JP2735525B2 JP33429795A JP33429795A JP2735525B2 JP 2735525 B2 JP2735525 B2 JP 2735525B2 JP 33429795 A JP33429795 A JP 33429795A JP 33429795 A JP33429795 A JP 33429795A JP 2735525 B2 JP2735525 B2 JP 2735525B2
Authority
JP
Japan
Prior art keywords
film
vapor deposition
chemical vapor
gas
deposition method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33429795A
Other languages
Japanese (ja)
Other versions
JPH09157850A (en
Inventor
秀和 岡林
和己 菅井
俊二 岸田
明子 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANERUBA KK
NEC Corp
Original Assignee
ANERUBA KK
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANERUBA KK, Nippon Electric Co Ltd filed Critical ANERUBA KK
Priority to JP33429795A priority Critical patent/JP2735525B2/en
Publication of JPH09157850A publication Critical patent/JPH09157850A/en
Application granted granted Critical
Publication of JP2735525B2 publication Critical patent/JP2735525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、集積回路等の電
子デバイスの製造に用いられる各種薄膜の化学気相成長
方法に関し、特に配線材料の成膜に適した化学気相成長
方法関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical vapor deposition method for various thin films used for manufacturing electronic devices such as integrated circuits, and more particularly to a chemical vapor deposition method suitable for forming a wiring material. .

【0002】[0002]

【従来の技術】Alなどの配線材料の成膜方法としては
スパッタ法や蒸着法が広く採用されてきたが、ステップ
カバレッジに優れることから有機Alをソースとする化
学気相成長法が注目されている。また、Wプラグなどの
選択成長技術にWF6 をソースとする気相成長法が用い
られている。
2. Description of the Related Art Sputtering and vapor deposition have been widely used as a method for forming a wiring material such as Al. However, chemical vapor deposition using organic Al as a source has attracted attention because of its excellent step coverage. I have. In addition, a vapor growth method using WF 6 as a source is used for a selective growth technique such as a W plug.

【0003】従来の成膜技術は、図3のガス供給シーケ
ンスに示すように、反応原料ガスを一定流量反応室へ供
給しつつ気相成長を行うものであった(以下、第1の従
来例という)。しかし、この方法で厚膜の金属膜を成膜
するときには、反応原料ガスの流量が一定であっても、
図3に示すように成膜速度は徐々に低下する。そして、
連続成長により形成した厚い膜では表面に凹凸が生じ良
好な表面形態(surface morphology)は得られない。こ
のような膜質低下の原因は必ずしも明確ではないが、反
応生成物の存在が悪影響を及ぼすものと考えられてい
る。
[0003] In the conventional film forming technique, as shown in a gas supply sequence of FIG. 3, a vapor phase growth is performed while supplying a reactant gas to a reaction chamber at a constant flow rate (hereinafter, a first conventional example). ). However, when forming a thick metal film by this method, even if the flow rate of the reactant gas is constant,
As shown in FIG. 3, the film forming speed gradually decreases. And
In the case of a thick film formed by continuous growth, unevenness occurs on the surface, and a good surface morphology cannot be obtained. Although the cause of such film quality deterioration is not always clear, it is thought that the presence of the reaction product has an adverse effect.

【0004】連続して原料ガスを供給することによる弊
害を除くものとして、間欠的に原料ガスを供給する方法
(以下、第2の従来例という)が提案されている。図4
は、特開平4−64223号公報にて提案された気相成
長方法のガス供給シークエンス図である。この方法で
は、基板温度を所定の温度に上げ、キャリアガスである
2 を供給しておき、間欠的に原料ガスであるWF6
SiH4 を供給する。実施例では、30秒程度の休止期
間(T−t)を挾んで、15秒程度を原料ガス供給期間
(t)としている。この成長方法によれば、原料ガス供
給停止期間にW膜中に取り込まれたフッ素を外方拡散さ
せることができるため、低抵抗のWプラグを形成するこ
とができるものとされている。同様の技術が、特開平3
−215668号公報、特開平4−263072号公報
にも示されている。
In order to eliminate the adverse effect of continuously supplying the source gas, a method of intermittently supplying the source gas (hereinafter referred to as a second conventional example) has been proposed. FIG.
FIG. 1 is a gas supply sequence diagram of a vapor phase growth method proposed in Japanese Patent Application Laid-Open No. 4-64223. In this method, the substrate temperature is raised to a predetermined temperature, H 2 as a carrier gas is supplied, and WF 6 and SiH 4 as source gases are supplied intermittently. In this embodiment, the source gas supply period (t) is set to about 15 seconds with a rest period (Tt) of about 30 seconds interposed therebetween. According to this growth method, fluorine taken into the W film can be diffused outward during the suspension of the supply of the source gas, so that a low-resistance W plug can be formed. A similar technique is disclosed in
Japanese Patent Application Laid-Open No. 215668/1992 and Japanese Patent Application Laid-Open No. 4-263072.

【0005】[0005]

【発明が解決しようとする課題】上述した第1の従来例
では、厚い膜を形成したときに成膜速度が低下する上に
良好な膜質の金属膜を得ることはできない。また、第2
の従来例では、反応原料ガス供給系に設けられた弁の開
閉によって反応原料ガスが間欠的に供給されるため、弁
の開閉頻度が著しく増加し、発塵の増加による堆積膜質
が低下したり、弁の劣化が加速され弁の交換頻度の増加
によるCVD装置の稼働時間が減少するという問題があ
った。
In the above-mentioned first conventional example, when a thick film is formed, the film forming speed is reduced, and a metal film having good film quality cannot be obtained. Also, the second
In the prior art, since the reactant gas is intermittently supplied by opening and closing a valve provided in the reactant gas supply system, the frequency of opening and closing the valve is significantly increased, and the quality of the deposited film is deteriorated due to an increase in dust generation. In addition, there is a problem that the deterioration of the valve is accelerated and the operation time of the CVD apparatus is reduced due to an increase in the frequency of replacing the valve.

【0006】また、原料ガスが有機金属化合物のように
蒸気圧が低く反応原料ガスをキャリアガスによってバブ
リングして供給する必要のある場合には、キャリアガス
を直接反応室へ供給するバイパス系と反応原料のバブリ
ング容器を通して供給するバブリング系とに切り替えて
使用することが多いが、そのようにした場合には、キャ
リアガスをバイパス系からバブリング系に切り替える
と、図5のガス供給シーケンスに示すように、バブリン
グ系へ切り替える際、バブリング容器内一杯に気化して
閉じ込められていた反応原料ガスが一挙に供給されるこ
とにより反応室の原料ガス圧や全圧が一時的に上昇した
り、一時的にバイパス系、バブリング系のバルブがとも
に閉じられた状態が生じた場合には、キャリアガス圧が
上がり、バブリング系のバルブを開きキャリアガスを供
給した際、反応原料を含む流量が急増し反応室のキャリ
アガスの圧力が一時的に急増する、等の過渡的変化が生
じ、パルス毎の反応原料ガス供給量の制御性が悪くなる
という問題があった。
When the raw material gas has a low vapor pressure such as an organometallic compound and needs to be supplied by bubbling the reaction raw material gas with a carrier gas, the reaction gas is reacted with a bypass system for directly supplying the carrier gas to the reaction chamber. It is often used by switching to a bubbling system supplied through a bubbling container for the raw material. In such a case, when the carrier gas is switched from the bypass system to the bubbling system, as shown in the gas supply sequence in FIG. When switching to the bubbling system, the reactant gas, which has been completely vaporized and trapped inside the bubbling vessel, is supplied all at once, so that the source gas pressure and the total pressure in the reaction chamber temporarily rise, If both the bypass system and bubbling system valves are closed, the carrier gas pressure rises and bubbling occurs. When the carrier gas is supplied by opening the valve, a transient change occurs, such as a sudden increase in the flow rate including the reactant and a sudden increase in the pressure of the carrier gas in the reaction chamber. There was a problem that controllability deteriorated.

【0007】本発明は、上述した従来例の問題点に鑑み
てなされたものであって、その目的は、高品位の膜質の
導電性膜を制御性のよい成長方法により得ることができ
るようにすることであり、また、煩雑な作業を必要とす
るガス供給系での部品交換の機会を少なくすることであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a high-quality conductive film by a growth method with good controllability. Another object of the present invention is to reduce the chance of replacing parts in a gas supply system that requires complicated operations.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による化学気相成長方法は、反応室に原料ガ
スを一定の流量で供給しつつ、排気系による排気量を間
欠的に増減させることにより反応室内の圧力を降・昇さ
せつつ成膜を行うことを特徴としている。
In order to achieve the above object, a chemical vapor deposition method according to the present invention intermittently controls the amount of exhaust gas from an exhaust system while supplying a source gas to a reaction chamber at a constant flow rate. The film formation is performed while increasing and decreasing the pressure in the reaction chamber while decreasing and increasing the pressure.

【0009】[0009]

【発明の実施の形態】図1は、本発明による気相成長方
法を実施するための気相成長装置の概略を示す模式図で
ある。図1に示されるように、反応室1内には、ヒータ
を内蔵する試料台8が配置されその上には試料9が搭載
される。反応室1には反応原料ガス供給系2が備えられ
ており、これを介して成膜に必要な各種ガスが供給され
る。反応室1には、さらに主排気弁4をもつ主排気系3
と、コンダクタンス(開口度)が可変でかつ小容量の補
助排気弁6をもつ補助排気系5が備えられており、これ
らの排気系により反応室のガスは排気ポンプ7を介して
排気される。
FIG. 1 is a schematic diagram showing an outline of a vapor phase growth apparatus for performing a vapor phase growth method according to the present invention. As shown in FIG. 1, a sample table 8 having a built-in heater is arranged in the reaction chamber 1, and a sample 9 is mounted thereon. The reaction chamber 1 is provided with a reaction material gas supply system 2 through which various gases required for film formation are supplied. The reaction chamber 1 further includes a main exhaust system 3 having a main exhaust valve 4.
And an auxiliary exhaust system 5 having a variable auxiliary conductance (opening degree) and a small-capacity auxiliary exhaust valve 6. The exhaust system exhausts the gas in the reaction chamber through an exhaust pump 7.

【0010】図2(a)は、本発明による成長方法を示
す、原料ガスの供給流量と排気ガスの流量を示すプロセ
スシークエンス図であり、図2(b)は、そのガス流量
に対応した反応室内での圧力の変化を示す図である。同
図に示されるように、本発明の成長方法では、原料ガス
は一定量供給され続けるが、排気ガス量は間欠的に増減
される。排気量が増大したとき反応室内の圧力は低下し
膜の成長は実質的に停止する。このとき、反応室内の不
要反応生成物は排気系により装置外に排除される。その
ため、排気ガス量が減少して成膜が開始されると、成長
速度は当初の値に復帰する。そして、この成長速度は、
連続成長時間が比較的短時間であるため、ほぼ一定の値
を維持する。また、この排気量増大期間を挾むことによ
り、厚い金属膜を形成する場合にも良好なsurface morp
hologyの膜を得ることができる。
FIG. 2A is a process sequence diagram showing a source gas supply flow rate and an exhaust gas flow rate showing the growth method according to the present invention, and FIG. 2B is a reaction sequence corresponding to the gas flow rate. It is a figure which shows the change of the pressure in a room. As shown in the figure, in the growth method of the present invention, a constant amount of source gas is continuously supplied, but the amount of exhaust gas is intermittently increased or decreased. When the displacement increases, the pressure in the reaction chamber decreases and the growth of the film substantially stops. At this time, unnecessary reaction products in the reaction chamber are removed outside the apparatus by the exhaust system. Therefore, when the amount of exhaust gas is reduced and film formation is started, the growth rate returns to the initial value. And this growth rate is
Since the continuous growth time is relatively short, a substantially constant value is maintained. Also, by sandwiching this period of increasing the displacement, even when a thick metal film is formed, a good surface morp can be obtained.
You can get hology membrane.

【0011】排気ガス流量を増大させる時間は、実効成
長速度を低下させないために短時間で済ますことが望ま
しい。排気ガス流量の増大する連続時間を排気ガス流量
の減少する連続時間の1/3以下にすることにより、一
定の原料ガス供給流量で連続して成長させる場合よりも
成長速度を高くすることができる。排気量は、主排気弁
4と補助排気弁6とのコンダクタンスの調整により行う
が、例えば補助排気弁のコンダクタンスを一定にしてお
き、主排気弁の開閉により排気量の増・減を行うように
することができる。
It is desirable that the time for increasing the exhaust gas flow rate be short in order not to lower the effective growth rate. By setting the continuous time during which the exhaust gas flow rate increases to one-third or less of the continuous time during which the exhaust gas flow rate decreases, the growth rate can be increased as compared with the case where continuous growth is performed at a constant source gas supply flow rate. . The exhaust amount is adjusted by adjusting the conductance between the main exhaust valve 4 and the auxiliary exhaust valve 6. For example, the conductance of the auxiliary exhaust valve is kept constant, and the exhaust amount is increased or decreased by opening and closing the main exhaust valve. can do.

【0012】限定的ではないが、本発明により、ジメチ
ルアルミニウムハイドライド(AlH(OCH3
2 )、あるいはトリイソブチルアルミニウム(Al
((CH32 CHCH23 を反応原料ガス、水素ガ
スをキャリアガスとして用いてAl膜を、ヘキサフルオ
ロアセチルアセトネート銅(Cu〔(CO)2 CH(C
322 )を反応原料ガス、アルゴンをキャリアガ
スとして用いてCu膜を、テトラキスヂメチルアミノチ
タニウム(Ti〔N(CH324 )とアンモニアを
反応原料ガス、窒素をキャリアガスとして用いてTiN
膜を、さらに6フッ化タングステンを反応原料ガス、水
素をキャリアガスとして用いてW膜を成長させることが
できる。
According to the present invention, but not limited to, dimethyl aluminum hydride (AlH (OCH 3 ))
2 ) or triisobutyl aluminum (Al
Using ((CH 3 ) 2 CHCH 2 ) 3 as a reaction raw material gas and hydrogen gas as a carrier gas, an Al film is formed on copper hexafluoroacetylacetonate (Cu [(CO) 2 CH (C
Using F 3 ) 2 ] 2 ) as a reaction raw material gas and argon as a carrier gas, a Cu film is formed. Tetrakis-methylaminotitanium (Ti [N (CH 3 ) 2 ] 4 ) and ammonia are used as a reaction raw material gas, and nitrogen is used as a carrier. TiN used as gas
A W film can be grown by using the film as a reaction source gas with tungsten hexafluoride and hydrogen as a carrier gas.

【0013】本発明においては、反応室の上流側に位置
する反応原料ガス供給系の弁の開閉によらず、下流側の
排気系の弁の開閉によって反応室内の反応副生成物の圧
力を間欠的に排除することができるので、弁の開閉によ
る発塵の影響を著しく減少させ、膜質の向上を図ること
ができる。さらに、取り扱いが煩雑な原料ガス供給系の
装置の保守頻度の増加を抑制することができるとともに
反応原料ガス供給量の制御性の低下を防止することがで
きる。
In the present invention, the pressure of the reaction by-product in the reaction chamber is intermittently controlled by opening and closing a valve of a downstream exhaust system, not by opening and closing a valve of a reaction material gas supply system located upstream of the reaction chamber. Therefore, the effect of dust generation due to the opening and closing of the valve can be significantly reduced, and the film quality can be improved. Furthermore, it is possible to suppress an increase in the maintenance frequency of the equipment of the source gas supply system that is complicated to handle, and to prevent a decrease in controllability of the supply amount of the reaction source gas.

【0014】[0014]

【実施例】次に、本発明の一実施例について図面を参照
して説明する。試料7としては、集積回路用シリコン基
板上に熱酸化やCVD法によって膜厚0.6μmの酸化
シリコン膜を形成し、標準的なホトエッチング工程で酸
化シリコン膜に直径0.4μmの微細孔を開口したもの
を用いた。反応室1内を10-4Pa台まで排気した後、
試料台に設けられた試料加熱ヒータ(図示せず)を用い
て試料を170℃に加熱し、反応原料ガス供給系2より
キャリアガスとしての水素を反応室1に供給する。次
に、補助排気弁6を開き主排気弁4を閉じ、反応室内の
圧力が1.6×102 Paになるよう補助排気弁6のコ
ンダクタンスを調節した後、反応原料ガス供給系2を通
じて反応原料ガスとして有機アルミニウム化合物である
ジメチルアルミニウムハイドライド(以下、DMAHと
略称する)を水素ガスをキャリアとして用いて反応室1
に供給し、アルミニウム膜の成長を開始する。DMAH
供給開始1分後、主排気弁4も開き主排気系3での排気
も追加し、反応室1の圧力を一時的に約6Paに減圧す
る。15秒間主排気系3での排気を続けた後、再び主排
気弁4を閉じ、反応室1の圧力を1.6×102 Paに
上げて気相成長を継続する。このような時間間隔で主排
気弁4の閉と開とを10回繰り返した後、アルミニウム
膜の成長を終了した。
Next, an embodiment of the present invention will be described with reference to the drawings. As a sample 7, a silicon oxide film having a thickness of 0.6 μm was formed on a silicon substrate for an integrated circuit by thermal oxidation or CVD, and fine holes having a diameter of 0.4 μm were formed in the silicon oxide film by a standard photoetching process. An open one was used. After evacuating the inside of the reaction chamber 1 to the order of 10 -4 Pa,
The sample is heated to 170 ° C. using a sample heater (not shown) provided on the sample stage, and hydrogen as a carrier gas is supplied to the reaction chamber 1 from the reaction material gas supply system 2. Next, the auxiliary exhaust valve 6 is opened, the main exhaust valve 4 is closed, and the conductance of the auxiliary exhaust valve 6 is adjusted so that the pressure in the reaction chamber becomes 1.6 × 10 2 Pa. The reaction chamber 1 was prepared using dimethylaluminum hydride (hereinafter abbreviated as DMAH), which is an organoaluminum compound, as a source gas and hydrogen gas as a carrier.
To start the growth of the aluminum film. DMAH
One minute after the start of the supply, the main exhaust valve 4 is also opened and the exhaust in the main exhaust system 3 is also added, and the pressure in the reaction chamber 1 is temporarily reduced to about 6 Pa. After the exhaust in the main exhaust system 3 is continued for 15 seconds, the main exhaust valve 4 is closed again, the pressure in the reaction chamber 1 is increased to 1.6 × 10 2 Pa, and the vapor phase growth is continued. After the closing and opening of the main exhaust valve 4 were repeated 10 times at such time intervals, the growth of the aluminum film was terminated.

【0015】本実施例の方法で形成したアルミニウム膜
と、気相成長中に主排気弁14を開かない従来の方法で
形成した膜とを比較すると、従来法では膜厚は成長時間
に比例せず成長時間が長くなると推積速度の低下が生じ
たのに対し、本発明の方法では膜厚は、ほぼ成長時間に
比例し、推積速度の低下は生じなかった。また、従来法
で形成した膜では、長時間推積した膜では膜厚が本発明
の方法によるものより薄いにも関わらず表面の凹凸が著
しく、かつ、微細孔内では空洞が発生したが、本発明の
方法によるものは、表面の平滑性が優れ、微細孔内へも
均一にかつ再現性よく推積できた。
When comparing the aluminum film formed by the method of this embodiment with the film formed by the conventional method in which the main exhaust valve 14 is not opened during the vapor phase growth, the film thickness is proportional to the growth time in the conventional method. In contrast, when the growth time was prolonged, the deposition rate was reduced, whereas in the method of the present invention, the film thickness was almost proportional to the growth time, and the deposition rate was not reduced. Also, in the film formed by the conventional method, although the film deposited for a long time has a remarkable unevenness on the surface in spite of the fact that the film thickness is thinner than that according to the method of the present invention, and voids are generated in the micropores, According to the method of the present invention, the surface was excellent in smoothness, and it could be uniformly and reproducibly deposited in the fine pores.

【0016】[0016]

【発明の効果】以上説明したように、本発明による化学
気相成長方法は、一定流量で反応原料ガスを供給し、間
欠的に排気ガス流量を増減させるものであるので、反応
原料ガス供給量の制御性の低下を引き起こすことなく成
膜中の反応室内の圧力を間欠的に減少させて反応副生成
物ガスの圧力を間欠的に減少させ、推積速度の低下を抑
制し、表面平滑性や微細孔内への推積特性を向上させる
ことができる。また、反応室内の反応副生成物ガスの圧
力の間欠的低減を、膜を推積すべき試料より上流側に位
置する反応原料ガス供給弁の開閉によらず、下流側の排
気系の弁の開閉によって実現しているので、弁の開閉に
よる発塵の影響を減少させ膜質の向上を図ることができ
るとともに、取扱いの煩雑な反応原料供給系の保守頻度
の増加を抑制することができる。
As described above, the chemical vapor deposition method according to the present invention supplies the reactant gas at a constant flow rate and intermittently increases or decreases the exhaust gas flow rate. The pressure in the reaction chamber during film formation is intermittently reduced without causing a decrease in the controllability of the gas, the pressure of the reaction by-product gas is intermittently reduced, the reduction in the deposition rate is suppressed, and the surface smoothness is reduced. And the properties of deposition into the micropores can be improved. In addition, the intermittent reduction of the pressure of the reaction by-product gas in the reaction chamber is controlled by the opening and closing of the reactant gas supply valve located on the upstream side of the sample on which the film is to be deposited, regardless of whether the valve of the exhaust system on the downstream side is opened or closed. Since this is achieved by opening and closing, the effect of dust generation due to opening and closing of the valve can be reduced, the film quality can be improved, and an increase in the maintenance frequency of the reaction material supply system that is complicated to handle can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態および実施例を説明するた
めの気相成長装置の模式図。
FIG. 1 is a schematic view of a vapor phase growth apparatus for describing an embodiment and an example of the present invention.

【図2】本発明の実施の形態を説明するためのガス流量
および反応室内圧力のシークエンス図。
FIG. 2 is a sequence diagram of a gas flow rate and a reaction chamber pressure for describing an embodiment of the present invention.

【図3】第1の従来例の原料ガス供給シークエンス図。FIG. 3 is a source gas supply sequence diagram of a first conventional example.

【図4】第2の従来例の原料ガス供給シークエンス図。FIG. 4 is a source gas supply sequence diagram of a second conventional example.

【図5】従来例の問題点を説明するための原料ガス供給
シークエンス図。
FIG. 5 is a source gas supply sequence diagram for explaining a problem of the conventional example.

【符号の説明】[Explanation of symbols]

1 反応室 2 反応原料ガス供給系 3 主排気系 4 主排気弁 5 補助排気系 6 補助排気弁 7 排気ポンプ 8 試料台 9 試料 Reference Signs List 1 reaction chamber 2 reaction material gas supply system 3 main exhaust system 4 main exhaust valve 5 auxiliary exhaust system 6 auxiliary exhaust valve 7 exhaust pump 8 sample table 9 sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸田 俊二 東京都港区芝五丁目7番1号 日本電気 株式会社内 (72)発明者 小林 明子 東京都府中市四谷五丁目8番1号 アネ ルバ株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shunji Kishida 5-7-1 Shiba, Minato-ku, Tokyo Within NEC Corporation (72) Inventor Akiko Kobayashi 5-2-1, Yotsuya, Fuchu-shi, Tokyo Anelba Inside the corporation

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 反応室に原料ガスを供給して基板上に成
膜を行う化学気相成長方法において、排気系による排気
量を間欠的に増減させることにより反応室内の圧力を降
・昇させつつ成膜を行うことを特徴とする化学気相成長
方法。
In a chemical vapor deposition method in which a source gas is supplied to a reaction chamber to form a film on a substrate, the pressure in the reaction chamber is decreased and increased by intermittently increasing and decreasing the amount of exhaust by an exhaust system. A chemical vapor deposition method characterized by performing film formation while performing.
【請求項2】 原料ガスの材料に金属化合物を含み、金
属膜または金属化合物膜を成膜することを特徴とする請
求項1記載の化学気相成長方法。
2. The chemical vapor deposition method according to claim 1, wherein the material of the source gas contains a metal compound, and a metal film or a metal compound film is formed.
【請求項3】 排気量を増加した状態の継続時間が排気
量を減少させた状態の継続時間の1/3以下であること
を特徴とする請求項1記載の化学気相成長方法。
3. The chemical vapor deposition method according to claim 1, wherein the duration of the state in which the displacement is increased is not more than one third of the duration of the state in which the displacement is reduced.
【請求項4】 気相成長装置の排気系が主排気弁と補助
排気弁とを備え、補助排気弁を一定の開口度に開いてお
き、主排気弁を開閉して排気量を増減することを特徴と
する請求項1記載の化学気相成長方法。
4. An exhaust system of a vapor phase growth apparatus comprising a main exhaust valve and an auxiliary exhaust valve, wherein the auxiliary exhaust valve is opened at a fixed opening, and the main exhaust valve is opened and closed to increase or decrease the exhaust amount. The chemical vapor deposition method according to claim 1, wherein:
JP33429795A 1995-11-30 1995-11-30 Chemical vapor deposition method Expired - Fee Related JP2735525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33429795A JP2735525B2 (en) 1995-11-30 1995-11-30 Chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33429795A JP2735525B2 (en) 1995-11-30 1995-11-30 Chemical vapor deposition method

Publications (2)

Publication Number Publication Date
JPH09157850A JPH09157850A (en) 1997-06-17
JP2735525B2 true JP2735525B2 (en) 1998-04-02

Family

ID=18275775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33429795A Expired - Fee Related JP2735525B2 (en) 1995-11-30 1995-11-30 Chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JP2735525B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670524B2 (en) * 1998-09-11 2005-07-13 株式会社日立国際電気 Manufacturing method of semiconductor device
WO2021192500A1 (en) * 2020-03-25 2021-09-30 株式会社フジクラ Method for manufacturing optical fiber preform, and heating furnace

Also Published As

Publication number Publication date
JPH09157850A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
US5330633A (en) Process for forming metal deposited film containing aluminum as main component by use of alkyl aluminum hydride
US4557943A (en) Metal-silicide deposition using plasma-enhanced chemical vapor deposition
KR100278562B1 (en) Method for selective deposition of refractory metal and device formed thereby
JP3990792B2 (en) Use of SiH4 soak and purge in the deposition process
EP1179838A2 (en) Deposition of tungsten films from W(CO)6
US5364664A (en) Process for non-selectively forming deposition film on a non-electron-donative surface
KR100256669B1 (en) Chemical vapor deposition apparatus and method for forming copper film using the same
US5653810A (en) Apparatus for forming metal film and process for forming metal film
JP3381774B2 (en) Method of forming CVD-Ti film
JP2735525B2 (en) Chemical vapor deposition method
JP2002212725A (en) Chemical vapor deposition method of tungsten onto semiconductor substrate
JP4151308B2 (en) Gas introduction method for processing equipment
US5409540A (en) Chemical vapor phase growth method and chemical vapor phase growth apparatus
JP4338246B2 (en) Raw material for Cu-CVD process and Cu-CVD apparatus
US6103620A (en) Method for producing titanium silicide
KR101302819B1 (en) Ti-film formation method
JPH07235506A (en) Thinfilm forming method
JP2002053962A (en) Vapor phase growth method, vapor phase growth apparatus and vaporizer for vapor phase growth apparatus
JP2001326192A (en) Film-forming method and film-forming device
JP2004043928A (en) Film-forming process
JPS63250463A (en) Formation of thin metallic film
KR940010158B1 (en) Tungsten film depositing method using pecvd
JP3250543B2 (en) Method for manufacturing semiconductor device
JPH05144747A (en) Cvd apparatus and thin-film formation using the apparatus
KR0179777B1 (en) Thin film forming method by cu-chemical vapor deposition using multi-pressure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees