JP2733121B2 - Optical space connection method between mounting boards - Google Patents

Optical space connection method between mounting boards

Info

Publication number
JP2733121B2
JP2733121B2 JP6404690A JP6404690A JP2733121B2 JP 2733121 B2 JP2733121 B2 JP 2733121B2 JP 6404690 A JP6404690 A JP 6404690A JP 6404690 A JP6404690 A JP 6404690A JP 2733121 B2 JP2733121 B2 JP 2733121B2
Authority
JP
Japan
Prior art keywords
light
signal
mounting
polarization
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6404690A
Other languages
Japanese (ja)
Other versions
JPH03265823A (en
Inventor
寿和 坂野
一博 野口
隆男 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6404690A priority Critical patent/JP2733121B2/en
Publication of JPH03265823A publication Critical patent/JPH03265823A/en
Application granted granted Critical
Publication of JP2733121B2 publication Critical patent/JP2733121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,電子装置内の実装基板(配線基板)相互間
の信号の送受信を,空間を伝搬する光ビームを用いて行
う光空間結線法に係り,特に,発光素子,受光素子の個
数を減らし,小型で自由度の大きい光空間結線を実現す
ることを図った実装基板相互間光空間結線法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical space connection method for transmitting and receiving signals between mounting boards (wiring boards) in an electronic device using a light beam propagating in space. In particular, the present invention relates to an optical space connection method between mounting substrates which aims at realizing a compact and large space optical space connection by reducing the number of light emitting elements and light receiving elements.

〔従来の技術〕[Conventional technology]

電子装置内に実装された複数枚のボード(実装基板)
間で信号の授受が必要な場合,これらのボード間に信号
送受用の配設を施す必要がある。従来,このようなボー
ド間配線は電気的に行われていた。しかし,装置の大型
化に伴うボード数の増加,送受信信号の高速化が進むに
つれ,これら電気的配設で生じるインダクタンス,浮遊
容量,電磁誘導が問題となってきた。こうした電気的配
線の問題点を解決する配線法として,空間を伝搬する平
行光ビームを信号伝送媒体とする光空間結線法が提案さ
れている(野口,他,「多層光配線板」,特願昭63−20
6473号)。
Multiple boards (mounting boards) mounted in electronic devices
When signals need to be exchanged between these boards, it is necessary to provide a signal transmission / reception arrangement between these boards. Conventionally, such wiring between boards has been performed electrically. However, with an increase in the number of boards and an increase in the speed of transmission / reception signals due to an increase in the size of the device, inductance, stray capacitance, and electromagnetic induction caused by these electrical arrangements have become problems. As a wiring method to solve such problems of electrical wiring, an optical space connection method using a parallel light beam propagating in space as a signal transmission medium has been proposed (Noguchi, et al., “Multilayer Optical Wiring Board”, Japanese Patent Application 1963-20
No. 6473).

第6図は,上記提案に開示されている説明図を示し,
複数枚(図示例では5枚)のボード間の結線を光空間結
線法により実現した例である。第6図において,1は発光
素子とレンズを一体化し,各実装基板11−1〜11−5に
生じた信号を平行光ビームに変換して空間に放射する発
光素子モジュール,2は受光素子とレンズを一体化した受
光素子モジュール,3は平行光ビームを通過させるための
窓をそれぞれ表わす。すなわち,N枚(N≧2)のボード
のそれぞれの面上に(N−1)個の発光素子と(N−
1)個の受光素子を設け,任意の一つの発光素子が設け
られたボードとその光を受信する受光素子が設けられた
ボードとの間に別の第3,第4(これは1枚のときも複数
枚のときもある)のボードが存在する場合は,この第3,
第4のボードにその光を通過させる窓を設ける構成とす
ることにより,N枚のボードのうち任意の2ボード間の信
号授受を可能としたものである。
FIG. 6 shows an explanatory diagram disclosed in the above proposal,
This is an example in which connection between a plurality of (five in the illustrated example) boards is realized by an optical space connection method. In FIG. 6, reference numeral 1 denotes a light emitting element module which integrates a light emitting element and a lens, converts a signal generated on each of the mounting boards 11-1 to 11-5 into a parallel light beam, and radiates the light into space, and 2 denotes a light receiving element. The light receiving element module 3 with the integrated lens represents a window for passing a parallel light beam. That is, (N-1) light emitting elements and (N-
1) A plurality of light receiving elements are provided, and another third and fourth light emitting elements are provided between a board provided with an arbitrary light emitting element and a board provided with a light receiving element for receiving the light. And sometimes more than one board), this third,
By providing the fourth board with a window through which the light passes, signals can be exchanged between any two of the N boards.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記した提案技術による光空間結線法においては,結
線されるべきボード数と同数の発光素子モジュール,受
光素子モジュールを各ボード上に配置する必要がある。
すなわち,ボード数をNとすると,N(N−1)個の発光
素子モジュールとN(N−1)個の受光素子モジュール
とが必要になる。そのため,ボード数が増加すると,各
ボード上の発光素子モジュール,受光素子モジュール,
およびそれらのモジュールに接続される光電気変換回路
の数も増大して,光空間結線部の消費電力が増大する,
ボード面積のうち光空間結線部の占める割合が増大する
等の問題があった。
In the optical space connection method according to the above proposed technique, it is necessary to arrange the same number of light emitting element modules and light receiving element modules on each board as the number of boards to be connected.
That is, assuming that the number of boards is N, N (N-1) light emitting element modules and N (N-1) light receiving element modules are required. Therefore, as the number of boards increases, the light-emitting module, light-receiving module,
And the number of opto-electrical conversion circuits connected to those modules also increases, and the power consumption of the optical space connection increases.
There are problems such as an increase in the proportion of the optical space connection portion in the board area.

本発明の目的は,従来技術での上記した問題を解決
し,発光素子,受光素子の数を減らすことができ,結線
自由度の増大,結線部の小型化を実現することができる
実装基板間の光空間結線法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, reduce the number of light emitting elements and light receiving elements, increase the degree of freedom of connection, and reduce the size of the connection section. To provide an optical spatial connection method.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために,本発明においては,次に
述べるような光空間結線法とする。すなわち,複数N枚
(N≧2)の実装基板間の信号授受を空間を伝搬する平
行光を用いて行う光空間結線法において,各実装基板の
面上に,電気信号を直線偏光成分のみの信号光に変換し
て空間に放射する発光素子の1個と,入射される信号光
を電気信号に変換する受光素子のN−1個とをそれぞれ
設け,各発光素子からの信号光の経路上にそれぞれ,通
過する信号光の偏光面を外部からの制御により任意角度
回転させる偏光面制御素子と,入射する信号光と入射点
における反射面の法線とが作る平面に平行なP偏光成分
は透過し,垂直なS偏光成分は直角だけ進路を変えて反
射する反射面を有する光路変換素子と,光路変換素子内
を前記放射信号光と平行な方向に進んできた信号光の偏
光面を90度回転させて上記反射面に向けて逆進させる反
射素子とを設け,各光路変換素子相互間にも偏光面制御
素子をそれぞれ配置し,これらの偏光面制御素子での偏
光面回転角度を制御して,任意の実装基板の発光素子か
らの信号光を,まず自実装基板用の光路変換素子で進路
を直角だけ変えて他の実装基板用の光路変換素子に入射
させ,次いでこの入射光を取り込んだ光路変換素子にお
いて再び進路を直角だけ変えて結線しようとする実装基
板の受光素子に向けて放射させることにより,任意の実
装基板相互間を光空間結線する方法とする。
In order to achieve the above object, the present invention employs an optical space connection method as described below. That is, in the optical space connection method in which signal transmission and reception between a plurality of N (N ≧ 2) mounting boards are performed using parallel light propagating in a space, an electric signal is formed on the surface of each mounting board by only a linear polarization component. One light-emitting element that converts the signal light into space and radiates it to the space and N-1 light-receiving elements that convert the incident signal light into an electric signal are provided on the path of the signal light from each light-emitting element. The polarization plane control element that rotates the polarization plane of the passing signal light by an arbitrary angle under external control, and the P-polarization component parallel to the plane formed by the incident signal light and the normal of the reflection surface at the incident point are: An S-polarized component, which is transmitted and reflected by changing the course of the perpendicular S-polarized component at right angles, has a reflection surface, and a polarization plane of the signal light traveling in a direction parallel to the radiated signal light in the optical path conversion device is 90 °. And rotate it back toward the reflective surface And a polarization plane control element are also arranged between each optical path conversion element. By controlling the rotation angle of the polarization plane by these polarization plane control elements, the signal from the light emitting element on an arbitrary mounting board is provided. First, the light path is changed by a right angle by the optical path conversion element for the self-mounting substrate, and is incident on the optical path conversion element for the other mounting substrate. Then, the light path is changed again by the right angle in the optical path conversion element that takes in the incident light. By radiating the light toward the light-receiving element of the mounting substrate to be connected, a method of spatially connecting the arbitrary mounting substrates with each other is adopted.

〔作用〕[Action]

本発明は,偏光制御による光路変換機能を実装基板間
の結線部に適用することにより,発光素子の個数を減ら
し,小型で自由度の大きい光空間結線を実現したことを
最大の特徴としており,この点において従来技術とは明
確に異なる。
The most significant feature of the present invention is that the optical path conversion function by polarization control is applied to the connection portion between the mounting boards, thereby reducing the number of light emitting elements and realizing a compact and flexible optical space connection. In this respect, it is clearly different from the prior art.

〔実施例〕〔Example〕

以下,図面により本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施例1 第1図に本発明の第1の実施例の光経路説明図を,第
2図に立体的な斜視図を示す。なお,第1図において
は,光経路の説明を容易にするために,第2図の発光素
子,受光素子の部分を直角だけ回転させて,光路変換素
子に対向するように図示してある。本実施例は4枚の実
装基板間の任意の2基板間の結線を実現した例である。
1−1〜1−4は発光素子,レンズ,偏光子を一体化
し,単一偏光の平行光ビームを放射する発光素子モジュ
ール,2−1〜2−3,3−1〜3−3,4−1〜4−3,5−1
〜5−3は受光素子とレンズを一体化した受光素子モジ
ュール,6−1〜6−4は偏光ビームスプリッタ,7−1〜
7−4は1/4波長板,8−1〜8−4は全反射ミラーをそ
れぞれ表わしている。偏光ビームスプリッタは,反射面
の法線と入射平行光が作る平面に平行な偏光成分(P偏
光成分)は透過し,垂直な成分(S偏光成分)は入射光
と直角をなす方向に反射する素子である。9−1〜9−
4,10−1〜10−3は偏光面制御素子であり,具体的には
液晶スイッチ,強誘電体スイッチなどが挙げられる。ま
た11−1〜11−4は実装基板,12は実装基板11−2から1
1−4へ信号を伝送する場合の光路,13は実装基板11−3
から11−1へ信号を伝送する場合の光路をそれぞれ表わ
している。各実装基板上の発行素子モジュール,受光素
子モジュールは同一平面上に1次元あるいは2次元的に
配列されており,その数は全実装基板数をNとするとそ
れぞれ1個,(N−1)個である。
Embodiment 1 FIG. 1 is an explanatory view of an optical path according to a first embodiment of the present invention, and FIG. 2 is a three-dimensional perspective view. In FIG. 1, in order to facilitate the description of the optical path, the light emitting element and the light receiving element shown in FIG. 2 are rotated by a right angle so as to face the optical path conversion element. This embodiment is an example in which a connection between any two substrates between four mounting substrates is realized.
1-1 to 1-4 are light-emitting element modules that integrate a light-emitting element, a lens, and a polarizer and emit a single-polarized parallel light beam; 2-1 to 2-3, 3-1 to 3-3, 4, -1 to 4-3,5-1
5-3 is a light receiving element module integrating a light receiving element and a lens, 6-1 to 6-4 are polarization beam splitters, 7-1 to
Reference numeral 7-4 denotes a quarter-wave plate, and reference numerals 8-1 to 8-4 denote total reflection mirrors. The polarization beam splitter transmits a polarization component (P-polarization component) parallel to the plane formed by the normal to the reflection surface and the incident parallel light, and reflects a perpendicular component (S-polarization component) in a direction perpendicular to the incident light. Element. 9-1 to 9-
Reference numerals 4, 10-1 to 10-3 denote polarization plane control elements, specifically, liquid crystal switches, ferroelectric switches, and the like. 11-1 to 11-4 are mounting substrates, and 12 is mounting substrates 11-2 to 11-1.
An optical path for transmitting a signal to 1-4, 13 is a mounting board 11-3.
Respectively represent optical paths in the case of transmitting a signal from the optical path to the signal 11-1. The light emitting element modules and light receiving element modules on each mounting board are arranged one-dimensionally or two-dimensionally on the same plane, and the number thereof is one each when the total number of mounting boards is N, and (N-1). It is.

本実施例の動作を実装基板11−2から11−4へ信号を
伝送する場合,実装基板11−3から11−1へ信号を伝送
する場合を例にとって説明する。まず実装基板11−2か
ら11−4へ信号を伝送する場合について説明する。実装
基板11−2から出力された電気信号は発光素子モジュー
ル1−2によって単一偏光の平行光ビーム12に変換さ
れ,空間に放射される。平行光ビーム12は偏光面制御素
子9−2によってS偏光に変換され偏光ビームスプリッ
タ6−2に入射する。偏光ビームスプリッタ6−2に入
射した信号光12はS偏光成分のみを持つので入射光と直
角で図の下方向に光路を変換して出射され,偏光面制御
素子10−2に入射する。偏光面制御素子10−2は信号光
12の偏光を90度回転し,P偏光として出射する。P偏光に
変換された信号光12は偏光ビームスプリッタ6−3をそ
のまま通過し,偏光面制御素子10−3に入射する。偏光
面制御素子10−3は信号光の偏光を再び90度回転させ,S
偏光に変換する。そのため信号光12は偏光ビームスプリ
ッタ6−4で直角方向に反射され,1/4波長板7−4,反射
ミラー8−4,1/4波長板7−4を経て偏光が90度回転し,
P偏光に変換されて再び偏光ビームスプリッタ6−4に
入射される。信号光12はP偏光に変換されているので,
偏光ビームスプリッタ6−4をそのまま通過し,図の左
方向に出射される。出射された信号光12は受光素子モジ
ュール5−2により電気信号に変換され,実装基板11−
4へ導かれる。次に実装基板11−3から11−1へ信号を
伝送する場合について説明する。実装基板11−3から出
力された電気信号は発光素子モジュール1−3,偏光面制
御素子9−3によってP偏光の平行光ビームとして偏光
ビームスプリッタ6−3に入射される。入射した信号光
13は,偏光ビームスプリッタ6−3,1/4波長板7−3,反
射ミラー8−3,1/4波長板7−3を通過し,偏光ビーム
スプリッタ6−3で反射されて,図の上方向へ出射され
る。出射信号光13の偏光は偏光面制御素子10−2でP偏
光に,10−1でS偏光にそれぞれ変換され,結局信号光1
3は偏光ビームスプリッタ6−1で反射され受光素子モ
ジュール2−2に導かれる。受光素子モジュール2−2
は信号光を電気信号に変換し,実装基板11−1へ出力す
る。以上説明したように,発光素子モジュールから放射
された信号光は,その経路の途中で偏光面制御(P偏光
とS偏光のスイッチング)とこれらの偏光面に依存する
経路変換を行うことにより任意の実装基板上の受光素子
モジュールと結合することが可能である。従って本実施
例によれば発光素子モジュールおよび発光素子駆動用電
子回路の数を,それぞれ従来の1/(N−1)個に減らす
ことが可能となり,実装基板における光空間結線に関わ
る電子回路,光学系が小型化されることになる。
The operation of this embodiment will be described by taking as an example a case where a signal is transmitted from the mounting boards 11-2 to 11-4 and a case where a signal is transmitted from the mounting boards 11-3 to 11-1. First, a case where a signal is transmitted from the mounting boards 11-2 to 11-4 will be described. The electric signal output from the mounting board 11-2 is converted into a single-polarized parallel light beam 12 by the light emitting element module 1-2 and emitted to space. The parallel light beam 12 is converted into S-polarized light by the polarization plane control element 9-2 and enters the polarization beam splitter 6-2. Since the signal light 12 incident on the polarization beam splitter 6-2 has only the S-polarized light component, the signal light is converted at a right angle to the incident light, the light path is changed in the downward direction in the drawing, and is emitted, and is incident on the polarization plane control element 10-2. The polarization plane control element 10-2 is a signal light.
The 12 polarized lights are rotated by 90 degrees and emitted as P-polarized light. The signal light 12 converted to P-polarized light passes through the polarization beam splitter 6-3 as it is and enters the polarization plane control element 10-3. The polarization plane control element 10-3 rotates the polarization of the signal light again by 90 degrees,
Convert to polarized light. Therefore, the signal light 12 is reflected at right angles by the polarization beam splitter 6-4, and the polarization is rotated by 90 degrees through the quarter-wave plate 7-4, the reflection mirror 8-4, and the quarter-wave plate 7-4.
The light is converted into P-polarized light and is again incident on the polarization beam splitter 6-4. Since the signal light 12 has been converted to P-polarized light,
The light passes through the polarizing beam splitter 6-4 as it is and is emitted to the left in the drawing. The emitted signal light 12 is converted into an electric signal by the light receiving element module 5-2, and is mounted on the mounting substrate 11-.
It is led to 4. Next, a case where a signal is transmitted from the mounting boards 11-3 to 11-1 will be described. The electric signal output from the mounting board 11-3 is incident on the polarization beam splitter 6-3 as a P-polarized parallel light beam by the light emitting element module 1-3 and the polarization plane control element 9-3. Incident signal light
13 passes through the polarizing beam splitter 6-3, the quarter-wave plate 7-3, the reflecting mirror 8-3, and the quarter-wave plate 7-3, and is reflected by the polarizing beam splitter 6-3. The light is emitted upward. The polarization of the output signal light 13 is converted into P-polarized light by the polarization plane control element 10-2 and converted into S-polarized light by 10-1.
3 is reflected by the polarization beam splitter 6-1 and guided to the light receiving element module 2-2. Light receiving element module 2-2
Converts the signal light into an electric signal and outputs it to the mounting board 11-1. As described above, the signal light radiated from the light emitting element module can be arbitrarily processed by performing polarization plane control (switching between P-polarized light and S-polarized light) and path conversion depending on these polarization planes in the course of the path. It is possible to couple with the light receiving element module on the mounting board. Therefore, according to the present embodiment, it is possible to reduce the number of light emitting element modules and light emitting element driving electronic circuits to 1 / (N-1), respectively. The optical system will be downsized.

実施例2 本発明の第2の実施例の光経路説明図を第3図に示
す。本発明の第1の実施例では,偏光面制御素子がS偏
光,P偏光のスイッチとして用いられ,任意実装基板間の
1対1結線を実現している。本発明の第1の実施例の構
成において偏光面制御素子が入射光の偏光面を任意角度
回転させる機能を有する場合,第1図と同じ構成で放送
型の結線が可能となる。偏光面の任意角度回転は,例え
ば強誘導体スイッチの印加電圧を調整することにより実
現できる。第3図には,放送型結線が可能な本発明の第
2の実施例を示す。構成は第1図と同じであるが,入射
光の偏光面を任意角度回転させる機能を有する偏光面制
御素子(22−1〜22−4,23−1〜23−3)を用いている
ところが第1図と異なる。24は実装基板11−2から他の
全実装基板へ放送型結線した場合の光路を示している。
実装基板11−2から出力された電気信号は発光素子モジ
ュール1−2によって単一偏光の平行光ビーム24に変換
され,空間に放射される。平行光ビーム24は偏光面制御
素子22−2によってS偏光面と30度の角度を持つ偏光面
に変換され偏光ビームスプリッタ6−2に入射する。偏
光ビームスプリッタ6−2に入射した信号光24はS偏光
成分とP偏光成分が2:1の比率で含まれており,S偏光成
分は図の下方向に,P偏光成分は図の上方向に出射され
る。上方向に出射された信号光は偏光面制御素子23−1
によってS偏光となるようにその偏光面が回転され,偏
光ビームスプリッタ6−1で反射されて受光素子モジュ
ール2−1に導かれる。図の下方向に出射された光は偏
光面制御素子23−2によって,S偏光と45度の角度をなす
ようにその偏光面が変換される。変換された信号光はP
偏光成分とS偏光成分を1:1の比率で持っている。従っ
て偏光ビームスプリッタ6−3は入射光のうちP偏光成
分をそのまま図の下方向へ出射し,S偏光成分を受光素子
4−2に導く。P偏光成分のみを持つ偏光ビームスプリ
ッタ6−3からの出射光は偏光面制御素子23−3によっ
てS偏光に変換され,受光素子モジュール5−2に導か
れるる。以上から,発光素子モジュール1−2から放射
された信号光は他の全ての受光素子モジュールに結合さ
れたことになる。このように,第3図の構成を用いれば
任意実装基板の出力信号光を他の全ての実装基板上の受
光素子へ結合する放送型の結線が実現できる。もちろん
本実施例の構成を用いて任意実装基板間の1対1結線も
可能である。従って本実施例によれば,結線形態(1対
1結線,放送型結線)の切り替え,結線端子の切り替え
を外部からの制御により容易に実現することができ,従
来の実装基板間の光空間結線に比べて結線の自由度が大
幅に向上している。
Embodiment 2 FIG. 3 is an explanatory view of an optical path according to a second embodiment of the present invention. In the first embodiment of the present invention, the polarization plane control element is used as an S-polarized light switch and a P-polarized light switch to realize one-to-one connection between arbitrary mounting substrates. In the configuration of the first embodiment of the present invention, when the polarization plane control element has a function of rotating the polarization plane of the incident light by an arbitrary angle, a broadcast-type connection can be made with the same configuration as that of FIG. Arbitrary angle rotation of the polarization plane can be realized, for example, by adjusting the voltage applied to the strong dielectric switch. FIG. 3 shows a second embodiment of the present invention capable of broadcasting connection. The configuration is the same as that of FIG. 1, except that polarization plane control elements (22-1 to 22-4, 23-1 to 23-3) having a function of rotating the polarization plane of the incident light by an arbitrary angle are used. It is different from FIG. Numeral 24 indicates an optical path when a broadcast connection is made from the mounting board 11-2 to all other mounting boards.
The electric signal output from the mounting board 11-2 is converted into a single-polarized parallel light beam 24 by the light emitting element module 1-2 and emitted to space. The parallel light beam 24 is converted by the polarization plane control element 22-2 into a polarization plane having an angle of 30 degrees with the S polarization plane, and is incident on the polarization beam splitter 6-2. The signal light 24 incident on the polarization beam splitter 6-2 contains an S-polarized component and a P-polarized component in a ratio of 2: 1. The S-polarized component is in the downward direction in the figure, and the P-polarized component is in the upward direction in the figure. Is emitted. The signal light emitted upward is polarized light control element 23-1.
As a result, the plane of polarization is rotated so as to become S-polarized light, reflected by the polarizing beam splitter 6-1 and guided to the light receiving element module 2-1. The light emitted in the downward direction in the figure is converted by the polarization plane control element 23-2 so that its polarization plane is converted to an angle of 45 degrees with the S-polarized light. The converted signal light is P
It has a polarization component and an S-polarization component at a ratio of 1: 1. Accordingly, the polarization beam splitter 6-3 emits the P-polarized component of the incident light as it is in the downward direction in the figure, and guides the S-polarized component to the light receiving element 4-2. The light emitted from the polarization beam splitter 6-3 having only the P-polarized component is converted into S-polarized light by the polarization plane control element 23-3, and guided to the light-receiving element module 5-2. From the above, the signal light emitted from the light emitting element module 1-2 is coupled to all other light receiving element modules. In this way, using the configuration shown in FIG. 3, it is possible to realize a broadcast-type connection in which the output signal light from an arbitrary mounting substrate is coupled to the light receiving elements on all other mounting substrates. Of course, one-to-one connection between arbitrary mounting substrates is also possible using the configuration of this embodiment. Therefore, according to the present embodiment, the switching of the connection mode (one-to-one connection, broadcast type connection) and the switching of the connection terminals can be easily realized by external control, and the conventional optical space connection between the mounting boards can be realized. The degree of freedom in connection is greatly improved as compared with.

実施例3 本発明の第3の実施例の光経路説明図を第4図に,立
体的な斜視図を第5図に示す。14−1〜14−4は受光用
1/4波長板,15−1〜15−4は受光用全反射ミラー,16−
1〜16−4は発光用1/4波長板,17−1〜17−4は発光用
全反射ミラー,18−1〜18−4は集光レンズ,19−1〜19
−4は受光素子をそれぞれ表わしている。これらの集光
レンズと受光素子との位置関係は,各集光レンズの光軸
上のレンズ焦点位置に各受光素子が配置されるようにす
る。また20は発光素子1−2から受光素子19−4へ信号
を伝送する場合の光路,21は発光素子1−3から受光素
子19−1へ信号を伝送する場合の光路をそれぞれ表わし
ている。本実施例は,1/4波長板と全反射ミラーから構成
される反射素子を発光素子モジュールからの出射光用と
受光素子への入射光用に分割して配置し,かつ受光素子
への入射光は集光レンズを介して一つの受光素子に結合
されるところが第1の実施例と異なる。本実施例におい
ても本発明の第1,第2の実施例と同様の機能を実現する
ことが可能であり,しかも全実装基板数Nに対し,発光
素子数,受光素子数ともにN個とすることができる。従
って本実施例の光空間結線は,実装基板面積の光空間結
線部が占める割合を大幅に小さくすることができる。
Embodiment 3 FIG. 4 is an explanatory view of an optical path according to a third embodiment of the present invention, and FIG. 5 is a three-dimensional perspective view. 14-1 to 14-4 are for light reception
1/4 wavelength plate, 15-1 to 15-4 are total reflection mirrors for light reception, 16-
1 to 16-4 are 1 wavelength plates for light emission, 17-1 to 17-4 are total reflection mirrors for light emission, 18-1 to 18-4 are condensing lenses, 19-1 to 19
-4 indicates a light receiving element. The positional relationship between these condenser lenses and light receiving elements is such that each light receiving element is arranged at a lens focal position on the optical axis of each condenser lens. Reference numeral 20 denotes an optical path for transmitting a signal from the light emitting element 1-2 to the light receiving element 19-4, and reference numeral 21 denotes an optical path for transmitting a signal from the light emitting element 1-3 to the light receiving element 19-1. In this embodiment, a reflection element composed of a quarter-wave plate and a total reflection mirror is separately arranged for light emitted from the light emitting element module and light incident on the light receiving element, and the light incident on the light receiving element is divided. The difference from the first embodiment is that light is coupled to one light receiving element via a condenser lens. In this embodiment, the same functions as those of the first and second embodiments of the present invention can be realized. In addition, the number of light emitting elements and the number of light receiving elements are set to N for the total number of mounting boards N. be able to. Therefore, in the optical space connection of this embodiment, the ratio of the optical space connection portion to the mounting substrate area can be significantly reduced.

なお,上記第3の実施例の方法においては,発光素子
は各実装基板に1個であるが,その一次元方向での配置
位置は,図示のようい,各基板ごとに順次ずらして設け
る必要があり,この点で,相互結線できる実装基板の枚
数が制限を受けることになる。これに対して,発光素子
が配置され得る位置をm×n個(m,nがそれぞれ1以上
でm+nが3以上)の二次元のマトリクス状とし,発光
素子からの放射信号線が各実装基板間で重ならないよう
にし,これに応じた反射素子の分割方式とすることによ
り,受光素子側は集光レンズを介して1個の受光素子に
信号光を受ける構成のままとして,全部でm×n枚の実
装基板の相互間結線が可能となり,結線の自由度が大幅
に向上することになる。
In the method of the third embodiment, one light emitting element is provided for each mounting substrate, but the arrangement position in the one-dimensional direction needs to be sequentially shifted for each substrate as shown in the figure. In this regard, the number of mounting boards that can be interconnected is limited. On the other hand, the positions where the light emitting elements can be arranged are m × n two-dimensional matrices (m and n are each 1 or more and m + n is 3 or more). The light receiving element side is configured to receive the signal light to one light receiving element via the condenser lens, so that the total number of the light receiving elements is mx. Wiring between the n mounting boards becomes possible, and the degree of freedom of the wiring is greatly improved.

また,上記した二次元配置方式は,本発明の前述した
第1及び第2の実施例にも適用可能であり,実装基板の
枚数が多数のときの相互結線に適用して大きな効果を発
揮させることができる。
The two-dimensional arrangement described above is also applicable to the above-described first and second embodiments of the present invention. The two-dimensional arrangement can be applied to the mutual connection when the number of mounting boards is large, so that a great effect is exhibited. be able to.

以上に挙げた実施例は,実装基板間結線への適用の他
に,光の面入出力素子(面発光レーザ,アレイ受光素
子,光双安定素子など)間の結線にも適用可能である。
The embodiments described above can be applied not only to the connection between mounting substrates but also to the connection between light surface input / output elements (surface emitting lasers, array light receiving elements, optical bistable elements, etc.).

〔発明の効果〕〔The invention's effect〕

以上説明したように,本発明によれば,偏光面回転角
度制御による光路変換機能を実装基板間の結線部に適用
したことにより,従来技術ではN枚の実装基板相互間を
結線するのにN−1個の発光素子とN−1個の受光素子
とをそれぞれ各実装基板に設ける必要があったのに対
し,本発明の請求項1の方法によれば,発光素子の個数
を各実装基板に1個とすることができ,また請求項2の
方法によれば,受光素子の個数をも各実装基板に1個と
することでき,これにより,光空間結線部の小型化,結
線の自由度の増大を可能とする効果がある。
As described above, according to the present invention, the optical path conversion function based on the polarization plane rotation angle control is applied to the connection portion between the mounting substrates. According to the method of the first aspect of the present invention, it is necessary to provide -1 light emitting elements and N-1 light receiving elements on each mounting board, respectively. According to the second aspect of the present invention, the number of light receiving elements can be reduced to one for each mounting board, thereby reducing the size of the optical space connection portion and free connection. This has the effect of increasing the degree.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例の光経路説明図,第2図
は第1の実施例に対する立体的な斜視図,第3図は本発
明の第2の実施例の光経路説明図,第4図は本発明の第
3の実施例の光経路説明図,第5図は第3の実施例に対
する立体的な斜視図,第6図は従来技術を示す斜視図で
ある。 <符号の説明> 6……偏光ビームスプリッタ 7……1/4波長板、8……全反射ミラー 9,10……偏光面制御素子 11……実装基板 14……受光用1/4波長板 15……受光用全反射ミラー 16……発光用1/4波長板 17……発光用全反射ミラー 18……集光レンズ ○印……発光素子モジュール
FIG. 1 is an explanatory view of an optical path of the first embodiment of the present invention, FIG. 2 is a three-dimensional perspective view of the first embodiment, and FIG. 3 is an explanatory view of an optical path of the second embodiment of the present invention. FIGS. 4 and 5 are explanatory views of the optical path of the third embodiment of the present invention, FIG. 5 is a three-dimensional perspective view of the third embodiment, and FIG. 6 is a perspective view showing the prior art. <Description of Signs> 6 ... polarizing beam splitter 7 ... 1/4 wavelength plate, 8 ... total reflection mirror 9,10 ... polarization plane control element 11 ... mounting substrate 14 ... 1/4 wavelength plate for light reception 15: Total reflection mirror for light reception 16: Quarter-wave plate for light emission 17: Total reflection mirror for light emission 18: Condensing lens ○ mark: Light emitting element module

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数N(N≧2)枚の実装基板間の信号授
受を空間を伝搬する平行光を用いて行う光空間結線法に
おいて,各実装基板の面上に,電気信号を直線偏光成分
のみの信号光に変換して空間に放射する発光素子の1個
と,入射された信号光を電気信号に変換する受光素子の
N−1個とをそれぞれ設け,各発光素子からの放射信号
光の経路上にそれぞれ,通過する信号光の偏光面を外部
からの制御により任意角度回転させる偏光面制御素子
と,入射する信号光と入射点における反射面の法線とが
作る平面に平行な偏光成分は透過し,垂直な偏光成分は
直角だけ進路を変えて反射する反射面を有する光路変換
素子と,この光路変換素子内を前記放射信号光と平行な
方向に進んできた信号光の偏光面を90度回転させて上記
反射面に向けて逆進させる反射素子とを設け,上記各光
路変換素子相互間にも偏光面制御素子をそれぞれ設け,
これらの偏光面制御素子での偏光面回転角度を外部より
制御して,任意の発光素子からの信号光を,まず自実装
基板用の光路変換素子で進路を直角だけ変えて他の実装
基板用の光路変換素子に入射させ,次いでこの入射光を
取り込んだ光路変換素子において再び進路を直角だけ変
えて結線しようとする実装基板上の受光素子に向けて放
射させることにより,任意の実装基板相互間を光空間結
線することを特徴とする実装基板相互間の光空間結線
法。
In an optical space connection method in which signal transmission and reception between a plurality of N (N ≧ 2) mounting boards are performed using parallel light propagating in space, an electric signal is linearly polarized on a surface of each mounting board. One light emitting element that converts the signal light into only the component light and radiates it to the space, and N-1 light receiving elements that convert the incident signal light into the electric signal are provided, and the emission signal from each light emitting element is provided. A polarization control element that rotates the polarization plane of the passing signal light by an arbitrary angle under external control on the light path, and a plane parallel to the plane formed by the incident signal light and the normal of the reflection surface at the point of incidence. An optical path conversion element having a reflecting surface that transmits a polarized light component and reflects a vertical polarized light component while changing its course by a right angle, and a polarization of the signal light that has traveled in the optical path conversion element in a direction parallel to the radiation signal light. Rotate the surface 90 degrees and move backward toward the reflective surface Causing a reflection element is provided, respectively the plane of polarized light control element in between each of the optical path conversion elements each other,
The polarization plane rotation angle of these polarization plane control elements is controlled from the outside, and the signal light from any light emitting element is first changed by a right angle by the optical path conversion element for the self-mounting board, and the path is changed for other mounting boards. And then irradiates the incident light onto the light receiving element on the mounting board to be connected by changing the course again at a right angle in the optical path changing element. An optical space connection method between mounting boards, wherein the optical space connection is performed.
【請求項2】請求項1記載における前記実装基板上に設
ける受光素子の個数を各実装基板ごとに1個とし,前記
反射素子を発光素子からの信号光を受ける部分と受光素
子への入射光を反射する部分とに分割して配置し,前記
光路変換素子と上記受光素子との間に集光レンズを,各
集光レンズの光軸上の焦点位置に各受光素子がそれぞれ
配置されるように,設けたことを特徴とする実装基板相
互間の光空間結線法。
2. The light receiving element provided on the mounting substrate according to claim 1, wherein the number of light receiving elements is one for each mounting substrate, and the reflecting element receives signal light from a light emitting element and light incident on the light receiving element. And a light-reflecting portion, and a condenser lens is provided between the optical path conversion element and the light-receiving element, and each light-receiving element is disposed at a focal position on the optical axis of each condenser lens. The optical space connection method between mounting boards, which is provided.
JP6404690A 1990-03-16 1990-03-16 Optical space connection method between mounting boards Expired - Lifetime JP2733121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6404690A JP2733121B2 (en) 1990-03-16 1990-03-16 Optical space connection method between mounting boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6404690A JP2733121B2 (en) 1990-03-16 1990-03-16 Optical space connection method between mounting boards

Publications (2)

Publication Number Publication Date
JPH03265823A JPH03265823A (en) 1991-11-26
JP2733121B2 true JP2733121B2 (en) 1998-03-30

Family

ID=13246770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6404690A Expired - Lifetime JP2733121B2 (en) 1990-03-16 1990-03-16 Optical space connection method between mounting boards

Country Status (1)

Country Link
JP (1) JP2733121B2 (en)

Also Published As

Publication number Publication date
JPH03265823A (en) 1991-11-26

Similar Documents

Publication Publication Date Title
EP0477036B1 (en) Optical information transmitting device
EP1915643B1 (en) Polarization conversion element, polarization conversion optical system and image projecting apparatus
US8042955B2 (en) Laser module, illumination device, and projection display device
WO2019144495A1 (en) Laser combining apparatus and display device
TW573148B (en) All-optical interconnect utilizing polarization gates
JP2733121B2 (en) Optical space connection method between mounting boards
EP1288704A1 (en) Optical crossbar switch based on switchable diffraction gratings
CN1438518A (en) Method and apparatus for optical swhich-over
JPS6076707A (en) Semiconductor laser duplex module
US6778218B1 (en) Electronic image pickup apparatus
JP2825037B2 (en) Optical connection device and optical system for optical connection device
JP2001066124A (en) Three-dimensional surface shape measuring device
US20050248845A1 (en) Polarization conversion system
JPH05145493A (en) Optical interconnection device
JP3111541B2 (en) Optical connection device
JPH09138712A (en) Mutually connected network
JP3033659B2 (en) Optical connection device for planar optical function element
JP3197611B2 (en) Multi-terminal optical switch
JP2845028B2 (en) Optical connection device
JP3640360B2 (en) Polarization direction alignment element
JP3163590B2 (en) Light switch
JP3350636B2 (en) Single polarization conversion element and projection display device using the same
JP3681231B2 (en) Optical transceiver
JP3378629B2 (en) Optical switch for parallel transmission
JPS6016762A (en) Picture information reader

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071226

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20091226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20101226

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101226

Year of fee payment: 13