JP2732809B2 - Superconducting material composition - Google Patents

Superconducting material composition

Info

Publication number
JP2732809B2
JP2732809B2 JP6300439A JP30043994A JP2732809B2 JP 2732809 B2 JP2732809 B2 JP 2732809B2 JP 6300439 A JP6300439 A JP 6300439A JP 30043994 A JP30043994 A JP 30043994A JP 2732809 B2 JP2732809 B2 JP 2732809B2
Authority
JP
Japan
Prior art keywords
temperature
superconducting
sample
firing
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6300439A
Other languages
Japanese (ja)
Other versions
JPH0840767A (en
Inventor
文夫 水野
泉 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU SENTAA
Nippon Tokushu Togyo KK
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU SENTAA
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU SENTAA, Nippon Tokushu Togyo KK filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU SENTAA
Priority to JP6300439A priority Critical patent/JP2732809B2/en
Publication of JPH0840767A publication Critical patent/JPH0840767A/en
Application granted granted Critical
Publication of JP2732809B2 publication Critical patent/JP2732809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明はセラミック超電導材料
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic superconducting material.

【0002】[0002]

【従来の技術】超電導転移温度の高い磁器組成物とし
て、YBa2 Cu37-d が知られている。この超電導
体を構成するY23 は鉱物資源に乏しく、高価であ
る。Yを含むランタナイド・バリウム銅酸化物LnBa
2 Cu37-d 系超電導体では、LuからNdまでLn
のイオン半径が大きくなるにつれて、超電導転移温度T
C が高くなることが知られている。Laはこの系列の中
で最も大きなイオン半径を有しており、イオン半径と超
電導転移温度の関係からTc95K以上が予想される。
しかも、YをLaに置き換えたLaBa2 Cu37-d
超電導体はLa23がY23 より低価格なので、実
用化できれば工業的価値が大きい。
2. Description of the Related Art As a porcelain composition having a high superconducting transition temperature, YBa 2 Cu 3 O 7-d is known. Y 2 O 3 constituting this superconductor is scarce in mineral resources and expensive. Lanthanide barium cuprate LnBa containing Y
In the case of 2Cu 3 O 7-d- based superconductor, Ln from Lu to Nd
Of the superconducting transition temperature T as the ionic radius of
C is known to be high. La has the largest ionic radius in this series, and Tc of 95 K or more is expected from the relationship between the ionic radius and the superconducting transition temperature.
Moreover, LaBa 2 Cu 3 O 7-d in which Y is replaced by La
Since La 2 O 3 is less expensive than Y 2 O 3, superconductors have great industrial value if they can be put to practical use.

【0003】しかし最近発表された超電導転移温度92
KのLaBa2 Cu37-d 超電導体(Applied Physics
Letters, 52(23), P.1989, 1988) は、900℃および
950℃の2回の仮焼を必要とし、さらに980℃×4
0時間の焼結および超電導相生成のための300℃×4
0時間のアニールという長時間の熱処理を必要としてい
る。そのために生産性が低く、またエネルギー的にも効
率が悪いという問題があった。
However, the recently announced superconducting transition temperature of 92
K LaBa 2 Cu 3 O 7-d superconductor (Applied Physics
Letters, 52 ( 23), P. 1989, 1988) requires two calcinations at 900 ° C. and 950 ° C. and a further 980 ° C. × 4.
300 ° C x 4 for 0 hour sintering and superconducting phase formation
This requires a long-time heat treatment of 0 hour annealing. Therefore, there is a problem that productivity is low and energy efficiency is low.

【0004】さらにLaBa2 Cu37-d 超電導酸化
物の臨界電流密度はこれまで報告されておらず、また最
適の焼成条件も明らかにされておらず、この材料の実用
化のためには、解明されなければならない問題が残され
ている。
[0004] Furthermore, the critical current density of LaBa 2 Cu 3 O 7-d superconducting oxide has not been reported so far, nor has the optimum firing condition been clarified. There remains a problem that needs to be solved.

【0005】[0005]

【発明が解決しようとする課題】本発明は超電導材料組
成物の特性を改善するためになされたものである。本発
明はLaBa2 Cu37-d を主成分とし、短かい焼成
時間で高い超電導転移温度および大きな臨界電流密度が
実現できる超電導材料組成物を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to improve the properties of a superconducting material composition. An object of the present invention is to provide a superconducting material composition containing LaBa 2 Cu 3 O 7-d as a main component and capable of realizing a high superconducting transition temperature and a large critical current density in a short baking time.

【0006】[0006]

【課題を解決するための手段】本発明は、LaBa2Cu3O7-d
1モルに対して Ag2O が0.1 重量%から70 重量%まで
の割合で添加され、Agの過半数は金属銀として析出物
で形態の存在することを特徴とする。
According to the present invention, there is provided LaBa 2 Cu 3 O 7-d
Ag 2 O is added in a proportion of from 0.1% by weight to 70% by weight with respect to 1 mole, and the majority of Ag is characterized in that it is present in the form of precipitate as metallic silver.

【0007】[0007]

【作用】本発明によれば超電導材料LaBa2 Cu3
7-d にAg2 Oを添加しているので、短い焼成時間にも
かかわらず、臨界電流密度を改善することができる。
According to the present invention, the superconducting material LaBa 2 Cu 3 O is used.
Since Ag 2 O is added to 7-d , the critical current density can be improved despite the short baking time.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0009】La23 ,Ba(OH)2 ・8H2 Oお
よびCuOを、La:Ba:Cuの比が1:2:3とな
るようにそれぞれ秤量し、乾式で混合し、粉砕した。混
合粉末を800〜900℃で10時間熱処理した。熱処
理雰囲気は空気中,酸素中および窒素中のいずれでもよ
い。熱処理された後再粉砕し、30μm のふるいを通し
てLaBa2 Cu37-d の粉末を得た。
La 2 O 3 , Ba (OH) 2 .8H 2 O and CuO were weighed so that the ratio of La: Ba: Cu was 1: 2: 3, mixed in a dry system, and pulverized. The mixed powder was heat-treated at 800 to 900 ° C. for 10 hours. The heat treatment atmosphere may be any of air, oxygen and nitrogen. After the heat treatment, the powder was re-ground and passed through a 30 μm sieve to obtain LaBa 2 Cu 3 O 7-d powder.

【0010】Ba原料としては通常BaCO3 が使用さ
れている。しかしBaCO3 を出発原料とすると、90
0〜950℃で熱処理しても炭酸痕が残るため、組成の
ずれが生じる。本発明においては、反応性が高く、かつ
炭酸痕を有しないBa(OH)2 ・8H2 OをBa原料
として用いた。なお、比較のため、BaCO3 を出発材
料とした試料を一部作製した。
[0010] BaCO 3 is usually used as a Ba raw material. However, if BaCO 3 is used as a starting material, 90
Even if the heat treatment is performed at 0 to 950 ° C., a trace of carbonic acid remains, resulting in a composition shift. In the present invention, highly reactive, and having no Ba (OH) 2 · 8H 2 O carbonate mark was used as a Ba feed. For comparison, some samples using BaCO 3 as a starting material were prepared.

【0011】この粉末1モルに対し、0〜70wt%の
範囲にわたり、所定量のAg2 O粉末(純度99.99
%)を添加し、1〜2ton/cm2 の圧力を加えて、
直径15mm, 厚さ1.5mmのペレットを作成した。
このペレットをるつぼ内に収め、温度および加熱雰囲気
すなわち全圧および酸素分圧を制御しながら焼成した。
A predetermined amount of Ag 2 O powder (purity: 99.99) is added to 1 mol of the powder in a range of 0 to 70 wt%.
%) And a pressure of 1-2 ton / cm 2 ,
A pellet having a diameter of 15 mm and a thickness of 1.5 mm was prepared.
The pellets were placed in a crucible and fired while controlling the temperature and the heating atmosphere, that is, the total pressure and the oxygen partial pressure.

【0012】図1に焼成時の時間−温度曲線の例を示
す。図示するように、焼成工程は焼結温度までの昇温過
程,一定温度での焼結過程,アニール温度までの降温過
程,および一定温度でのアニールによる超電導相生成過
程の4過程を含んでいる。
FIG. 1 shows an example of a time-temperature curve during firing. As shown in the figure, the sintering process includes four steps: a heating step to a sintering temperature, a sintering step at a constant temperature, a cooling step to an annealing temperature, and a superconducting phase generation step by annealing at a constant temperature. .

【0013】以下の実施例では昇温および降温速度はそ
れぞれ200℃/hrおよび60℃/hrと一定にした。
焼結温度は900℃〜980℃の範囲で適宜選定し、焼
結時間は5時間一定とした。アニール温度は300℃と
一定とし、保持時間は5時間または10時間とした。
In the following examples, the temperature raising and cooling rates were kept constant at 200 ° C./hr and 60 ° C./hr, respectively.
The sintering temperature was appropriately selected in the range of 900 ° C. to 980 ° C., and the sintering time was fixed at 5 hours. The annealing temperature was fixed at 300 ° C., and the holding time was 5 hours or 10 hours.

【0014】さらに図1に示したように、焼成過程を
a,b,cおよびdの4つのセグメントにわけて焼成中
の雰囲気を制御した。セグメントaは700℃までの昇
温過程,セグメントbは焼結過程を中心とし、700℃
以上の昇温過程および900℃までの降温過程を含む。
セグメントcは900℃以下の降温過程,セグメントd
はアニールすなわち超電導相生成過程に相当する。焼成
に際して、炉内の全圧を制御すると同時に、被焼成物近
傍の酸素分圧を検出し、各セグメント単位に酸素分圧を
制御しながら、Ag2 O添加量の異なる各試料の焼成を
行った。
Further, as shown in FIG. 1, the baking process was divided into four segments a, b, c and d to control the atmosphere during the baking. Segment a focuses on the temperature rise process up to 700 ° C, segment b focuses on the sintering process, 700 ° C
It includes the above-mentioned temperature raising process and the temperature lowering process up to 900 ° C.
Segment c is a cooling process under 900 ° C, segment d
Corresponds to annealing, that is, a superconducting phase generation process. At the time of firing, simultaneously controlling the total pressure in the furnace, detecting the oxygen partial pressure in the vicinity of the object to be fired, and firing each sample having a different amount of Ag 2 O added while controlling the oxygen partial pressure in each segment unit. Was.

【0015】図2に上述した焼成を行うための装置を模
式的に示す。まず焼成炉1内を、ロータリポンプ2A,
真空電磁弁2B, 排気フィルター2C, リーク弁2Dお
よび真空計2Eを具えた排気系2によって、所定の真空
度まで排気する。次に酸素と窒素(またはアルゴン)の
混合ガスを焼成炉1に供給する。酸素はボンベ3Aから
ストップバルブ3B, ニードル弁3C, マスフローコン
トローラ3D, チャッキバルブ3Eおよび制御弁3Fを
経由し、窒素(またはアルゴン)は同様にボンベ4Aか
らストップバルブ4B, ニードル弁4C, マスフローコ
ントローラ4D, チャッキバルブ4Eおよび制御弁4F
を経由してそれぞれガスミキサー5に入り、混合され
る。混合ガス(または単独のガス)はガス導入弁6を通
って焼成炉1に導かれる。3Gおよび4Gはそれぞれ一
次圧力計である。焼成炉1内の被焼成物の近傍には酸素
センサ7が置かれ、被焼成物近傍の酸素量を検知する。
この検知信号は酸素濃度計8に入力され、濃度計8から
酸素濃度信号が酸素分圧コントローラ9に入力される。
一方、焼成炉1の温度を制御する温度調節計10には、
先に説明した各セグメント毎に定められた酸素分圧が記
憶されており、この所定の酸素分圧と、酸素濃度計8か
らの酸素濃度信号が酸素分圧コントローラ9によって比
較され、酸素分圧コントローラは、被焼成物近傍の酸素
分圧が所定の値になるように制御弁3Fおよび4Fの開
閉を制御する。
FIG. 2 schematically shows an apparatus for performing the above-described firing. First, the inside of the firing furnace 1 is rotated by a rotary pump 2A,
Evacuation is performed to a predetermined degree of vacuum by an exhaust system 2 including a vacuum solenoid valve 2B, an exhaust filter 2C, a leak valve 2D, and a vacuum gauge 2E. Next, a mixed gas of oxygen and nitrogen (or argon) is supplied to the firing furnace 1. Oxygen passes from cylinder 3A through stop valve 3B, needle valve 3C, mass flow controller 3D, check valve 3E, and control valve 3F, and nitrogen (or argon) similarly travels from cylinder 4A to stop valve 4B, needle valve 4C, mass flow controller 4D. , Check valve 4E and control valve 4F
, And enter the gas mixer 5 to be mixed. The mixed gas (or a single gas) is led to the firing furnace 1 through the gas introduction valve 6. 3G and 4G are primary pressure gauges, respectively. An oxygen sensor 7 is placed near the object to be fired in the firing furnace 1 and detects the amount of oxygen near the object to be fired.
This detection signal is input to the oximeter 8, and an oxygen concentration signal is input from the oximeter 8 to the oxygen partial pressure controller 9.
On the other hand, the temperature controller 10 for controlling the temperature of the firing furnace 1 includes:
The oxygen partial pressure determined for each segment described above is stored, and the predetermined oxygen partial pressure is compared with the oxygen concentration signal from the oximeter 8 by the oxygen partial pressure controller 9, and the oxygen partial pressure is determined. The controller controls the opening and closing of the control valves 3F and 4F so that the oxygen partial pressure near the object to be fired becomes a predetermined value.

【0016】一方、焼成炉1に導入されるガスの圧力信
号は連成計11に入力される。連成計11は炉内の圧力
が所定の値に保たれるよう、排気弁12を動作させる。
13は安全弁である。焼成炉1の炉体は水冷可能であ
り、耐圧は1.5kg/cm2のものを用いた。
On the other hand, the pressure signal of the gas introduced into the firing furnace 1 is input to the compound meter 11. The compound meter 11 operates the exhaust valve 12 so that the pressure in the furnace is maintained at a predetermined value.
13 is a safety valve. The furnace body of the firing furnace 1 is water-coolable and has a pressure resistance of 1.5 kg / cm 2 .

【0017】図2に示した装置を用いて作製した各種試
料について、超電導転移温度および臨界電流密度を測定
し、さらにX線回折による結晶構造解析を行った。超電
導転移温度は4端子法によって直流抵抗を測定して電気
抵抗が0となるTcendを測定し、さらにハーツホーンブ
リッジを用いて交流磁化率の温度変化から超電導転移温
度TCIを測定した。臨界電流密度JC は、液体窒素下で
試料に大電流パルスを流し、超電導状態が保たれる最大
の電流値を求めてとした。
The superconducting transition temperature and the critical current density of each of the samples prepared using the apparatus shown in FIG. 2 were measured, and the crystal structure was analyzed by X-ray diffraction. As for the superconducting transition temperature, DC resistance was measured by a four-terminal method to measure Tcend at which the electric resistance became 0, and further, using a Hertz-horn bridge, the superconducting transition temperature TCI was measured from the temperature change of the AC susceptibility. The critical current density J C was determined by applying a large current pulse to the sample under liquid nitrogen and obtaining the maximum current value at which the superconducting state was maintained.

【0018】Ag2 O濃度および焼成条件を変えて作製
した各試料の超電導転移温度TcendおよびTCIと臨界電
流密度JC を表1〜表5に示す。表中*を付した試料は
BaCO3 を出発原料とした試料である。
Tables 1 to 5 show the superconducting transition temperatures T cend and T CI and the critical current density J C of each sample prepared by changing the Ag 2 O concentration and the firing conditions. Samples marked with * in the table are samples using BaCO 3 as a starting material.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【表5】 [Table 5]

【0024】図3および図4に一例としてそれぞれ試料
No.7の電気抵抗−温度特性および交流磁化率−温度
特性を示す。
FIGS. 3 and 4 show sample Nos. 7 shows an electrical resistance-temperature characteristic and an AC susceptibility-temperature characteristic of FIG.

【0025】表1〜表5をみると、Ag2 Oの添加によ
って、臨界電流密度JC は例えば試料No.9の390
A/cm2 、試料No.12の280A/cm2 のよう
に上昇する。この値は従来のBaCO3 を出発原料とし
たAg2 O無添加の試料No.42の20倍以上の値で
あり、Ba(OH)2 ・8H2 Oを出発原料としたAg
2 O無添加試料のうち、最高のJC を持つ試料No.3
5の25A/cm2 の数倍または10倍以上である。A
2 Oの添加によってJC の向上した試料の超電導転移
温度は90K前後であり、Ag2 O添加による著しい超
電導転移温度の低下は見られない。Ag2 Oは0.1%
の添加で低温で焼結でき、そのとき無添加のものとくら
べJC に差はなく、一方70%をこえると金属銀が磁器
表面に析出してるつぼと融着するので試料作製が困難と
なる。さらに70%をこえるAg2 Oの添加は価格面か
らも好ましくない。Ag2 Oは少量はLaBa2 Cu3
7-d に固溶するものと想像されるが、その多くは金属
銀として析出する。図5はAg2 O 70%を添加した
試料No.19のX線回折図である。斜方晶LaBa2
Cu37-d に相当するピークと共に、図示するように
金属銀のピークが強く現れている。
Referring to Tables 1 to 5, the critical current density J C can be reduced, for example, by the addition of Ag 2 O. 9 of 390
A / cm 2 , sample No. Twelve 280 A / cm 2 . Samples of this value Ag 2 O-free additive that conventional BaCO 3 as a starting material No. Ag is 20 times or more as large as 42, and is obtained by using Ba (OH) 2 .8H 2 O as a starting material.
Of 2 O no addition sample, the sample with the highest J C No. 3
5 is several times or 10 times or more of 25 A / cm 2 . A
The superconducting transition temperature of the sample whose JC was improved by the addition of g 2 O was about 90 K, and no remarkable decrease in the superconducting transition temperature due to the addition of Ag 2 O was observed. Ag 2 O is 0.1%
Can be sintered at a low temperature with the addition of J. At that time, there is no difference in JC from that without addition. On the other hand, if it exceeds 70%, it is difficult to prepare a sample because metallic silver precipitates on the porcelain surface and fuses with the crucible. Become. Further, addition of Ag 2 O exceeding 70% is not preferable in terms of cost. A small amount of Ag 2 O is LaBa 2 Cu 3
Although it is supposed that it forms a solid solution with O 7-d , most of them are precipitated as metallic silver. FIG. 5 shows the sample No. to which 70% of Ag 2 O was added. 19 is an X-ray diffraction diagram of FIG. Orthogonal LaBa 2
As shown in the figure, a strong peak of metallic silver appears together with a peak corresponding to Cu 3 O 7-d .

【0026】表1〜表5に戻り、Ag2 Oが同一の添加
量(10%)である試料NO.7,17,20および3
2を比較すると、焼成条件によって臨界電流密度JC
試料No.17の70A/Cm2 から試料No.32の
201A/cm2 まで大きく変化することがわかる。試
料No.7とNo.20では炉内全圧は等しいので、各
セグメントにおける酸素分圧が、臨界電流JC の値に大
きく影響していることがわかる。さらに言えば、これら
4試料のJC の比較から、焼結過程(セグメントb)に
おける酸素分圧は低い方が良く、アニール過程(セグメ
ントd)における酸素分圧は高い方が良い。超電導転移
温度TcendおよびTCIは酸素分圧には大きく影響されな
い。このような傾向は同一のAg2 O添加20%の試料N
o.9,18,21,27および32についても見られ
る。すなわち、焼成過程のセグメントに応じて、被焼成
物近傍の酸素分圧を制御することによって、焼成時間を
短くしながら、かつ臨界電流密度JC の値を向上させる
ことができる。
Returning to Tables 1 to 5, Sample No. 1 containing Ag 2 O at the same amount (10%) was added. 7, 17, 20, and 3
Comparing Sample No. 2, the critical current density J C depends on the firing conditions. Sample No. 17 from 70 A / Cm 2 . It can be seen that there is a large change up to 32, 201 A / cm 2 . Sample No. 7 and no. In FIG. 20, since the total pressure in the furnace is equal, it is understood that the oxygen partial pressure in each segment greatly affects the value of the critical current J C. Furthermore, from the comparison of JC of these four samples, it is better that the oxygen partial pressure in the sintering process (segment b) is lower and the oxygen partial pressure in the annealing process (segment d) is higher. The superconducting transition temperatures T cend and T CI are not significantly affected by the oxygen partial pressure. This tendency is the same for sample N with the same 20% Ag 2 O addition.
o. 9, 18, 21, 27 and 32 are also found. That is, by controlling the oxygen partial pressure in the vicinity of the object to be fired according to the segment of the firing process, the value of the critical current density J C can be improved while shortening the firing time.

【0027】従来の方法と同様に出発原料としてBaC
3 を使用した試料No.42と、同一の焼成条件であ
るが、Ba(OH)2 ・8H2 Oを出発原料とした試料
No.35とを比較すると、前者のアニール時間が40
時間と長いにもかかわらず、試料No.35の方が超電
導転移温度および臨界電流密度がすぐれている。これは
出発原料としてBa(OH)2 ・8H2 Oを用いること
の優位性を示すものである。
As in the conventional method, BaC is used as a starting material.
Sample No. using O 3 Sample No. 42 under the same firing conditions as in Sample No. 42, but using Ba (OH) 2 .8H 2 O as a starting material. 35, the former annealing time is 40.
Despite the long time, the sample No. No. 35 has better superconducting transition temperature and critical current density. This indicates the superiority of using Ba (OH) 2 · 8H 2 O as the starting material.

【0028】以上の実施例に示したように、本発明によ
って、超電導転移温度TC が93KのLa系123超電
導が得られた。この値は初めに述べたTC 95K以上に
は到達しないものの、製造方法の改善によって予想され
るTC を実現する第一歩となるものである。
[0028] As shown in the above embodiments, the present invention, the superconducting transition temperature T C was obtained La system 123 superconductivity 93K. Although this value does not reach the above-mentioned T C of 95 K or more, it is the first step in realizing the expected T C by improving the manufacturing method.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば超
電導材料LaBa2 Cu37-d にAg2 Oを添加して
いるので、短い焼成時間にもかかわらず、臨界電流密度
を改善することができる。
As described above, according to the present invention, since the superconducting material LaBa 2 Cu 3 O 7-d is added with Ag 2 O, the critical current density is improved despite the short firing time. can do.

【0030】本発明組成物は超電導磁石,各種超電導デ
バイス,超電導を用いた電力貯蔵に適用可能である。
The composition of the present invention is applicable to superconducting magnets, various superconducting devices, and power storage using superconductivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に用いた焼成法を説明する線図で
ある。
FIG. 1 is a diagram illustrating a firing method used for carrying out the present invention.

【図2】本発明に使用する焼成装置の模式図である。FIG. 2 is a schematic view of a firing apparatus used in the present invention.

【図3】本発明実施例の電気抵抗−温度特性図である。FIG. 3 is an electric resistance-temperature characteristic diagram of the example of the present invention.

【図4】本発明実施例の交流磁化率−温度特性図であ
る。
FIG. 4 is an AC susceptibility-temperature characteristic diagram of the example of the present invention.

【図5】本発明の他の実施例のX線回折図である。FIG. 5 is an X-ray diffraction diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 焼成炉 7 酸素センサー 8 酸素濃度計 9 酸素分圧コントローラ 10 温度調節計 DESCRIPTION OF SYMBOLS 1 Firing furnace 7 Oxygen sensor 8 Oxygen concentration meter 9 Oxygen partial pressure controller 10 Temperature controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平林 泉 愛知県名古屋市熱田区六野2丁目4番1 号 財団法人国際超電導産業技術研究セ ンター名古屋研究室内 (56)参考文献 特開 平1−192760(JP,A) Japanese Journal of Applied Physics Vol.26 (3) P.L223−L 224 Japanese Journal of Applied Physics Vol.26 (5) P.L834−L 835 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Izumi Hirabayashi Nagoya Laboratory, International Superconducting Technology Research Center, 2-4-1 Rokuno, Atsuta-ku, Nagoya, Aichi, Japan (56) References 192760 (JP, A) Japanese Journal of Applied Physics Vol. 26 (3) P.E. L223-L224 Japanese Journal of Applied Physics Vol. 26 (5) P.E. L834-L835

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 LaBa2Cu3O7-d1モルに対して Ag2O が0.
1 重量%から70 重量%までの割合で添加され、Agの
過半数は金属銀として析出物の形態で存在することを特
徴とする超電導材料組成物。
(1) Ag 2 O is present in an amount of 0.1 mol per mol of LaBa 2 Cu 3 O 7-d .
A superconducting material composition, characterized in that it is added in a proportion of from 1% to 70% by weight, the majority of the Ag being present in the form of precipitates as metallic silver.
JP6300439A 1994-12-05 1994-12-05 Superconducting material composition Expired - Fee Related JP2732809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6300439A JP2732809B2 (en) 1994-12-05 1994-12-05 Superconducting material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6300439A JP2732809B2 (en) 1994-12-05 1994-12-05 Superconducting material composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63328999A Division JPH0755858B2 (en) 1988-12-28 1988-12-28 Method for producing superconducting material composition

Publications (2)

Publication Number Publication Date
JPH0840767A JPH0840767A (en) 1996-02-13
JP2732809B2 true JP2732809B2 (en) 1998-03-30

Family

ID=17884818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6300439A Expired - Fee Related JP2732809B2 (en) 1994-12-05 1994-12-05 Superconducting material composition

Country Status (1)

Country Link
JP (1) JP2732809B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085714B2 (en) * 2018-01-31 2022-06-17 Koa株式会社 Oxygen sensor element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01192760A (en) * 1988-01-28 1989-08-02 Tokin Corp Ag2o3-containing oxide superconductor and production thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Japanese Journal of Applied Physics Vol.26 (3) P.L223−L224
Japanese Journal of Applied Physics Vol.26 (5) P.L834−L835

Also Published As

Publication number Publication date
JPH0840767A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
EP0330214B2 (en) High-Tc oxide superconductor and method for producing the same
Lay Formation of yttrium barium cuprate powder at low temperatures
US5155092A (en) Ceramic superconducting composition and process and apparatus for preparing thereof
JP2732809B2 (en) Superconducting material composition
US6686319B1 (en) Metal oxide materials
Sakai et al. Superconductivity in (Pb/Cu)-“1222” copper oxides
JP2609944B2 (en) Oxide material showing superconductivity and method for producing the same
JP2533108B2 (en) Superconducting material
JP2618046B2 (en) Oxide superconducting material and its manufacturing method
JP2840349B2 (en) High Tc superconductor and method of manufacturing the same
JPH0755858B2 (en) Method for producing superconducting material composition
JPH0417909B2 (en)
JPS63315566A (en) Perovskite type oxide superconducting material having high jc and tc
Chen et al. Promoting effects of steam on the sintering process of YBCO ceramic superconductors
JP2618047B2 (en) Oxide superconducting material and its manufacturing method
JPH0196055A (en) Superconductive ceramic composition
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof
JP2593480B2 (en) Manufacturing method of oxide superconductor
Liu et al. Preparation and properties of YBa2Cu3Oy-Ag composites via 8-hydroxyquinoline coprecipitation
JP2642194B2 (en) Oxide superconducting material and its manufacturing method
JPH01257160A (en) High density oxide superconducting sintered body and sintering method therefor
Kaleva et al. Effects of barium titanate and titania additions on the microstructure and critical current density of yttrium barium cuprate ceramics
JPH02175668A (en) Calcinator
JPH02296760A (en) Porcelain composition of oxide superconductor and its production
JPH0818834B2 (en) Composite oxide superconducting material and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees