JPH02175668A - Calcinator - Google Patents

Calcinator

Info

Publication number
JPH02175668A
JPH02175668A JP63329000A JP32900088A JPH02175668A JP H02175668 A JPH02175668 A JP H02175668A JP 63329000 A JP63329000 A JP 63329000A JP 32900088 A JP32900088 A JP 32900088A JP H02175668 A JPH02175668 A JP H02175668A
Authority
JP
Japan
Prior art keywords
oxygen
furnace
partial pressure
gas
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63329000A
Other languages
Japanese (ja)
Other versions
JPH0791115B2 (en
Inventor
Fumio Mizuno
文夫 水野
Izumi Hirabayashi
泉 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Niterra Co Ltd
Original Assignee
KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER, NGK Spark Plug Co Ltd filed Critical KOKUSAI CHIYOUDENDOU SANGYO GIJUTSU KENKYU CENTER
Priority to JP63329000A priority Critical patent/JPH0791115B2/en
Priority to DE68922290T priority patent/DE68922290T2/en
Priority to US07/457,634 priority patent/US5155092A/en
Priority to EP89123993A priority patent/EP0376276B1/en
Publication of JPH02175668A publication Critical patent/JPH02175668A/en
Publication of JPH0791115B2 publication Critical patent/JPH0791115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E40/64

Landscapes

  • Furnace Details (AREA)

Abstract

PURPOSE:To obtain a calcinator, especially equipped with a controlling means for O2 partial pressure near a material to be calcined in a calcining furnace body and capable of controlling a calcining atmosphere according to respective steps of calcination and improving superconductive characteristics of superconducting material compositions. CONSTITUTION:The interior of a calcining furnace 1 is evacuated to a prescribed vacuum degree with a gas discharge system 2 and a mixed gas of O2 and N2 is fed into the interior of the furnace 1. That is the O2 is introduced from a gas cylinder (3A) into a gas mixer 5 and the N2 is introduced from a gas cylinder (4A) thereinto, mixed and then introduced into the furnace 1. In this case, the quantity of O2 near a material to be calcined is sensed with an oxygen sensor 7 provided in the vicinity of the material to be calcined in the furnace 1. The above-mentioned sensed signal is then inputted to an oxygen densitometer 8 and the O2 concentration signal is further inputted to an oxygen partial pressure controller 9. On the other hand, O2 partial pressure previously memorized in a temperature controller 10 of the furnace 1 is compared with the O2 concentration signal from the densitometer 8 in the controller 9 to control opening and closing of control valves (3F) and (4F) so as to provide a prescribed value of the O2 partial pressure near the material to be calcined. Thereby, an oxide superconductor containing, e.g. Ag2O added to LaBa2Cu3O7-delta, is produced by using the above-mentioned calcinator.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は各種セラミクス、酸化物超電導体などの焼tに
用いる焼成装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a firing apparatus used for firing various ceramics, oxide superconductors, and the like.

[従来の技術] Y−Ba2−Cu3−07−6をはじめ、超電導転移温
度の高い酸化物超電導体が、あいついで発見、発表され
ている。これら酸化物超電導体の製造には、焼結および
超電導相生成のためのアニールを含む焼成工程が必要で
ある。酸化物超電導体の超電導特性は、焼成条件に大き
く影響され、特に焼成の各過程における雰囲気の制御が
重要である。
[Prior Art] Oxide superconductors with high superconducting transition temperatures, including Y-Ba2-Cu3-07-6, have been discovered and announced. The production of these oxide superconductors requires a firing process that includes sintering and annealing to generate a superconducting phase. The superconducting properties of oxide superconductors are greatly influenced by firing conditions, and controlling the atmosphere during each firing process is particularly important.

[発明が解決しようとする課題] しかし、これまで被焼成物近傍の酸素分圧を焼成の各過
程に応じて厳密に制御し得る装置は提案されていない。
[Problems to be Solved by the Invention] However, no apparatus has been proposed so far that can strictly control the oxygen partial pressure near the object to be fired in accordance with each firing process.

本発明は被焼成物が、その最良の特性を出現し得るよう
、焼成の各過程に応じて焼成雰囲気を制御し得る焼成装
置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a firing apparatus that can control the firing atmosphere according to each firing process so that the object to be fired can exhibit its best characteristics.

[課題を解決するための手段] 本発明は、焼成炉本体と、加熱手段と、被焼成物の温度
を所定の時間−温度曲線に従フて変化させるよう加熱手
段を制御する温度制御手段と、焼成炉に、酸素および非
活性ガスを供給するガス供給手段と、焼成炉内のガス圧
を所定の値に制御するガス圧制御手段と、被焼成物近傍
の酸素量を検出する酸素検出手段と、あらかじめ定めら
れた酸素分圧−時間曲線を記憶し、酸素検出手段の検出
結果にもとずいて、被焼成物近傍の酸素分圧が所定の値
となるように、酸素および非活性ガスの供給量を制御す
る手段とを具えたことを特徴とする。
[Means for Solving the Problems] The present invention includes a firing furnace body, a heating means, and a temperature control means for controlling the heating means so as to change the temperature of the object to be fired according to a predetermined time-temperature curve. , a gas supply means for supplying oxygen and an inert gas to the firing furnace, a gas pressure control means for controlling the gas pressure in the firing furnace to a predetermined value, and an oxygen detection means for detecting the amount of oxygen near the object to be fired. Then, a predetermined oxygen partial pressure-time curve is memorized, and based on the detection result of the oxygen detection means, oxygen and inert gas are The invention is characterized by comprising means for controlling the supply amount of.

[作 用] 本発明によれば、焼成に際して、炉内全圧および被焼成
物近傍の酸素分圧を制御できるので、焼成体はその材料
が木来有するすぐれた特性を現すことができる。
[Function] According to the present invention, during firing, the total pressure in the furnace and the oxygen partial pressure in the vicinity of the object to be fired can be controlled, so that the fired object can exhibit the excellent characteristics inherent to the material.

[実施例] 第1図に本発明による焼成装置の実施例を模式的に示し
、その動作を説明する。まず焼成炉1内を、ロータリポ
ンプ2A、真空電磁弁2B、排気フィルター2C,リー
ク弁2Dおよび真空計2Eを具えた排気系2によって、
所定の真空度まで排気する。次に酸素と窒素(またはア
ルゴン)の混合ガスを焼成炉1に供給する。酸素はポン
ベ3Aからストップバルブ3B、ニードル弁3G、マス
フローコントローラ3D、チャツキバルブ3Eおよび制
御弁3Fを経由し、窒素(またはアルゴン)は同様にボ
ンへ4八からストップバルブ4B、ニードル弁4G、マ
スフローコントローラ4D、チャツキバルブ4Eおよび
制御弁4Fを経由してそれぞれガスミキサー5に入り、
混合される。混合ガス(または単独のガス)はガス導入
弁6を通って焼成炉1に導かれる。3Gおよび4Gはそ
れぞれ一次圧力計である。焼成炉1内の被焼成物の近傍
には酸素センサ7か置かれ、被焼成物近傍の酸素量を検
知する。この検知信号は酸素濃度計8に入力され、濃度
計8から酸素濃度信号が酸素分圧コントローラ9に人力
される。一方、焼成炉1の温度を制御する温度調節計1
0には、焼成の各過程に応じてあらかじめ定められた酸
素分圧が記憶されており、この所定の酸素分圧と、酸素
濃度計8からの酸素濃度信号が酸素分圧コントローラ9
によって比較され、酸素分圧コントロラは、被焼成物近
傍の酸素分圧が所定の値になるように制御弁3Fおよび
4Fの開閉を制御する。
[Example] Fig. 1 schematically shows an example of the firing apparatus according to the present invention, and its operation will be explained. First, inside the firing furnace 1, an exhaust system 2 including a rotary pump 2A, a vacuum solenoid valve 2B, an exhaust filter 2C, a leak valve 2D, and a vacuum gauge 2E is used.
Evacuate to the specified degree of vacuum. Next, a mixed gas of oxygen and nitrogen (or argon) is supplied to the firing furnace 1. Oxygen passes from the pump 3A to the stop valve 3B, needle valve 3G, mass flow controller 3D, Chutsuki valve 3E, and control valve 3F, and nitrogen (or argon) passes from the pump 48 to the stop valve 4B, needle valve 4G, and mass flow controller. 4D, enters the gas mixer 5 via Chatsuki valve 4E and control valve 4F, respectively.
mixed. The mixed gas (or a single gas) is introduced into the firing furnace 1 through the gas introduction valve 6 . 3G and 4G are each a primary pressure gauge. An oxygen sensor 7 is placed near the object to be fired in the firing furnace 1 to detect the amount of oxygen near the object to be fired. This detection signal is input to the oxygen concentration meter 8, and the oxygen concentration signal from the concentration meter 8 is manually input to the oxygen partial pressure controller 9. On the other hand, a temperature controller 1 that controls the temperature of the firing furnace 1
0 stores a predetermined oxygen partial pressure according to each firing process, and this predetermined oxygen partial pressure and the oxygen concentration signal from the oxygen concentration meter 8 are sent to the oxygen partial pressure controller 9.
The oxygen partial pressure controller controls the opening and closing of the control valves 3F and 4F so that the oxygen partial pressure near the object to be fired becomes a predetermined value.

方、焼成炉1に導入されるガスの圧力信号は連成計11
に入力される。連成計11は炉内の圧力が所定の値に保
たれるよう、排気弁12を動作させる。13は安全弁、
 14は抵抗発熱体である。焼成炉1の炉体は水冷可能
である。
On the other hand, the pressure signal of the gas introduced into the firing furnace 1 is transmitted by a compound meter 11.
is input. The compound gauge 11 operates the exhaust valve 12 so that the pressure inside the furnace is maintained at a predetermined value. 13 is a safety valve,
14 is a resistance heating element. The furnace body of the firing furnace 1 can be water cooled.

本発明装置を用い、LaBa2cu30t JにAg2
Oを添加した酸化物超電導体を作製した。
Using the device of the present invention, Ag2 was added to LaBa2cu30t J.
An oxide superconductor to which O was added was fabricated.

La2O3,Ba(OH)2H8H20および CuO
を、La : Ba :Cuの比が1:2:3となるよ
うにそれぞれ秤量し、乾式で混合し、粉砕した。混合粉
末を800〜900℃で10時間熱処理した。熱処理雰
囲気は空気中、酸素中および窒素中のいずれてもよい。
La2O3, Ba(OH)2H8H20 and CuO
were weighed, dry mixed, and pulverized so that the ratio of La:Ba:Cu was 1:2:3. The mixed powder was heat-treated at 800-900°C for 10 hours. The heat treatment atmosphere may be air, oxygen, or nitrogen.

熱処理された後再粉砕し、30μmのふるいを通してL
aBa2Cu+0t−sの粉末を得た。
After heat treatment, it is re-ground and passed through a 30 μm sieve.
A powder of aBa2Cu+0t-s was obtained.

この粉末1モルに対し、 20wt%のへg20粉末(
純度99.99%)を添加し、1〜2 ton/cm2
の圧力を加えて、直径15mm、厚さ1.5mmのベレ
ットを作成した。このベレットをるつぼ内に収め、温度
および加熱雰囲気すなわち全圧および酸素分圧を制御し
ながら焼成した。
For 1 mole of this powder, 20 wt% Heg20 powder (
purity 99.99%), 1-2 ton/cm2
A pellet with a diameter of 15 mm and a thickness of 1.5 mm was created by applying a pressure of . This pellet was placed in a crucible and fired while controlling the temperature and heating atmosphere, that is, the total pressure and oxygen partial pressure.

第2図に焼成時の時間−温度曲線の例を示す。FIG. 2 shows an example of a time-temperature curve during firing.

図示するように、焼成工程は焼結温度までの昇温過程、
一定温度での焼結過程、アニール温度までの降温過程、
および一定温度でのアニールによる超電導相生成過程の
4過程を含んでいる。
As shown in the figure, the firing process is a process of increasing the temperature to the sintering temperature,
Sintering process at a constant temperature, cooling process to the annealing temperature,
and a superconducting phase generation process by annealing at a constant temperature.

以下の例では昇温および降温速度はそれぞれ200℃/
hrおよび60℃/hrと一定にした。焼結温度は93
0℃〜950℃の範囲で適宜選定し、焼結時間は5時間
一定とした。アニール温度は300℃と一定とし、保持
時間は5時間または10時間としさらに第2図に示した
ように、焼成過程をa。
In the example below, the heating and cooling rates are each 200℃/
hr and 60°C/hr. Sintering temperature is 93
The temperature was appropriately selected within the range of 0°C to 950°C, and the sintering time was kept constant for 5 hours. The annealing temperature was kept constant at 300°C, the holding time was set for 5 hours or 10 hours, and the firing process was performed as shown in FIG.

b、cおよびdの4つのセグメントにわけて焼成中の雰
囲気を制御した。セグメントaは700℃までの昇温過
程、セグメントbは焼結過程を中心とし、700℃以上
の昇温過程および900℃までの降温過程を含む。セグ
メントCは900℃以下の降温過程、セグメントdはア
ニールすなわち超電導相生成過程に相当する。本発明に
おいては、炉内の全圧を制御すると同時に、被焼成物近
傍の酸素分圧を検出し、各セグメント単位に酸素分圧を
制御しながら焼成を行った。
The atmosphere during firing was controlled in four segments, b, c, and d. Segment a is a process of increasing the temperature to 700°C, and segment b is mainly a sintering process, including a process of increasing the temperature to 700°C or more and a process of decreasing the temperature to 900°C. Segment C corresponds to a temperature decreasing process of 900° C. or less, and segment d corresponds to annealing, that is, a superconducting phase generation process. In the present invention, while controlling the total pressure in the furnace, the oxygen partial pressure near the object to be fired was detected, and firing was performed while controlling the oxygen partial pressure in each segment.

作製した各種試料について、超電導転移温度および臨界
電流密度を測定した。超電導転移温度は4端子法・によ
って直流抵抗を測定して電気抵抗がOとなるTcend
を測定し、さらにハーツホーンブリッジを用いて交流磁
化率の温度変化から超電導転移温度TCIを測定した。
The superconducting transition temperature and critical current density were measured for the various samples prepared. The superconducting transition temperature is determined by measuring the DC resistance using the four-probe method and determining the Tcend at which the electrical resistance becomes O.
Furthermore, the superconducting transition temperature TCI was measured from the temperature change in AC magnetic susceptibility using a Hartshorn bridge.

臨界電流密度Jcは、液体窒素下で試料に大電流パルス
を流し、超電導状態が保たれる最大の電流値を求めてJ
cとした。
The critical current density Jc is determined by passing a large current pulse through the sample under liquid nitrogen and finding the maximum current value at which the superconducting state is maintained.
c.

へg20濃度および焼成条件を変えて作製した各試料の
超電導転移温度T el!□およびTel と臨界電流
密度Jcを第1表に示す。表から明らかなように、同一
組成の酸化物でも、その超電導特性、特に臨界電流密度
は焼成条件によって大きく変化する。
Superconducting transition temperature T el! of each sample prepared with different heg20 concentrations and firing conditions. □, Tel, and critical current density Jc are shown in Table 1. As is clear from the table, even for oxides with the same composition, their superconducting properties, especially their critical current density, vary greatly depending on the firing conditions.

炉内全圧を1.2kg/cm2とし、昇温、焼結、降温
およびアニールの各過程における試料近傍の酸素分圧を
それぞれ20.0.100および100%とした時、臨
界電流密度は390A/cm2という高い値を示した。
When the total pressure in the furnace is 1.2 kg/cm2 and the oxygen partial pressure near the sample in each process of heating, sintering, cooling, and annealing is 20.0.100 and 100%, the critical current density is 390 A. It showed a high value of /cm2.

第1表 [発明の効果] 以上説明したように、本発明によれば焼成工程の各段階
に応じて被焼成物近傍の酸素分圧を制御で餘るので、超
電導材料組成物の超電導特性を向上させることができる
Table 1 [Effects of the Invention] As explained above, according to the present invention, the oxygen partial pressure near the object to be fired can be controlled in accordance with each stage of the firing process, so the superconducting properties of the superconducting material composition can be improved. can be improved.

本発明による焼成装置は、酸化物超電導体に限らず酸素
分圧の制御を必要とする各種磁器組成物の焼成に広く適
用できる。
The firing apparatus according to the present invention can be widely applied to firing not only oxide superconductors but also various ceramic compositions that require control of oxygen partial pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による焼成装置の実施例の模式第2図は
本発明装置を用いた焼成法を説明する線図である。 1・・・焼成炉、 7・・・酸素センサー 8・・・酸素濃度計、 9・・・酸素分圧コントローラ、 10・・・温度調節計。 14・・・抵抗発熱体。 へ蹟ヤ各え明す4線図 図
FIG. 1 is a schematic diagram of an embodiment of the firing apparatus according to the present invention, and FIG. 2 is a diagram illustrating a firing method using the apparatus according to the present invention. DESCRIPTION OF SYMBOLS 1... Firing furnace, 7... Oxygen sensor 8... Oxygen concentration meter, 9... Oxygen partial pressure controller, 10... Temperature controller. 14...Resistance heating element. 4-line diagram that explains everything

Claims (1)

【特許請求の範囲】 1)焼成炉本体と、 加熱手段と、 被焼成物の温度を所定の時間−温度曲線に従って変化さ
せるよう該加熱手段を制御する温度制御手段と、 前記焼成炉に、酸素および非活性ガスを供給するガス供
給手段と、 前記焼成炉内のガス圧を所定の値に制御するガス圧制御
手段と、 前記被焼成物近傍の酸素量を検出する酸素検出手段と、 あらかじめ定められた酸素分圧−時間曲線を記憶し、前
記酸素検出手段の検出結果にもとずいて、被焼成物近傍
の酸素分圧が所定の値となるように、酸素および非活性
ガスの供給量を制御する手段とを具えたことを特徴とす
る焼成装置。
[Scope of Claims] 1) A firing furnace main body, a heating means, a temperature control means for controlling the heating means so as to change the temperature of the object to be fired according to a predetermined time-temperature curve, and oxygen in the firing furnace. and a gas supply means for supplying an inert gas; a gas pressure control means for controlling the gas pressure in the firing furnace to a predetermined value; and an oxygen detection means for detecting the amount of oxygen near the object to be fired; The oxygen partial pressure-time curve obtained is stored, and based on the detection result of the oxygen detection means, the supply amount of oxygen and inert gas is adjusted so that the oxygen partial pressure near the object to be fired becomes a predetermined value. A firing device characterized by comprising: means for controlling.
JP63329000A 1988-12-28 1988-12-28 Oxide superconductor firing equipment Expired - Fee Related JPH0791115B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63329000A JPH0791115B2 (en) 1988-12-28 1988-12-28 Oxide superconductor firing equipment
DE68922290T DE68922290T2 (en) 1988-12-28 1989-12-27 Ceramic superconducting composition and method and device for its manufacture.
US07/457,634 US5155092A (en) 1988-12-28 1989-12-27 Ceramic superconducting composition and process and apparatus for preparing thereof
EP89123993A EP0376276B1 (en) 1988-12-28 1989-12-27 Ceramic superconducting composition and process and apparatus for preparing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63329000A JPH0791115B2 (en) 1988-12-28 1988-12-28 Oxide superconductor firing equipment

Publications (2)

Publication Number Publication Date
JPH02175668A true JPH02175668A (en) 1990-07-06
JPH0791115B2 JPH0791115B2 (en) 1995-10-04

Family

ID=18216485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63329000A Expired - Fee Related JPH0791115B2 (en) 1988-12-28 1988-12-28 Oxide superconductor firing equipment

Country Status (1)

Country Link
JP (1) JPH0791115B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249293A (en) * 2007-03-30 2008-10-16 Koyo Thermo System Kk Internal pressure control method of heating furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120210A (en) * 1978-03-10 1979-09-18 Shimadzu Corp Automatic control device of pottery baking oven
JPS6046357A (en) * 1983-08-24 1985-03-13 Hitachi Ltd Preparation of highly corrosion resistant zirconium base alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120210A (en) * 1978-03-10 1979-09-18 Shimadzu Corp Automatic control device of pottery baking oven
JPS6046357A (en) * 1983-08-24 1985-03-13 Hitachi Ltd Preparation of highly corrosion resistant zirconium base alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249293A (en) * 2007-03-30 2008-10-16 Koyo Thermo System Kk Internal pressure control method of heating furnace

Also Published As

Publication number Publication date
JPH0791115B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
Gupta et al. Sintering of ZnO: I, Densification and grain growth
JPH0512289B2 (en)
EP0096519B1 (en) Process for producing zirconium oxide sintered body
Chun et al. Phase diagram and microstructure in the ZnO–Pr2O3 system
US5155092A (en) Ceramic superconducting composition and process and apparatus for preparing thereof
JPH02175668A (en) Calcinator
Hauck et al. Oxygen content of superconducting Ba2YCu3O6. 5+ x
EP0344812B1 (en) Method of manufacturing superconductor of ceramics superconductive material
Lindemer et al. Synthesis of Y-Ba-Cu-O superconductors in subatmospheric oxygen
Chan-Joong et al. Oxygen diffusion paths and microcrack formation in the textured 1-2-3 regions of partial-melted Y Ba Cu O oxide
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
JP2732809B2 (en) Superconducting material composition
Ghandehari et al. Consecutive inert and oxygen atmosphere sintering in the synthesis of LaBa2Cu3Oy with T (R= 0)> 90 K
SU1735912A1 (en) Method of producing high-temperature metal-oxide ceramic materials
KINGON et al. Processing and Microstructures of YBa2Cu307-0
JPH02175650A (en) Superconductive material composition and production thereof
JPH04175224A (en) Oxide superconductor and production thereof
JP2635704B2 (en) Method for producing Bi-based oxide high-temperature superconductor
Aslan et al. Influence of microstructure on the superconducting properties of polycrystalline YBa2Cu3O7− x
JPS63307155A (en) Production of superconductor
Chen et al. Promoting effects of steam on the sintering process of YBCO ceramic superconductors
Idrissi et al. Oxygen stoichiometry variations, control of copper oxide content and superconducting behaviour of ceramics
JPH01257160A (en) High density oxide superconducting sintered body and sintering method therefor
JPH01270504A (en) Production of superconducting material
Richmond‐Hope et al. Enhancement of grain orientation in YBa2Cu3O7− x using selective oxide diffusion couples/hot forging

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees