JP2730124B2 - Method for producing indium antimony film - Google Patents

Method for producing indium antimony film

Info

Publication number
JP2730124B2
JP2730124B2 JP1015351A JP1535189A JP2730124B2 JP 2730124 B2 JP2730124 B2 JP 2730124B2 JP 1015351 A JP1015351 A JP 1015351A JP 1535189 A JP1535189 A JP 1535189A JP 2730124 B2 JP2730124 B2 JP 2730124B2
Authority
JP
Japan
Prior art keywords
indium
electron mobility
antimony
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1015351A
Other languages
Japanese (ja)
Other versions
JPH02194623A (en
Inventor
滋 小嶋
哲広 是近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1015351A priority Critical patent/JP2730124B2/en
Publication of JPH02194623A publication Critical patent/JPH02194623A/en
Application granted granted Critical
Publication of JP2730124B2 publication Critical patent/JP2730124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁電変換素子などに利用されるインジウムア
ンチモン膜の製造方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an indium antimony film used for a magnetoelectric conversion element or the like.

従来の技術 ホール素子や磁気抵抗素子などの磁電変換素子に利用
されるインジウムアンチモン化合物半導体膜は、通常イ
ンジウムおよびアンチモンを真空中で蒸発させて基板上
にインジウムアンチモン膜を形成する真空蒸着法で作成
されている。
Conventional technology Indium-antimony compound semiconductor films used for magnetoelectric transducers such as Hall elements and magnetoresistive elements are usually made by vacuum evaporation, in which indium and antimony are evaporated in vacuum to form an indium-antimony film on a substrate. Have been.

発明が解決しようとする課題 しかしながら、単に真空蒸着で形成したインジウムア
ンチモン膜はその結晶性に問題があって電子移動度特性
が低く、そのままホール素子などの実用的な磁電変換素
子に使用することは困難であった。したがって、電子移
動度特性を向上させるため、蒸着後アンチモンの再蒸発
防止膜を施して再溶融処理や熱処理するなどの複雑な行
程を要していた。
Problems to be Solved by the Invention However, indium antimony films formed simply by vacuum evaporation have a problem in crystallinity and have low electron mobility characteristics, so that they cannot be directly used for practical magnetoelectric conversion elements such as Hall elements. It was difficult. Therefore, in order to improve the electron mobility characteristics, a complicated process such as applying a re-evaporation preventing film of antimony after vapor deposition and performing re-melting treatment or heat treatment was required.

このように、従来の高い電子移動度をもつインジウム
アンチモン膜の製造方法が複雑な行程を経ているのに対
し、本発明は蒸着時の基板の温度勾配を制御することに
より単に蒸着するだけで実用的な高い電子移動度特性を
もつインジウムアンチモン膜が作成できる行程の簡単な
製造方法を提供しようとするものである。
As described above, the conventional method for producing an indium antimony film having a high electron mobility has gone through a complicated process, whereas the present invention is practically applicable only by simply vapor-depositing by controlling the temperature gradient of the substrate during vapor-deposition. It is an object of the present invention to provide a simple manufacturing method in which an indium antimony film having a high electron mobility characteristic can be formed.

課題を解決するための手段 前記課題を解決するために本発明は、基板の片面の表
面温度が他の片面の表面温度よりも高い温度勾配を有す
る基板の高温側の表面にインジウムおよびアンチモンを
蒸着することによって、電子移動度の高いインジウムア
ンチモン膜を形成する方法としたものである。
Means for Solving the Problems To solve the above problems, the present invention provides a method for depositing indium and antimony on a high-temperature side surface of a substrate having a surface temperature on one side of the substrate having a higher temperature gradient than the surface temperature on the other side. Thus, an indium antimony film having high electron mobility is formed.

作用 本発明の方法でインジウムアンチモン膜を形成するこ
とにより、その結晶性が著しく改善されて高い電子移動
度をもつインジウムアンチモン膜が作成できる。
Action By forming an indium antimony film by the method of the present invention, its crystallinity is remarkably improved, and an indium antimony film having high electron mobility can be produced.

実施例 以下、実施例にて本発明の方法を詳しく説明する。EXAMPLES Hereinafter, the method of the present invention will be described in detail with reference to Examples.

〔実施例1〕 水平に置いた基板の上面および下面の両表面を加熱で
きるような加熱用ハロゲンランプヒータを備えた構造の
真空蒸着装置に、洗浄したガラス基板(幅50mm角,厚さ
1mm)をセットし、ガラス基板の両表面の温度を所定の
一定温度に制御しながらインジウムおよびアンチモンを
同時に蒸発させてガラス基板の下表面にインジウムアン
チモン膜を形成した。
Example 1 A cleaned glass substrate (width 50 mm square, thickness 50 mm) was placed in a vacuum deposition apparatus having a heating halogen lamp heater capable of heating both upper and lower surfaces of a horizontally placed substrate.
1 mm) and indium and antimony were simultaneously evaporated while controlling the temperature of both surfaces of the glass substrate to a predetermined constant temperature, thereby forming an indium-antimony film on the lower surface of the glass substrate.

第1図に基板の下表面の温度を420℃とし、上表面の
温度を下表面の温度より低くして基板の上下方向に種々
の温度勾配をもたせたときの温度勾配と形成したインジ
ウムアンチモン膜の電子移動度特性との関係を示す。た
だし、電子移動度特性は、この本発明の方法で形成した
インジウムアンチモン膜の電子移動度μと、従来の基板
に温度勾配をもたせない方法で形成したインジウムアン
チモン膜の電子移動度μ0との比μ/μ0で示してある。
In FIG. 1, the temperature of the lower surface of the substrate is set to 420 ° C., the temperature of the upper surface is made lower than the temperature of the lower surface, and various temperature gradients are provided in the vertical direction of the substrate. Shows the relationship with the electron mobility characteristics. However, the electron mobility characteristic is the difference between the electron mobility μ of the indium antimony film formed by the method of the present invention and the electron mobility μ 0 of the indium antimony film formed by a method that does not impart a temperature gradient to the conventional substrate. It is indicated by the ratio μ / μ 0 .

この図に示すように、基板の温度勾配が10℃/mm以上
になると、すなわち基板の上表面の温度が下表面の温度
より10℃以上低くなると電子移動度の向上があらわれ
る。特に温度勾配が40℃のときは電子移動度の比が2.4
となり、電子移動度特性が著しく向上する。しかし、こ
の効果が認められるのは温度勾配が120℃までで120℃を
越えると顕著な電子移動度の向上効果が認められなくな
る。
As shown in this figure, when the temperature gradient of the substrate becomes 10 ° C./mm or more, that is, when the temperature of the upper surface of the substrate becomes 10 ° C. or more lower than the temperature of the lower surface, the electron mobility is improved. Especially when the temperature gradient is 40 ° C, the ratio of electron mobility is 2.4.
And the electron mobility characteristics are significantly improved. However, this effect is recognized only when the temperature gradient is up to 120 ° C., and when the temperature gradient exceeds 120 ° C., a remarkable effect of improving electron mobility is not recognized.

このように、基板に適切な温度勾配をもたせて蒸着し
たときに電子移動度特性が向上する原因は、顕微鏡組織
観察やX線回折結果から考えると、結晶粒度が従来の方
法で形成したインジウムアンチモン膜よりも大きくなっ
ていること、またX線回折図形が従来の方法のものは粉
末図形とほぼ同じでほとんど結晶配向性が認められない
のに対し、本発明の方法のものは(200)面や(311)面
の回折線強度が粉末図形における強度の半分以下にな
り、著しい結晶配向性が認められる。したがって本発明
の方法によって結晶成長および結晶配向性が改善され、
電子移動度が向上したものと考えられる。
As described above, the cause of the improvement of the electron mobility characteristic when the substrate is deposited with an appropriate temperature gradient is indium antimony formed by the conventional method when the crystal grain size is determined from the observation of the microscopic structure and the result of X-ray diffraction. The X-ray diffraction pattern of the conventional method is almost the same as that of the powder pattern, and almost no crystal orientation is recognized. The diffraction line intensity of the (311) plane is less than half the intensity in the powder pattern, and remarkable crystal orientation is recognized. Therefore, the method of the present invention improves crystal growth and crystal orientation,
It is considered that the electron mobility was improved.

〔実施例2〕 前記の実施例1と同様の真空蒸着装置と基板を用い、
基板の上表面の温度を380℃、下表面の温度を420℃にそ
れぞれ制御しながらまずインジウムを蒸発させ、続いて
インジウムおよびアンチモンを同時に蒸発させて基板の
下表面にインジウムアンチモン膜を形成した。
Example 2 Using the same vacuum evaporation apparatus and substrate as in Example 1 above,
While controlling the temperature of the upper surface of the substrate at 380 ° C. and the temperature of the lower surface thereof at 420 ° C., indium was first evaporated, and then indium and antimony were simultaneously evaporated to form an indium-antimony film on the lower surface of the substrate.

第2図に、最初のインジウムのみの蒸着におけるイン
ジウムの堆積膜厚を種々変化させて形成したインジウム
アンチモン膜の電子移動度特性を示す。ただし、この図
の電子移動度特性はこの本発明の方法で形成したインジ
ウムアンチモン膜の電子移動度μと、従来の温度勾配の
ない基板にインジウムおよびアンチモンを最初から同時
に蒸着する方法で形成したインジウムアンチモン膜の電
子移動度μ0との比μ/μ0で示してある。
FIG. 2 shows the electron mobility characteristics of an indium antimony film formed by changing the deposited film thickness of indium in the first vapor deposition of only indium. However, the electron mobility characteristics shown in this figure are the electron mobility μ of the indium antimony film formed by the method of the present invention and the indium formed by the conventional method of simultaneously depositing indium and antimony on a substrate without a temperature gradient. The ratio is shown as μ / μ 0 with respect to the electron mobility μ 0 of the antimony film.

この図から明らかなように、インジウムとアンチモン
を同時に蒸着する前にあらかじめ堆積膜厚が0.1μm以
下のインジウムを蒸着した場合の電子移動度は従来の方
法で形成した場合の電子移動度よりも1.5倍以上大きく
なり、顕著な電子移動度の向上結果がみられる。しか
し、インジウムの堆積膜厚が0.1μmを越えると向上効
果はわずかとなる。
As is clear from this figure, before the indium and antimony are simultaneously vapor-deposited, the electron mobility in the case where indium having a deposition thickness of 0.1 μm or less is vapor-deposited in advance is 1.5 times smaller than the electron mobility in the case where the conventional method is used. Twice as large, and a remarkable improvement in electron mobility is observed. However, when the deposited film thickness of indium exceeds 0.1 μm, the effect of improvement becomes small.

このように、基板に温度勾配をもたせかつあらかじめ
インジウムを蒸着して形成したインジウムアンチモン膜
が高い電子移動度をもつ理由は、実施例1で述べた結晶
成長と結晶配向性の改善によるものの他、しばしば形成
されたインジウムアンチモン膜の表面にインジウム単体
相が観察されることから余分なインジウムや不純物が表
面に集められて結晶欠陥の少ないインジウムアンチモン
膜が形成されているためと推察される。
As described above, the reason why the indium antimony film formed by forming a temperature gradient on the substrate and vapor depositing indium in advance has high electron mobility is due to the improvement in crystal growth and crystal orientation described in Example 1, Since an indium single phase is often observed on the surface of the formed indium antimony film, it is presumed that extra indium and impurities are collected on the surface to form an indium antimony film with few crystal defects.

尚、前記の実施例はいずれも基板の下面の表面温度が
420℃の場合について示したが、種々実験の結果、基板
の下表面温度が350℃〜450℃の範囲内では前記の実施例
と同様に電子移動度の向上効果が認められた。
In each of the above embodiments, the surface temperature of the lower surface of the substrate is lower.
Although shown in the case of 420 ° C., as a result of various experiments, when the lower surface temperature of the substrate is in the range of 350 ° C. to 450 ° C., the effect of improving the electron mobility was recognized as in the above-described embodiment.

発明の効果 以上に述べたように、本発明の方法を用いると蒸着後
の複雑な行程なしに電子移動度の大きなインジウムアン
チモン膜を形成することができる。したがって、本発明
は磁電変換素子を製造する場合の行程を簡単にすること
ができ、工業的に極めて有用である。
As described above, by using the method of the present invention, an indium antimony film having high electron mobility can be formed without a complicated process after vapor deposition. Therefore, the present invention can simplify the process of manufacturing a magnetoelectric conversion element, and is extremely useful industrially.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のインジウムアンチモン膜の製造方法に
おける基板の温度勾配と電子移動度特性との関係を示す
図、第2図は本発明の方法におけるインジウムの堆積膜
厚と電子移動度特性との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the temperature gradient of the substrate and the electron mobility characteristics in the method for producing an indium antimony film of the present invention, and FIG. 2 is a graph showing the relationship between the deposited film thickness of indium and the electron mobility characteristics in the method of the present invention. FIG.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板の片面の表面温度が他の片面の表面温
度よりも高い温度勾配を有する基板の高温度側表面に、
インジウムおよびアンチモンを蒸着して膜を形成するイ
ンジウムアンチモン膜の製造方法。
1. A high temperature side surface of a substrate having a temperature gradient in which the surface temperature of one side of the substrate is higher than the surface temperature of the other side,
A method for producing an indium-antimony film in which indium and antimony are deposited to form a film.
【請求項2】膜厚が0.1μm以下のインジウムを蒸着し
た後、インジウムおよびアンチモンを蒸着する請求項1
記載のインジウムアンチモン膜の製造方法。
2. Indium and antimony are deposited after depositing indium having a thickness of 0.1 μm or less.
The method for producing an indium antimony film according to the above.
JP1015351A 1989-01-24 1989-01-24 Method for producing indium antimony film Expired - Fee Related JP2730124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015351A JP2730124B2 (en) 1989-01-24 1989-01-24 Method for producing indium antimony film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015351A JP2730124B2 (en) 1989-01-24 1989-01-24 Method for producing indium antimony film

Publications (2)

Publication Number Publication Date
JPH02194623A JPH02194623A (en) 1990-08-01
JP2730124B2 true JP2730124B2 (en) 1998-03-25

Family

ID=11886374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015351A Expired - Fee Related JP2730124B2 (en) 1989-01-24 1989-01-24 Method for producing indium antimony film

Country Status (1)

Country Link
JP (1) JP2730124B2 (en)

Also Published As

Publication number Publication date
JPH02194623A (en) 1990-08-01

Similar Documents

Publication Publication Date Title
Ichikawa Structural study of ultrathin Sn layers deposited onto Ge (111) and Si (111) surfaces by RHEED
JPH0360171B2 (en)
JP2730124B2 (en) Method for producing indium antimony film
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
JPS62171999A (en) Epitaxy of iii-v compound semiconductor
JP2737974B2 (en) Method for producing indium antimony film
JP2737974C (en)
JPS61135172A (en) Manufacture of ferroelectric compound thin-film
JPS5878418A (en) Preparation of indium-antimony system compound crystal thin film
JP2679276B2 (en) Superconducting ceramic thin film forming single crystal wafer material for semiconductor device manufacturing
JPS5927519A (en) Fabrication of indium-antimony-arsenic system compound semiconductor thin film
JPH0443413B2 (en)
JPH0564849B2 (en)
JPH01255660A (en) Production of thin silicon phthalocyanine polymer film
Ackermann et al. On the direct contact between overgrowth and substrate through amorphous carbon layers
JP2836763B2 (en) NdGaO (3) Single crystal etching method
JPS61261285A (en) Production of substrate for semiconductor device
JPH04342499A (en) Organic conductive single crystal film and production of three-dimensional structure using the same film
JPH0472062A (en) Production of crystal film
JPH04292496A (en) Production of thin single crystalline superconductor film
Kleint et al. Thermoelectric Transport Properties of ReSi1. 75 Thin Films
JPS6390119A (en) Formation of single-crystal ge epitaxial layer
JPH02289496A (en) Production of garnet crystal
JPH0359570B2 (en)
JPH0359571B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees