JP2730047B2 - Image sensor and method of manufacturing the same - Google Patents

Image sensor and method of manufacturing the same

Info

Publication number
JP2730047B2
JP2730047B2 JP63098707A JP9870788A JP2730047B2 JP 2730047 B2 JP2730047 B2 JP 2730047B2 JP 63098707 A JP63098707 A JP 63098707A JP 9870788 A JP9870788 A JP 9870788A JP 2730047 B2 JP2730047 B2 JP 2730047B2
Authority
JP
Japan
Prior art keywords
amorphous silicon
film
silicon nitride
nitride film
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63098707A
Other languages
Japanese (ja)
Other versions
JPH01270280A (en
Inventor
泰樹 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP63098707A priority Critical patent/JP2730047B2/en
Publication of JPH01270280A publication Critical patent/JPH01270280A/en
Application granted granted Critical
Publication of JP2730047B2 publication Critical patent/JP2730047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はファクシミリ,OCR,イメージスキャナなどの
読取部として用いられる長尺のイメージセンサに関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a long image sensor used as a reading unit of a facsimile, an OCR, an image scanner, or the like.

〔従来の技術〕[Conventional technology]

従来、この種のイメージセンサとしては非晶質シリコ
ン窒化膜、非晶質シリコン膜の積層(例えば信学技報ED
86−86),あるいは成膜条件の異なる非晶質シリコンを
積層したもの(特公昭61−88559号公報)などがある。
Conventionally, as an image sensor of this type, an amorphous silicon nitride film and a laminated amorphous silicon film (for example, IEICE Tech.
86-86) or a laminate of amorphous silicon having different film forming conditions (Japanese Patent Publication No. 61-88559).

また、この種のイメージセンサの製造方法としては基
板上に非晶質シリコンを堆積する際先ず大きな放電電力
で堆積を行い、次に放電電力を徐々に減少させながら、
堆積を継続する方法(例えば特公昭61−85859号公報)
あるいは、非晶質シリコン窒化膜,非晶質シリコンの順
に積層する方法(信学技報ED86−86)などがある。
Further, as a method for manufacturing this type of image sensor, when depositing amorphous silicon on a substrate, first, deposition is performed with a large discharge power, and then, while gradually decreasing the discharge power,
Method of continuing deposition (for example, Japanese Patent Publication No. 61-85859)
Alternatively, there is a method of laminating an amorphous silicon nitride film and an amorphous silicon in this order (IEICE Technical Report ED86-86).

第4図を参照して従来のイメージセンサの一例を説明
すると、ガラス基板21上に非晶質シリコン窒化膜22,光
電変換層としての光晶質シリコン膜23,リンドープ非晶
質シリコン24をプラズマCVDで、クロム25をスパッタ
で、順に積層する。 次にフォトリソグラフィー,エッ
チングの工程を経てリンドープ非晶質シリコン24と凹凸
形状で且つ対抗させて互いに入り組ませて配置するクロ
ム25とをパターン化して電極とする。
Referring to FIG. 4, an example of a conventional image sensor will be described. An amorphous silicon nitride film 22, a photocrystalline silicon film 23 as a photoelectric conversion layer, and a phosphorus-doped amorphous silicon 24 are formed on a glass substrate 21 by plasma. Chromium 25 is sequentially laminated by sputtering by CVD. Next, after the steps of photolithography and etching, the phosphorus-doped amorphous silicon 24 and the chromium 25 arranged in a concavo-convex shape and opposed to each other are patterned to form electrodes.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来のイメージセンサは、光信号が小さい、あるいは
受光部の非晶質シリコンが露出しているため耐環境性、
信頼性に劣るなどの欠点があった。
Conventional image sensors have a small optical signal, or the amorphous silicon in the light-receiving part is exposed,
There were drawbacks such as poor reliability.

〔課題を解決するための手段〕[Means for solving the problem]

本発明のイメージセンサは絶縁基板上にストライプ状
に形成された第1の非晶質シリコン窒化膜と、前記第1
の非晶質シリコン窒化膜上のみに形成された非電変換層
としての非晶質シリコン膜と、前記非晶質シリコン膜上
のみに形成された第2の非晶質シリコン窒化膜との三層
膜のストライプ状積層膜と、前記積層膜の断面で前記非
晶質シリコン膜の2カ所にオーミック接触となるように
接続させた電極とを有している。
An image sensor according to the present invention includes a first amorphous silicon nitride film formed in a stripe shape on an insulating substrate;
An amorphous silicon film as a non-electrical conversion layer formed only on the amorphous silicon nitride film, and a second amorphous silicon nitride film formed only on the amorphous silicon film. It has a stripe-shaped laminated film of a layer film and electrodes connected to two places of the amorphous silicon film in ohmic contact with each other in a cross section of the laminated film.

また、本発明のイメージセンサの製造方法は、絶縁基
板上にプラズマCVDにより第1の非晶質シリコン窒化
膜,光電変換層としての非晶質シリコン,第2の非晶質
シリコン窒化膜をこの順に真空を破らずに連続的に成膜
する工程と、前記第1の非晶質シリコン窒化膜,非晶質
シリコン,第2の非晶質シリコン窒化膜の三層膜の積層
膜をストライプ状に形成する工程と、前記積層膜の断面
で前記非晶質シリコンの2カ所にオーミック接触させた
電極を設ける工程とを有している。
In the method of manufacturing an image sensor according to the present invention, a first amorphous silicon nitride film, amorphous silicon as a photoelectric conversion layer, and a second amorphous silicon nitride film are formed on an insulating substrate by plasma CVD. A step of sequentially forming a film without breaking vacuum, and a step of forming a three-layer film of the first amorphous silicon nitride film, the amorphous silicon, and the second amorphous silicon nitride film in a stripe shape. And providing electrodes in ohmic contact with two portions of the amorphous silicon in the cross section of the laminated film.

本発明のイメージセンサでは非晶質シリコン窒化膜,
非晶質シリコン,非晶質シリコン窒化膜の三層構造とな
っている。ガラス基板側の第1の非晶質シリコン窒化膜
はガラス基板と非晶質シリコンとの密着性を向上させる
ため、あるいはイメージセンサ素子の出力を均一化する
ために用いられている。
In the image sensor of the present invention, an amorphous silicon nitride film,
It has a three-layer structure of amorphous silicon and an amorphous silicon nitride film. The first amorphous silicon nitride film on the glass substrate side is used for improving the adhesion between the glass substrate and the amorphous silicon, or for making the output of the image sensor element uniform.

ところで非晶質シリコン窒化膜と非晶質シリコンとの
積層構造をとると光出力が増加する。したがって,非晶
質シリコン窒化膜,非晶質シリコン,非晶質シリコン窒
化膜の三層構造とすることにより非晶質シリコン窒化膜
と非晶質シリコンの界面が二つできることになり光信号
が増加し、光信号が小さいという問題点が解決できる。
また、本発明のイメージセンサでは電極部以外の非晶質
シリコンが第2の非晶質シリコン窒化膜で覆われている
ため、この第2の非晶質シリコン窒化膜がペッシベーシ
ョン膜も兼ね、耐環境性、信頼性の改善がはかれる。
By the way, when a laminated structure of the amorphous silicon nitride film and the amorphous silicon is adopted, the light output increases. Therefore, by forming a three-layer structure of an amorphous silicon nitride film, an amorphous silicon film, and an amorphous silicon nitride film, two interfaces between the amorphous silicon nitride film and the amorphous silicon can be formed, and an optical signal is generated. The problem that the optical signal increases and the optical signal is small can be solved.
Further, in the image sensor of the present invention, since the amorphous silicon other than the electrode portion is covered with the second amorphous silicon nitride film, the second amorphous silicon nitride film also serves as a passivation film. Environmental resistance and reliability are improved.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の平面図、第2図は第1図
のA−A′線縦断面図である。ガラス基板1上に第1の
非晶質シリコン窒化膜2をSiH4とNH3を用いて、非晶質
シリコン3をSiH4を用いて、また第2の非晶質シリコン
窒化膜4をSiH4とNH3を用いてそれぞれプラズマCVD法で
真空を破らずに連続的に成膜した。
FIG. 1 is a plan view of one embodiment of the present invention, and FIG. 2 is a longitudinal sectional view taken along line AA 'of FIG. On a glass substrate 1, a first amorphous silicon nitride film 2 is made of SiH 4 and NH 3 , an amorphous silicon 3 is made of SiH 4 , and a second amorphous silicon nitride film 4 is made of SiH 4. Films were continuously formed by plasma CVD using 4 and NH 3 without breaking vacuum.

膜厚はそれぞれ700Å,10,000Å,700Åである。次に電
極となるべき部分の非晶質シリコン窒化膜4をCF4とO2
を用いたドライエッチングで除去した。そしてオーミッ
ク接触を形成するためのリンドープ非晶質シリコン5を
SiH4とPH3を用いてプラズマCVD法で500nm、クロム6を
スパッタ法で3000Å基板全面に被着した。その後リンド
ープ非晶質シリコン5とクロム6を第1図の如き電極形
状にエッチングした。
The film thicknesses are 700, 10,000 and 700, respectively. Next, the portion of the amorphous silicon nitride film 4 to be an electrode is formed of CF 4 and O 2.
It was removed by dry etching using. Then, phosphorus-doped amorphous silicon 5 for forming an ohmic contact is formed.
Using SiH 4 and PH 3 , 500 nm of chromium 6 was deposited on the entire surface of the 3000 mm substrate by sputtering using a plasma CVD method. Thereafter, the phosphorus-doped amorphous silicon 5 and chromium 6 were etched into electrode shapes as shown in FIG.

さらにマトリクス駆動用の多層配線を形成してイメー
ジセンサデバイスを作成した。
Furthermore, an image sensor device was prepared by forming a multilayer wiring for driving the matrix.

非晶質シリコン窒化膜2,4と非晶質シリコン膜3を真
空を破らず連続的に成膜すると大気に曝した場合に比べ
て約10倍の光信号が得られた。また、本発明のように第
1の非晶質シリコン窒化膜2,非晶質シリコン膜3,第2の
非晶質シリコン窒化膜4の三層を真空を破らず連続的に
成膜することにより第1,第2の非晶質シリコン窒化膜2,
4と非晶質シリコン膜3の成膜の間にそれぞれ大気に曝
す場合に比べて約20倍の光信号が得られた。
When the amorphous silicon nitride films 2 and 4 and the amorphous silicon film 3 were continuously formed without breaking vacuum, an optical signal about 10 times as large as that obtained when the film was exposed to the atmosphere was obtained. Further, as in the present invention, three layers of the first amorphous silicon nitride film 2, the amorphous silicon film 3, and the second amorphous silicon nitride film 4 are formed continuously without breaking vacuum. As a result, the first and second amorphous silicon nitride films 2,
An optical signal approximately 20 times as large as that in the case of exposure to the air was obtained between the deposition of the amorphous silicon film 3 and that of the amorphous silicon film 3.

また、本発明によれば電極部以外の非晶質シリコンが
第2の非晶質シリコン窒化膜で覆われているため、非晶
質シリコン3上の水分の吸着による特性の劣化を防止で
き、耐環境性の改善をはかることができた。
Further, according to the present invention, since the amorphous silicon other than the electrode portion is covered with the second amorphous silicon nitride film, the deterioration of the characteristics due to the adsorption of moisture on the amorphous silicon 3 can be prevented, The environmental resistance could be improved.

また、非晶質シリコン窒化膜の屈折率をn,膜厚をd,入
射光の波長をλとすると、nd=λ/4×m(mは整数)の
関係が成立するとき反射が最低となる。したがって光入
射側の非晶質シリコン窒化膜4の膜厚を適当に選ぶこと
により反射防止膜としての機能をもたせることができ
た。本発明では非晶質シリコン窒化膜の屈折率が2.0で
あるので非晶質シリコン窒化膜の厚さが700Åのとき、
ファクシミリ用の光源として用いられるピーク波長570n
mのLEDに対して反射率が最小となった。
Further, assuming that the refractive index of the amorphous silicon nitride film is n, the film thickness is d, and the wavelength of the incident light is λ, the reflection is minimum when the relationship of nd = λ / 4 × m (m is an integer) is established. Become. Therefore, by appropriately selecting the film thickness of the amorphous silicon nitride film 4 on the light incident side, a function as an antireflection film could be provided. In the present invention, the refractive index of the amorphous silicon nitride film is 2.0, so when the thickness of the amorphous silicon nitride film is 700 °,
570n peak wavelength used as light source for facsimile
The reflectance is minimum for m LEDs.

第3図は本発明の他の実施例の縦断面図である。ガラ
ス基板1上に第1の非晶質シリコン窒化膜2,非晶質シリ
コン膜3,第2の非晶質シリコン窒化膜4をこの順に積層
し、これをストライプ状にパターン化した。この時、段
差切れ、コンタクト不良などを防ぐため、端面を垂直
か、望ましくはテーパー形状にエッチングする必要があ
る。次にオーミック接触を形成するためのリンドープ非
晶質シリコン5,クロム6を全面に被着し、前記リンドー
プ非晶質シリコン5とクロム6をフォトリソグラフィー
により電極形状にパターン化した。この後、マトリクス
駆動のための多層配線を形成する工程を経て、イメージ
センサデバイスを作成した。
FIG. 3 is a longitudinal sectional view of another embodiment of the present invention. A first amorphous silicon nitride film 2, an amorphous silicon film 3, and a second amorphous silicon nitride film 4 were laminated on a glass substrate 1 in this order, and were patterned into a stripe shape. At this time, it is necessary to etch the end face vertically or desirably in a tapered shape in order to prevent disconnection of a step, poor contact, and the like. Next, phosphorus-doped amorphous silicon 5 and chromium 6 for forming an ohmic contact were applied on the entire surface, and the phosphorus-doped amorphous silicon 5 and chromium 6 were patterned into an electrode shape by photolithography. Thereafter, an image sensor device was created through a process of forming a multilayer wiring for driving the matrix.

本実施例の場合にも、前記実施例の場合と同様に、従
来の方法に比べて約1桁大きい光信号が得られた。
In the case of this embodiment, as in the case of the above-described embodiment, an optical signal that is approximately one digit larger than that of the conventional method was obtained.

なお、電極6として前述のクロムの他にチタン,アル
ミニウム,モリブデン、あるいは前記金属と金の二層電
極を用いても同様な効果が得られる。
The same effect can be obtained by using titanium, aluminum, molybdenum, or a two-layer electrode of the above metal and gold in addition to the above-described chromium as the electrode 6.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明のイメージセンサは、第1
の非晶質シリコン窒化膜,非晶質シリコン,第2の非晶
質シリコン窒化膜の積層構造となっているため、大きな
光信号が得られる効果がある。
As described above, the image sensor of the present invention has the first
Because of the laminated structure of the amorphous silicon nitride film, the amorphous silicon, and the second amorphous silicon nitride film, a large optical signal can be obtained.

また、電極部以外の非晶質シリコンが第2の非晶質シ
リコン窒化膜により被覆されているため高い信頼性が得
られる効果がある。また光入射側の非晶質シリコン窒化
膜の膜厚を適当に選ぶことにより反射防止膜の機能をも
たせることもできる。
Further, since the amorphous silicon other than the electrode portion is covered with the second amorphous silicon nitride film, there is an effect that high reliability can be obtained. The function of an antireflection film can also be provided by appropriately selecting the thickness of the amorphous silicon nitride film on the light incident side.

更に、本発明の製造方法によれば、イメージセンサは
第1の非晶質シリコン窒化膜,非晶質シリコン,第2の
非晶質シリコン窒化膜をプラズマCVDで真空を破らずに
連続成膜するため、大きな光信号が得られる効果があ
る。
Further, according to the manufacturing method of the present invention, the image sensor continuously forms the first amorphous silicon nitride film, the amorphous silicon film, and the second amorphous silicon nitride film by plasma CVD without breaking the vacuum. Therefore, there is an effect that a large optical signal can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例によるイメージセンサの平面
図、第2図は第1図のA−A′での断面図、第3図は本
発明の他の実施例の縦断面図、第4図は従来のイメージ
センサの縦断面図である。 1,21……ガラス基板、2……第1の非晶質シリコン窒化
膜、3,23……非晶質シリコン膜、4……第2の非晶質シ
リコン窒化膜、5,24……リンドープ非晶質シリコン、6,
25……クロム、22……非晶質シリコン窒化膜。
1 is a plan view of an image sensor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA 'of FIG. 1, FIG. 3 is a longitudinal cross-sectional view of another embodiment of the present invention, FIG. 4 is a longitudinal sectional view of a conventional image sensor. 1,21 a glass substrate, 2 a first amorphous silicon nitride film, 3,23 amorphous silicon film, 4 a second amorphous silicon nitride film, 5,24 Phosphorus-doped amorphous silicon, 6,
25: Chromium, 22: Amorphous silicon nitride film.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】絶縁基板上にストライプ状に形成された第
1の非晶質シリコン窒化膜と、前記第1の非晶質シリコ
ン窒化膜上のみに形成された光電変換層としての非晶質
シリコン膜と、前記非晶質シリコン膜上のみに形成され
た第2の非晶質シリコン窒化膜との三層膜のストライプ
状積層膜と、前記積層膜の断面で前記非晶質シリコン膜
の2カ所にオーミック接触となるように接続させた電極
とを有することを特徴とするイメージセンサ。
A first amorphous silicon nitride film formed in a stripe shape on an insulating substrate; and an amorphous film as a photoelectric conversion layer formed only on the first amorphous silicon nitride film. A striped laminated film of a three-layer film of a silicon film, a second amorphous silicon nitride film formed only on the amorphous silicon film, and a cross-section of the amorphous silicon film An image sensor having electrodes connected at two locations so as to provide ohmic contact.
【請求項2】前記第1,第2の非晶質シリコン窒化膜の
内、光入射側のものが入射光に対する反射率が最低とな
るような膜厚であることを特徴とする特許請求の範囲第
1項記載のイメージセンサ。
2. The semiconductor device according to claim 1, wherein the first and second amorphous silicon nitride films have a film thickness such that a light-incident side has a minimum reflectance with respect to incident light. 2. The image sensor according to claim 1, wherein:
【請求項3】絶縁基板上にプラズマCVDにより第1の非
晶質シリコン窒化膜,光電変換層としての非晶質シリコ
ン,第2の非晶質シリコン窒化膜をこの順に真空を破ら
ずに連続的に成膜する工程と、前記第1の非晶質シリコ
ン窒化膜,非晶質シリコン,第2の非晶質シリコン窒化
膜の三層膜の積層膜をストライプ状に形成する工程と、
前記積層膜の断面で前記非晶質シリコンの2カ所にオー
ミック接触させた電極を設ける工程とを有することを特
徴とするイメージセンサの製造方法。
3. A first amorphous silicon nitride film, an amorphous silicon film as a photoelectric conversion layer, and a second amorphous silicon nitride film are continuously formed on an insulating substrate in this order without breaking a vacuum. Forming a three-layer film of the first amorphous silicon nitride film, the amorphous silicon, and the second amorphous silicon nitride film in a stripe shape;
Providing an electrode in ohmic contact with two portions of the amorphous silicon in a cross section of the laminated film.
JP63098707A 1988-04-20 1988-04-20 Image sensor and method of manufacturing the same Expired - Lifetime JP2730047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63098707A JP2730047B2 (en) 1988-04-20 1988-04-20 Image sensor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63098707A JP2730047B2 (en) 1988-04-20 1988-04-20 Image sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH01270280A JPH01270280A (en) 1989-10-27
JP2730047B2 true JP2730047B2 (en) 1998-03-25

Family

ID=14226983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63098707A Expired - Lifetime JP2730047B2 (en) 1988-04-20 1988-04-20 Image sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2730047B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4231312C2 (en) * 1992-09-18 1996-10-02 Siemens Ag Anti-reflective layer and method for the lithographic structuring of a layer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693380A (en) * 1979-12-26 1981-07-28 Shunpei Yamazaki Manufacture of photoelectric conversion device
JPS58140153A (en) * 1982-02-16 1983-08-19 Oki Electric Ind Co Ltd Manufacture of optical read sensor
JPS631077A (en) * 1986-06-20 1988-01-06 Matsushita Electric Ind Co Ltd Photodetector

Also Published As

Publication number Publication date
JPH01270280A (en) 1989-10-27

Similar Documents

Publication Publication Date Title
US8338900B2 (en) Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
US5091638A (en) Contact image sensor having light-receiving windows
JPS59143362A (en) Passivation film
JP2730047B2 (en) Image sensor and method of manufacturing the same
JP2000196051A (en) Solid-state image sensor and manufacture thereof
JPH0456351U (en)
JPS6193678A (en) Photoelectric conversion device
US5792374A (en) Method of fabricating a color image sensor from a gray scale image sensor
CN115440833B (en) Optical probe and method of manufacturing the same
JPH01139458U (en)
JPH0370184A (en) Photovoltaic device
KR950004573A (en) Close-type image sensor and manufacturing method
JPH01243466A (en) Contact type image sensor
JPH06138317A (en) Interference filter and photodetector with interference filter
JP2562569Y2 (en) Photo diode
JP2573342B2 (en) Light receiving element
KR100207653B1 (en) Pyroelectric infrared sensor and fabricating method of the same
JPH0569701U (en) Low reflection glass
JPH01181558A (en) Perfectly contact type image sensor
JPH053752B2 (en)
JPH0728015B2 (en) Reader and its manufacturing method
JPH05218370A (en) Production of image sensor
KR20010004175A (en) Method for fabricating image sensor with improved photo sensitivity
JPH05121776A (en) Semiconductor device and manufacture thereof
JPH0442572A (en) Photosensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11