JPH06138317A - Interference filter and photodetector with interference filter - Google Patents

Interference filter and photodetector with interference filter

Info

Publication number
JPH06138317A
JPH06138317A JP4288340A JP28834092A JPH06138317A JP H06138317 A JPH06138317 A JP H06138317A JP 4288340 A JP4288340 A JP 4288340A JP 28834092 A JP28834092 A JP 28834092A JP H06138317 A JPH06138317 A JP H06138317A
Authority
JP
Japan
Prior art keywords
layer
index dielectric
interference filter
refractive index
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4288340A
Other languages
Japanese (ja)
Inventor
Takahiro Funakoshi
貴博 船越
Toshimasa Hamada
敏正 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP4288340A priority Critical patent/JPH06138317A/en
Publication of JPH06138317A publication Critical patent/JPH06138317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To improve the transmittance of the interference filter having dielectric layers of low refractive indices and dielectric layers of high refractive indices by decreasing the ripples in the transmission band on a short wavelength side than in the non-transmission band. CONSTITUTION:This IR cut filter 4 consists of 25 layers provided with the low-refractive index dielectric layers 2 in the layers of the odd numbers counted from a glass substrate 1 on this glass substrate 1 and the high-refractive index dielectric layers 3 likewise in the layers of even numbers and ending with the low-refractive index dielectric layer 2 in the final layer counted from the glass substrate 1. The above-mentioned filter is so formed that the optical film thickness of the second layer counted from the glass substrate 1 is larger than lambda/4, the optical film thickness of the third layer larger, than lambda/4 and likewise the optical film thickness of the fourth layer larger than lambda/4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばカメラの自動露
光システム等に使用される干渉フィルター及び干渉フィ
ルター付受光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interference filter and a light receiving element with an interference filter used in, for example, an automatic exposure system of a camera.

【0002】[0002]

【従来の技術】従来、カメラの自動露光システム等にフ
ォトダイオード等の受光素子を用いる場合には、人間の
可視光領域での光量測定が必要であるので、シリコン受
光素子上に赤外カットフィルタ等を設けて、シリコンの
持つ波長感度特性を視感度に補正したフォトダイオード
が必要となる。従来のこのようなフォトダイオードに
は、一般にガラス製光吸収フィルタが用いられている
が、コストが高くなる為、設計の自由度の多さの面から
も多層膜による干渉フィルターが適当であった。
2. Description of the Related Art Conventionally, when a light receiving element such as a photodiode is used in a camera automatic exposure system or the like, it is necessary to measure the light amount in the visible light range of a human, so an infrared cut filter is provided on the silicon light receiving element. It is necessary to provide a photodiode in which the wavelength sensitivity characteristic of silicon is corrected to the luminosity by providing the above. Generally, a glass optical absorption filter is used for such a conventional photodiode, but since the cost is high, an interference filter using a multilayer film is suitable from the viewpoint of a high degree of freedom in design. .

【0003】図9に従来の干渉フィルターの構成図を示
す。ガラス基板1等の基板上に、赤外カットフィルター
4を設ける為には、中心波長をλとすると、前記ガラス
基板1上に低屈折率誘電体層(SiO2)2、高屈折率
誘電体層(TiO2)3、低屈折率誘電体層2、高屈折
率誘電体層3、・・・低屈折率誘電体層2を25層まで
形成し、その光学的膜厚を第1層及び第25層をλ/8
とし、その他の層をλ/4としていた。この構成による
赤外カットフィルター4の分光特性曲線図を図10に示
す。
FIG. 9 shows a block diagram of a conventional interference filter. In order to provide the infrared cut filter 4 on a substrate such as the glass substrate 1, when the central wavelength is λ, the low refractive index dielectric layer (SiO 2 ) 2 and the high refractive index dielectric are provided on the glass substrate 1. Layer (TiO 2 ) 3, low-refractive index dielectric layer 2, high-refractive index dielectric layer 3, ... Up to 25 low-refractive index dielectric layers 2 are formed, and the optical film thicknesses thereof are the first layer and Λ / 8 for the 25th layer
And the other layers were λ / 4. FIG. 10 shows a spectral characteristic curve diagram of the infrared cut filter 4 having this configuration.

【0004】図11に他の従来の干渉フィルターの構成
図を示す。シリコン受光素子10上に、赤外カットフィ
ルター4を設ける為には、中心波長をλとすると、前記
シリコン受光素子10の受光面上に低屈折率誘電体(S
iO2)2、高屈折率誘電体層(TiO2)3、低屈折率
誘電体層2、高屈折率誘電体層3、・・・低屈折率誘電
体層2を25層まで形成し、その光学的膜厚を第1層及
び第25層をλ/8とし、その他の層をλ/4としてい
た。この構成による赤外カットフィルター4の分光特性
曲線図を図12に示す。
FIG. 11 shows a block diagram of another conventional interference filter. In order to provide the infrared cut filter 4 on the silicon light receiving element 10, when the central wavelength is λ, a low refractive index dielectric (S) is formed on the light receiving surface of the silicon light receiving element 10.
io 2 ) 2, high refractive index dielectric layer (TiO 2 ) 3, low refractive index dielectric layer 2, high refractive index dielectric layer 3, ... The optical thicknesses of the first and 25th layers were λ / 8, and the other layers were λ / 4. FIG. 12 shows a spectral characteristic curve diagram of the infrared cut filter 4 having this configuration.

【0005】[0005]

【発明が解決しようとする課題】従来のガラス基板上に
赤外カットフィルターを設けた構成において、図10か
ら明らかなように、不透過帯域よりも短波長側、つまり
700nm付近の透過帯のリップルが大きいことがわか
る。
In the structure in which the infrared cut filter is provided on the conventional glass substrate, as is apparent from FIG. 10, ripples in the transmission band near the wavelength shorter than the non-transmission band, that is, near 700 nm. It turns out that is large.

【0006】また、他の従来のシリコン受光素子上に赤
外カットフィルターを設けた構成においても、図12か
ら明らかなように、不透過帯よりも短波長側、つまり7
00nm付近の透過帯のリップルが大きく、また、全体
的に透過率が低くなった。
Further, also in the configuration in which the infrared cut filter is provided on the other conventional silicon light receiving element, as is apparent from FIG. 12, the wavelength is shorter than the non-transmission band, that is, 7
The ripple in the transmission band near 00 nm was large, and the transmittance was low as a whole.

【0007】このように不透過帯域よりも短波長側の透
過帯にリップルが残ると、透過帯のリップルが透過率を
下げ問題となった。
When ripples remain in the transmission band on the shorter wavelength side than the non-transmission band, the ripples in the transmission band lower the transmittance, which is a problem.

【0008】本発明は、上記問題点を解決することを目
的とするものである。
The present invention aims to solve the above problems.

【0009】[0009]

【課題を解決するための手段】本発明は、基板又は受光
素子の受光面上に、前記基板又は受光面より数えて奇数
層目には低屈折率の誘電体層が、同じく偶数層目には高
屈折率の誘電体層が設けられ、前記基板又は受光面より
数えて最終層は低屈折率誘電体層で終了するN層より成
る干渉フィルター又は干渉フィルター付受光素子におい
て、前記基板又は受光面より数えて第2層目の光学的膜
厚をλ/4より厚く、同じく第3層目の光学的膜厚をλ
/4より厚く、同じく第4層目の光学的膜厚をλ/4よ
り厚く形成したことを特徴とするものである。
According to the present invention, on a light receiving surface of a substrate or a light receiving element, a dielectric layer having a low refractive index is formed in an odd layer in the odd layer counted from the substrate or the light receiving surface and in an even layer. Is a high-refractive-index dielectric layer, and the final layer counting from the substrate or the light-receiving surface is an interference filter or a light-receiving element with an interference filter consisting of N layers ending with a low-refractive-index dielectric layer. The optical film thickness of the second layer is greater than λ / 4, and the optical film thickness of the third layer is λ
It is characterized in that the optical film thickness is made thicker than / 4 and the optical film thickness of the fourth layer is made thicker than λ / 4.

【0010】[0010]

【作用】基板又は受光面より数えて第2層目の光学的膜
厚をλ/4より厚く、同じく第3層目の光学的膜厚をλ
/4より厚く、同じく第4層目光学的膜厚をλ/4より
厚く形成したことにより、不透過帯域よりも短波長側、
つまり700nm付近の透過帯のリップルを低減し、透
過率を向上することができる。
The optical film thickness of the second layer is greater than λ / 4, and the optical film thickness of the third layer is also λ, counting from the substrate or the light receiving surface.
/ 4 and also the fourth layer has an optical film thickness greater than λ / 4, so that the shorter wavelength side than the non-transmission band,
That is, it is possible to reduce the ripple in the transmission band near 700 nm and improve the transmittance.

【0011】[0011]

【実施例】図1に本発明よりなる赤外カットフィルター
の構成図を示す。ガラス基板1上に低屈折率誘電体層
2、高屈折率誘電体層3、低屈折率誘電体層2、高屈折
率誘電体層3、・・・低屈折率誘電体層2の25層から
成る赤外カットフィルター4が構成されており、低屈折
率誘電体層2には屈折率1.46のSiO2 、高屈折率
誘電体層3には屈折率2.25のTiO2 が用いられて
いる。また、これらの誘電体膜の積層方法としては電子
ビーム蒸着法等により積層される。さらに、反射させた
い光の中心波長の長さをλとした場合に、第1層として
の光学的膜厚を0.59×λ/4とし、第2層としての
光学的膜厚を1.18×λ/4とし、第3層としての光
学的膜厚を1.1×λ/4とし、第4層としての光学的
膜厚を1.1×λ/4とし、第25層としての膜厚を
0.5×λ/4とし、その他の層の光学的膜厚をλ/4
に構成するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a block diagram of an infrared cut filter according to the present invention. 25 layers of low-refractive-index dielectric layer 2, high-refractive-index dielectric layer 3, low-refractive-index dielectric layer 2, high-refractive-index dielectric layer 3, ... Low-refractive-index dielectric layer 2 on glass substrate 1. The infrared cut filter 4 is composed of SiO 2 having a refractive index of 1.46 for the low refractive index dielectric layer 2 and TiO 2 having a refractive index of 2.25 for the high refractive index dielectric layer 3. Has been. Further, as a method for laminating these dielectric films, an electron beam vapor deposition method or the like is used. Further, when the length of the central wavelength of the light to be reflected is λ, the optical film thickness as the first layer is 0.59 × λ / 4, and the optical film thickness as the second layer is 1. 18 × λ / 4, the optical thickness of the third layer is 1.1 × λ / 4, the optical thickness of the fourth layer is 1.1 × λ / 4, and the 25th layer is The film thickness is 0.5 × λ / 4, and the optical film thickness of other layers is λ / 4.
It is composed of.

【0012】このように構成されたガラス基板1上の赤
外カットフィルター4の分光特性曲線図を図2に示す。
図2からも明らかなように、不透過帯域よりも短波長
側、つまり700nm付近の透過帯のリップルは、図1
0の従来の分光特性曲線図よりも大きく減少させること
ができる。
FIG. 2 shows a spectral characteristic curve diagram of the infrared cut filter 4 on the glass substrate 1 thus constructed.
As is clear from FIG. 2, the ripple in the transmission band near the wavelength shorter than the non-transmission band, that is, near 700 nm is shown in FIG.
It can be greatly reduced compared to the conventional spectral characteristic curve diagram of 0.

【0013】図3に上記実施例から成る赤外カットフィ
ルター4を受光素子を封止するパッケージの光入力面に
設置した構成図を示す。この構成は、セラミック基板
(ステム)5の凹部6に受光素子チップ7をマウント
し、その上に樹脂8をコーティングし、さらに赤外カッ
トフィルター4を設置したものである。図中、9は金属
製リードピンである。
FIG. 3 shows a configuration diagram in which the infrared cut filter 4 according to the above embodiment is installed on the light input surface of the package for sealing the light receiving element. In this structure, the light receiving element chip 7 is mounted in the concave portion 6 of the ceramic substrate (stem) 5, the resin 8 is coated thereon, and the infrared cut filter 4 is further installed. In the figure, 9 is a metal lead pin.

【0014】図4に他の実施例の構成図を示す。受光素
子10の受光面上に低屈折率誘電体層2、高屈折率誘電
体層3、低屈折率誘電体層2、高屈折率誘電体層3、・
・・低屈折率誘電体層2の25層から成る赤外カットフ
ィルター4が構成されており、前記受光素子10として
は、半導体を用いたものが一般的であり、pin構造、
pn接合構造、光伝導体等を用いたものが多い。本実施
例においては、シリコン受光素子、pn接合構造で説明
するが、他の半導体による光検出器においても誘電体薄
膜の構成については同じであり、特に差異はない。ま
た、、低屈折率誘電体層2には屈折率1.46のSiO
2 、高屈折率誘電体層3には屈折率2.25のTiO2
を用いた場合を説明する。
FIG. 4 shows a block diagram of another embodiment. On the light receiving surface of the light receiving element 10, the low refractive index dielectric layer 2, the high refractive index dielectric layer 3, the low refractive index dielectric layer 2, the high refractive index dielectric layer 3 ,.
..The infrared cut filter 4 composed of 25 layers of the low refractive index dielectric layer 2 is configured, and the light receiving element 10 generally uses a semiconductor, and has a pin structure,
Many use pn junction structures, photoconductors, and the like. In the present embodiment, a silicon light receiving element and a pn junction structure will be described, but the photodetectors made of other semiconductors have the same structure of the dielectric thin film, and there is no particular difference. Further, the low-refractive-index dielectric layer 2 is made of SiO having a refractive index of 1.46.
2 , the high refractive index dielectric layer 3 has a refractive index of 2.25 TiO 2
The case of using will be described.

【0015】これらの誘電体膜の積層方法としては、電
子ビーム蒸着法等を用いてpn接合を構成した半導体ウ
ェハー全面に、低屈折率誘電体層2、高屈折率誘電体層
3を交互に多層積層した後に、電極端子部分をエッチン
グ法を用いて構成し、各チップに分割し、視感度補正を
行った赤外カットフィルター4を有するシリコン受光素
子10を作製することができる。
As a method for laminating these dielectric films, a low refractive index dielectric layer 2 and a high refractive index dielectric layer 3 are alternately formed on the entire surface of a semiconductor wafer having a pn junction formed by using an electron beam evaporation method or the like. After laminating in multiple layers, it is possible to fabricate the silicon light receiving element 10 having the infrared cut filter 4 in which the electrode terminal portion is formed by using the etching method and divided into each chip and the luminosity correction is performed.

【0016】本発明では、反射させたい光の中心波長の
長さをλとした場合、シリコン受光素子10上に第1層
としての光学的膜厚を0.59×λ/4とし、第2層と
しての光学的膜厚1.18×λ/4とし、第3層及び第
4層としての光学的膜厚を1.1×λ/4とし、第25
層としての光学的膜厚を0.5×λ/4とし、その他の
層の光学的膜厚をλ/4に構成するものである。
In the present invention, when the length of the central wavelength of the light to be reflected is λ, the optical film thickness as the first layer on the silicon light receiving element 10 is 0.59 × λ / 4, and the second thickness is The optical thickness of the layer is 1.18 × λ / 4, the optical thickness of the third and fourth layers is 1.1 × λ / 4, and the 25th
The optical film thickness of the layer is 0.5 × λ / 4, and the optical film thickness of the other layers is λ / 4.

【0017】このように構成された赤外カットフィルタ
ーの分光特性曲線図を図5に示す。図5からも明らかな
ように、不透過帯域よりも短波長側、つまり700nm
付近の透過帯の透過率は、図12に示す従来の透過率よ
りも高くなっているが、全体的な透過率は低く、リップ
ルも残ったままである。
FIG. 5 shows a spectral characteristic curve diagram of the infrared cut filter thus constructed. As is clear from FIG. 5, the wavelength is shorter than the non-transmission band, that is, 700 nm.
The transmittance of the nearby transmission band is higher than the conventional transmittance shown in FIG. 12, but the overall transmittance is low and ripples remain.

【0018】そこで図6に示すように、上記実施例にお
いて、シリコン受光素子10と赤外カットフィルター4
との屈折率差の整合をとる為に、前記シリコン受光素子
10の受光面と前記赤外カットフィルター4の第1層間
に整合層11を介在させ、前記整合層11は、屈折率
2.25のTiO2 を用い、光学的膜厚を0.8×λ/
4とするものである。
Therefore, as shown in FIG. 6, in the above embodiment, the silicon light receiving element 10 and the infrared cut filter 4 are used.
In order to match the refractive index difference between the matching layer 11 and the light receiving surface of the silicon light receiving element 10 and the first interlayer of the infrared cut filter 4, the matching layer 11 has a refractive index of 2.25. the TiO 2 used in the optical film thickness 0.8 × lambda /
4 is set.

【0019】このように整合層11を設けた場合の分光
特性曲線図を図7に示す。図7からも明らかなよう
に、、不透過帯域よりも短波長側、つまり700nm付
近の透過帯のリップルを大きく減少することができ、さ
らに全体的な透過率を向上することができる。
FIG. 7 shows a spectral characteristic curve diagram when the matching layer 11 is provided in this manner. As is apparent from FIG. 7, the ripple in the transmission band near the short wavelength side of the non-transmission band, that is, near 700 nm can be greatly reduced, and the overall transmittance can be further improved.

【0020】図7の分光特性にシリコンの感度特性をか
け合わせた赤外カットフィルターを有するシリコン受光
素子の感度特性曲線図を図8に示す。図8より、リップ
ルのない視感度補正を加えた赤外カットフィルターを有
するシリコン受光素子を作製することが可能となること
を確認できる。また、誘電体薄膜はフォトリソグラフィ
技術を用いて加工することができるため、受光素子の小
型化、高精度化を向上することができる。
FIG. 8 shows a sensitivity characteristic curve diagram of a silicon light receiving element having an infrared cut filter obtained by multiplying the spectral characteristic of FIG. 7 by the sensitivity characteristic of silicon. From FIG. 8, it can be confirmed that it is possible to fabricate a silicon light receiving element having an infrared cut filter with ripple-free luminosity correction. Further, since the dielectric thin film can be processed by using the photolithography technique, it is possible to improve the miniaturization and high accuracy of the light receiving element.

【0021】尚、本発明は、上記実施例に限定されるも
のではなく、例えば、低屈折率誘電体2として屈折率
1.63のAl22、高屈折率誘電体3として屈折率
2.05のZrO2等の誘電体を用いることにより、同
様の効果を得ることは勿論である。
The present invention is not limited to the above-described embodiment, and for example, the low refractive index dielectric 2 may be Al 2 O 2 having a refractive index of 1.63, and the high refractive index dielectric 3 may be a refractive index 2. Of course, a similar effect can be obtained by using a dielectric material such as ZrO 2 of 0.05.

【0022】[0022]

【発明の効果】以上のように、本発明によれば、基板上
の干渉フィルターにおいて、基板より数えて第2層の高
屈折率誘電体層の光学的膜厚をλ/4より厚く、第3層
の低屈折率誘電体層の光学的膜厚をλ/4より厚く、第
4層の高屈折率誘電体層の光学的膜厚をλ/4より厚く
形成することにより、不透過帯域よりも短波長側、つま
り700nmの透過帯のリップルを減少させることがで
きる。
As described above, according to the present invention, in the interference filter on the substrate, the optical thickness of the second high-refractive-index dielectric layer, which is counted from the substrate, is larger than λ / 4, By forming the optical film thickness of the three low refractive index dielectric layers to be thicker than λ / 4 and the optical film thickness of the fourth high refractive index dielectric layer to be thicker than λ / 4, It is possible to reduce ripples on the shorter wavelength side, that is, in the 700 nm transmission band.

【0023】また、受光素子上の干渉フィルターにおい
ては、受光面より数えて第2層の高屈折率誘電体層の光
学的膜厚をλ/4より厚く、第3の低屈折率誘電体層の
光学的膜厚をλ/4より厚く、第4層の高屈折率誘電体
層の光学的膜厚をλ/4より厚く形成することにより、
不透過帯域よりも短波長側、つまり700nm付近の透
過帯の透過率を向上することができる。さらに、受光面
と第1層間に整合層を介在させることにより、不透過帯
域よりも短波長側、つまり700nm付近の透過帯のリ
ップルを低減し、全体的な透過率を向上することができ
る。
In the interference filter on the light receiving element, the optical film thickness of the second high refractive index dielectric layer, which is counted from the light receiving surface, is larger than λ / 4, and the third low refractive index dielectric layer is formed. By making the optical film thickness of the fourth layer of high refractive index dielectric layer thicker than λ / 4,
It is possible to improve the transmittance in the shorter wavelength side than the non-transmission band, that is, in the transmission band near 700 nm. Furthermore, by interposing a matching layer between the light receiving surface and the first layer, ripples in the transmission band on the shorter wavelength side than the non-transmission band, that is, near 700 nm can be reduced, and the overall transmittance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1に示す実施例の分光特性曲線図である。FIG. 2 is a spectral characteristic curve diagram of the embodiment shown in FIG.

【図3】図1に示す実施例を受光素子上に形成した構成
図である。
FIG. 3 is a configuration diagram in which the embodiment shown in FIG. 1 is formed on a light receiving element.

【図4】本発明の他の実施例を示す構成図である。FIG. 4 is a configuration diagram showing another embodiment of the present invention.

【図5】図4に示す実施例の分光特性曲線図である。5 is a spectral characteristic curve diagram of the embodiment shown in FIG.

【図6】本発明の更に他の実施例を示す構成図である。FIG. 6 is a configuration diagram showing still another embodiment of the present invention.

【図7】図6に示す実施例の分光特性曲線図である。7 is a spectral characteristic curve diagram of the embodiment shown in FIG.

【図8】図6に示す実施例の感度特性曲線図である。8 is a sensitivity characteristic curve diagram of the embodiment shown in FIG.

【図9】従来例を示す構成図である。FIG. 9 is a configuration diagram showing a conventional example.

【図10】図9に示す従来例の分光特性曲線図である。10 is a spectral characteristic curve diagram of the conventional example shown in FIG.

【図11】他の従来例を示す構成図である。FIG. 11 is a configuration diagram showing another conventional example.

【図12】図11に示す従来例の分光感度特性曲線図で
ある。
12 is a spectral sensitivity characteristic curve diagram of the conventional example shown in FIG.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 低屈折率誘電体層 3 高屈折率誘電体層 4 赤外カットフィルター 5 セラミック基板 6 凹部 7 受光素子チップ 8 樹脂 9 金属リードピン 10 受光素子 11 整合層 1 Glass Substrate 2 Low Refractive Index Dielectric Layer 3 High Refractive Index Dielectric Layer 4 Infrared Cut Filter 5 Ceramic Substrate 6 Recess 7 Photoreceptor Chip 8 Resin 9 Metal Lead Pin 10 Photoreceptor 11 Matching Layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、該基板より数えて奇数層目に
は低屈折率の誘電体層が、同じく偶数層目には高屈折率
の誘電体層が設けられ、前記基板より数えて最終層は低
屈折率誘電体層で終了するN層より成る干渉フィルター
において、前記基板より数えて第2層目の光学的膜厚を
λ/4より厚く、同じく第3層目の光学的膜厚をλ/4
より厚く、同じく第4層目の光学的膜厚をλ/4より厚
く形成したことを特徴とする干渉フィルター。
1. A low-refractive-index dielectric layer is provided on an odd-numbered layer of the substrate, and a high-refractive-index dielectric layer is provided on the even-numbered layer of the substrate. The final layer is an interference filter consisting of an N layer terminated with a low-refractive-index dielectric layer. In the interference filter, the optical thickness of the second layer, which is counted from the substrate, is larger than λ / 4, and the optical layer of the third layer is the same. Thickness is λ / 4
An interference filter characterized in that it is made thicker and the optical thickness of the fourth layer is also made thicker than λ / 4.
【請求項2】 請求項1記載の干渉フィルターを受光素
子を封入するパッケージの光入力面に設置したことを特
徴とする干渉フィルター付受光素子。
2. A light receiving element with an interference filter, wherein the interference filter according to claim 1 is installed on a light input surface of a package enclosing the light receiving element.
【請求項3】 受光素子の受光面上に、該受光面より数
えて奇数層目には低屈折率の誘電体層が、同じく偶数層
目には高屈折率の誘電体層が設けられ、前記受光面より
数えて最終層は低屈折率誘電体層で終了するN層より成
る干渉フィルターが形成されてなる干渉フィルター付受
光素子において、前記受光面より数えて第2層目の光学
的膜厚をλ/4より厚く、同じく第3層目の光学的膜厚
をλ/4より厚く、同じく第4層目の光学的膜厚をλ/
4より厚く形成したことを特徴とする干渉フィルター付
受光素子。
3. A light-receiving surface of a light-receiving element is provided with a low-refractive-index dielectric layer in odd layers and a high-refractive-index dielectric layer in even layers counting from the light-receiving surface. In a light-receiving element with an interference filter, wherein the last layer counted from the light-receiving surface is an interference filter made of an N layer that ends with a low-refractive-index dielectric layer, the second optical film counted from the light-receiving surface. The thickness is greater than λ / 4, the optical thickness of the third layer is also greater than λ / 4, and the optical thickness of the fourth layer is λ /.
4. A light receiving element with an interference filter, which is formed thicker than 4.
【請求項4】 請求項3記載の干渉フィルター付受光素
子において、前記受光面と第1層目間に整合層が介在さ
れて成ることを特徴とする干渉フィルター付受光素子。
4. The light receiving element with an interference filter according to claim 3, wherein a matching layer is interposed between the light receiving surface and the first layer.
JP4288340A 1992-10-27 1992-10-27 Interference filter and photodetector with interference filter Pending JPH06138317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4288340A JPH06138317A (en) 1992-10-27 1992-10-27 Interference filter and photodetector with interference filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4288340A JPH06138317A (en) 1992-10-27 1992-10-27 Interference filter and photodetector with interference filter

Publications (1)

Publication Number Publication Date
JPH06138317A true JPH06138317A (en) 1994-05-20

Family

ID=17728935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4288340A Pending JPH06138317A (en) 1992-10-27 1992-10-27 Interference filter and photodetector with interference filter

Country Status (1)

Country Link
JP (1) JPH06138317A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768026A (en) * 1994-04-14 1998-06-16 Omron Corporation Dichroic mirror for separating/synthesizing light with a plurality of wavelengths and optical apparatus and detecting method using the same
US7929204B2 (en) * 2007-10-31 2011-04-19 Hon Hai Precision Industry Co., Ltd. Infrared cut filter and lens module using the same
DE102004005233B4 (en) * 2003-04-10 2012-10-25 Elmo Company Limited Infrared-ray blocking filter and methods for its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768026A (en) * 1994-04-14 1998-06-16 Omron Corporation Dichroic mirror for separating/synthesizing light with a plurality of wavelengths and optical apparatus and detecting method using the same
DE102004005233B4 (en) * 2003-04-10 2012-10-25 Elmo Company Limited Infrared-ray blocking filter and methods for its production
US7929204B2 (en) * 2007-10-31 2011-04-19 Hon Hai Precision Industry Co., Ltd. Infrared cut filter and lens module using the same

Similar Documents

Publication Publication Date Title
JP6448842B2 (en) Solid-state imaging device and imaging apparatus
JP4806197B2 (en) Solid-state imaging device
US20120001285A1 (en) Solid state imaging apparatus
WO2022051971A1 (en) Imaging optical system, imaging device and electronic device
JP2019133137A (en) Optical filters
US11422295B2 (en) Image capture device, optical filter film, and method for manufacturing optical filter film
US7576860B2 (en) Light filter having a wedge-shaped profile
EP1628146B1 (en) Optical low pass filter
JP2000196051A (en) Solid-state image sensor and manufacture thereof
JPH06138317A (en) Interference filter and photodetector with interference filter
JPH04206571A (en) Solid-state image sensing device
US8445299B2 (en) Performance optically coated semiconductor devices and related methods of manufacture
US8928102B2 (en) Performance optically coated semiconductor devices and related methods of manufacture
JPH0516003B2 (en)
KR100710203B1 (en) A image sensor and a method for fabricating the same
US11315975B2 (en) Image sensor and method for manufacturing the same
SU1597821A1 (en) Conversion filter
JPH0677507A (en) Photodetector
JP2935765B2 (en) Manufacturing method of dichroic mirror
CN111796352B (en) Image acquisition device, light filter film and manufacturing method of light filter film
JPS62187802A (en) Beam splitter
KR100457335B1 (en) A semiconductor device and method of fabricating the same
JP2004069865A (en) Multilayer film optical filter and its manufacturing method and optical part using it
JPH03227063A (en) Solid-state image sensor
RU1598697C (en) Correcting filter