JP2729421B2 - Decompression evaporative cooling equipment - Google Patents

Decompression evaporative cooling equipment

Info

Publication number
JP2729421B2
JP2729421B2 JP3262832A JP26283291A JP2729421B2 JP 2729421 B2 JP2729421 B2 JP 2729421B2 JP 3262832 A JP3262832 A JP 3262832A JP 26283291 A JP26283291 A JP 26283291A JP 2729421 B2 JP2729421 B2 JP 2729421B2
Authority
JP
Japan
Prior art keywords
vacuum pump
ejector
evaporative cooling
cooling water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3262832A
Other languages
Japanese (ja)
Other versions
JPH051871A (en
Inventor
米村  政雄
湯本  秀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP3262832A priority Critical patent/JP2729421B2/en
Priority to AU11427/92A priority patent/AU635457B2/en
Priority to US07/848,286 priority patent/US5209284A/en
Priority to DE69200056T priority patent/DE69200056T2/en
Priority to DK92302380.8T priority patent/DK0509646T3/en
Priority to EP92302380A priority patent/EP0509646B1/en
Priority to ES92302380T priority patent/ES2052404T3/en
Priority to KR1019920005277A priority patent/KR960010656B1/en
Priority to CN92102343A priority patent/CN1034633C/en
Priority to CA002065507A priority patent/CA2065507C/en
Priority to NO921469A priority patent/NO301188B1/en
Priority to BR929201370A priority patent/BR9201370A/en
Publication of JPH051871A publication Critical patent/JPH051871A/en
Priority to HK98100785A priority patent/HK1001825A1/en
Application granted granted Critical
Publication of JP2729421B2 publication Critical patent/JP2729421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/002Component parts of these vessels not mentioned in B01J3/004, B01J3/006, B01J3/02 - B01J3/08; Measures taken in conjunction with the process to be carried out, e.g. safety measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷却室内を減圧状態に
し、供給した冷却水を蒸発せしめて被冷却物を気化冷却
するものに関する。上記の減圧気化冷却装置としては、
各種反応釜の冷却、食品の冷却装置等がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for reducing the pressure in a cooling chamber, evaporating cooling water supplied, and evaporating and cooling an object to be cooled. As the reduced pressure evaporative cooling device,
There are various types of reactor cooling and food cooling devices.

【0002】[0002]

【従来技術】従来の減圧気化冷却装置として、例えば図
2に示す反応釜の気化冷却装置がある。図2において、
1は反応釜であり、原料入口2、製品出口3、撹拌機
4、ジャケット部5を有している。ジャケット部5に冷
却水を供給するための冷却水供給管6を接続すると共
に、ジャケット部5の下部に流体排出口7を設けて真空
ポンプ8と接続する。
2. Description of the Related Art As a conventional reduced pressure evaporative cooling device, there is, for example, an evaporative cooling device for a reactor shown in FIG. In FIG.
Reference numeral 1 denotes a reaction vessel, which has a raw material inlet 2, a product outlet 3, a stirrer 4, and a jacket portion 5. A cooling water supply pipe 6 for supplying cooling water to the jacket portion 5 is connected, and a fluid discharge port 7 is provided at a lower portion of the jacket portion 5 to be connected to a vacuum pump 8.

【0003】反応釜1を冷却する場合、真空ポンプ8で
ジャケット部5内を所定の減圧状態にし、冷却水供給管
6より冷却水を供給することにより、冷却水が蒸発して
気化冷却を行なう。蒸発しきれない冷却水の一部と気化
蒸気は流体排出口7から真空ポンプ8で吸引され排出さ
れる。
When the reactor 1 is cooled, the inside of the jacket 5 is reduced to a predetermined pressure by a vacuum pump 8, and cooling water is supplied from a cooling water supply pipe 6, whereby the cooling water evaporates and evaporative cooling is performed. . A part of the cooling water that cannot be evaporated and the vaporized vapor are sucked and discharged from the fluid discharge port 7 by the vacuum pump 8.

【0004】[0004]

【本発明が解決しようとする課題】上記従来の減圧気化
冷却装置は、減圧度合が不安定で従って蒸発気化の度合
も不安定となり、冷却ムラが発生し、被冷却物としての
製品の品質を一定に維持し難い問題があった。この原因
は、蒸発しきれない冷却水がジャケット部に溜り、流体
排出口が冷却水により塞がれてしまうことにより、ジャ
ケット上部が液封状態となって、減圧度合が低下してし
まうためである。冷却水が溜らない程度に供給してやれ
ば良いのだが、そのようにするためには負荷や冷却水量
の変動を絶えず考慮した複雑な制御や装置が必要となり
実際的ではない。
In the above-mentioned conventional decompression evaporative cooling device, the degree of decompression is unstable and therefore the degree of evaporation and vaporization is also unstable, resulting in uneven cooling, and the quality of the product as the object to be cooled is reduced. There was a problem that was difficult to keep constant. The reason for this is that the cooling water that cannot completely evaporate accumulates in the jacket portion and the fluid discharge port is blocked by the cooling water, so that the upper portion of the jacket is in a liquid-sealed state and the degree of pressure reduction is reduced. is there. It is sufficient to supply the cooling water to such an extent that the cooling water does not accumulate, but in order to do so, complicated controls and devices that constantly take into account fluctuations in the load and the amount of cooling water are required, which is not practical.

【0005】また、流体排出口が冷却水により塞がれて
もジャケット上部の減圧度合が低下しないように、ジャ
ケット上部と真空ポンプを接続することができる。しか
しながら、このように接続したとしても、真空ポンプが
液体用か気体用かにより、あるいは、流体排出口に滞留
した冷却水がその水頭圧により真空ポンプへ優先的に吸
引されるために、ジャケット上部の蒸気あるいは残留空
気を必ずしも効果的に吸引することができないのであ
る。
Further, the upper part of the jacket and the vacuum pump can be connected so that the degree of pressure reduction at the upper part of the jacket does not decrease even if the fluid discharge port is closed by the cooling water. However, even if the connection is made in this manner, the upper part of the jacket is required depending on whether the vacuum pump is for liquid or gas, or because the cooling water retained at the fluid discharge port is preferentially sucked into the vacuum pump by its head pressure. It is not always possible to effectively suck the vapor or residual air.

【0006】従って本発明の技術的課題は、気化冷却室
の液体も気体も吸引できるようにして、気化冷却室の減
圧度合の低下を防止することである。
Accordingly, it is a technical object of the present invention to prevent a decrease in the degree of pressure reduction in the vaporizing cooling chamber by allowing both liquid and gas in the vaporizing cooling chamber to be sucked.

【0007】[0007]

【課題を解決するための手段】本発明の減圧気化冷却装
置の構成は次の通りである。エゼクタとポンプを組合せ
た排液用真空ポンプと、該排液用真空ポンプと気化冷却
室の下方を接続し、該気化冷却室に冷却水を供給して、
被冷却物を気化冷却するものにおいて、気化冷却室の上
方に排気用真空ポンプを接続すると共に、当該排気用真
空ポンプを水封式真空ポンプ、又は複数段の蒸気エゼク
タと水エゼクタを組合せた真空ポンプ、又は最終段の蒸
気エゼクタを上記排液用真空ポンプと接続した複数段の
蒸気エゼクタ、で形成したものである。
The structure of the reduced pressure evaporative cooling device of the present invention is as follows. A drainage vacuum pump combining an ejector and a pump, and the drainage vacuum pump and the lower part of the vaporization cooling chamber are connected to supply cooling water to the vaporization cooling chamber,
In an apparatus for evaporating and cooling an object to be cooled, an evacuation vacuum pump is connected above the evaporative cooling chamber, and the evacuation vacuum pump is a water ring vacuum pump or a vacuum in which a plurality of stages of a steam ejector and a water ejector are combined. The pump or the last stage steam ejector is formed by a plurality of stages of steam ejectors connected to the drainage vacuum pump.

【0008】[0008]

【作用】気化冷却室に排液用の真空ポンプと、排気用の
真空ポンプを接続したことにより、気化冷却室に存在す
る液体も気体もそれぞれ滞留することなく吸引すること
ができる。従って、液体のみを優先的に吸引することに
よる減圧度合の低下を防止することができる。
By connecting a vacuum pump for drainage and a vacuum pump for evacuation to the evaporative cooling chamber, both liquid and gas existing in the evaporative cooling chamber can be sucked without stagnation. Therefore, it is possible to prevent the degree of reduced pressure from being reduced by preferentially sucking only the liquid.

【0009】[0009]

【実施例】図1において第1の実施例を説明する。本実
施例においては、冷却装置として反応釜を用いた例を示
す。図1において、反応釜21と排液用真空ポンプ22
と排気用真空ポンプ23と冷却水供給管28とで減圧気
化冷却装置を構成する。反応釜21は、従来のものと同
様に、原料入口2、製品出口3、撹拌機4、気化冷却室
としてのジャケット部5を有しており、ジャケット部5
には冷却水供給口6a,6b、流体排出口7を設けてあ
る。
FIG. 1 shows a first embodiment. In this embodiment, an example in which a reactor is used as a cooling device will be described. In FIG. 1, a reaction vessel 21 and a drainage vacuum pump 22 are shown.
The evacuation vacuum pump 23 and the cooling water supply pipe 28 constitute a reduced pressure evaporative cooling device. The reactor 21 has a raw material inlet 2, a product outlet 3, a stirrer 4, and a jacket portion 5 as a vaporizing cooling chamber, as in the conventional reactor.
Are provided with cooling water supply ports 6a and 6b and a fluid discharge port 7.

【0010】排液用真空ポンプ22はエゼクタ32とポ
ンプ30を組合せた組合せポンプから成り、ポンプ30
がタンク31に吸込側を接続され吐出側をエゼクタ32
のノズル33に接続し、エゼクタ32のディフュ―ザ3
4がタンク31の上部空間に接続された構成のものであ
り、エゼクタ32とジャケット部5下端の流体排出口7
とが連通路50で接続され、この連通路50にスチ―ム
トラップ51と自動弁52を並列に取り付ける。自動弁
52としては、全開全閉を行う開閉弁であっても、全閉
から全開まで通過流量を調整できるものでもあっても良
い。この排液用真空ポンプ22は、ポンプ30の作動に
よりタンク31内の水をエゼクタ32に供給して吸引作
用させ、タンク31に戻すようになっている。
The drainage vacuum pump 22 is composed of a combination pump in which an ejector 32 and a pump 30 are combined.
Is connected to the suction side of the tank 31 and the ejector 32 is connected to the discharge side.
And the diffuser 3 of the ejector 32
4 is connected to the upper space of the tank 31, the ejector 32 and the fluid outlet 7 at the lower end of the jacket portion 5.
Are connected by a communication passage 50, and a steam trap 51 and an automatic valve 52 are attached to the communication passage 50 in parallel. The automatic valve 52 may be an on-off valve that fully opens and closes completely, or may be one that can adjust the flow rate from fully closed to fully open. The drainage vacuum pump 22 supplies the water in the tank 31 to the ejector 32 by the operation of the pump 30 and causes the ejector 32 to perform a suction action, and returns the water to the tank 31.

【0011】排気用真空ポンプ23はジャケット部5の
上部から排気管57により連通する。排気用真空ポンプ
23としては水封式真空ポンプ等を用いることができ
る。排気管57に自動弁58を取り付ける。
The evacuation vacuum pump 23 communicates with the upper part of the jacket 5 through an evacuation pipe 57. As the evacuation vacuum pump 23, a water ring vacuum pump or the like can be used. An automatic valve 58 is attached to the exhaust pipe 57.

【0012】冷却水供給管28は、自動弁70を介して
タンク31に接続すると共に、自動弁26を介して冷却
水供給口6a,6bと接続する。冷却水供給口6a,6
bは、より冷却ムラを防止するために反応釜21の全周
にわたって設けることが望ましい。また、冷却水供給口
6a,6b部には図示していないが冷却水を噴霧するた
めのノズルを配置することが望ましい。冷却水の一部は
自動弁70を介しタンク31に供給される。タンク31
内に冷却水を供給することによってタンク31内の水温
を制御するようになっている。タンク31内の水温を検
出する温度センサ―41からの信号により自動弁70は
開閉する。
The cooling water supply pipe 28 is connected to the tank 31 via an automatic valve 70 and to the cooling water supply ports 6a and 6b via the automatic valve 26. Cooling water supply ports 6a, 6
It is desirable that b is provided over the entire circumference of the reaction vessel 21 in order to further prevent uneven cooling. Although not shown, a nozzle for spraying cooling water is desirably disposed at the cooling water supply ports 6a and 6b. A part of the cooling water is supplied to the tank 31 via the automatic valve 70. Tank 31
The temperature of the water in the tank 31 is controlled by supplying cooling water to the inside. The automatic valve 70 opens and closes based on a signal from a temperature sensor 41 that detects the temperature of the water in the tank 31.

【0013】排液用真空ポンプ22に余剰水排出手段2
5を設ける。余剰水排出手段25は自動弁71を取付け
タンク31内の水位センサ―42a,42bからの信号
により、タンク31内の水位を所定範囲に保つものであ
る。
The drainage vacuum pump 22 is provided with a surplus water discharging means 2.
5 is provided. The surplus water discharging means 25 is provided with an automatic valve 71 to maintain the water level in the tank 31 within a predetermined range based on signals from water level sensors 42a and 42b in the tank 31.

【0014】自動弁75は、排液用真空ポンプ22を循
環する循環水の一部を反応釜21の冷却水として用いる
場合に使用するためのもので、排液用真空ポンプ22と
ジャケット部5の冷却水供給口6bとを接続する管路に
介在させる。また自動弁76は、冷却のみならず加熱を
も行なう場合に、加熱用蒸気供給管27の開閉を行なう
ためのものである。それぞれの弁26,52,58,7
0,71,75,76及び反応釜21内の被冷却物の温
度を検出する温度センサ―56もコントロ―ル部29と
接続して集中制御できるようにする。
The automatic valve 75 is used when a part of the circulating water circulating through the drainage vacuum pump 22 is used as cooling water for the reactor 21. The drainage vacuum pump 22 and the jacket 5 are used. Of the cooling water supply port 6b. The automatic valve 76 opens and closes the heating steam supply pipe 27 when performing not only cooling but also heating. Each valve 26, 52, 58, 7
A temperature sensor 56 for detecting the temperatures of the objects 0, 71, 75, 76 and the object to be cooled in the reactor 21 is also connected to the control unit 29 so that centralized control is possible.

【0015】反応釜21を冷却する場合、排液用真空ポ
ンプ22及び排気用真空ポンプ23を駆動すると共に、
自動弁52,58を開弁してジャケット部5内を所定の
真空状態に維持する。次いで自動弁26を開弁して冷却
水をジャケット部5に供給する。供給される冷却水は反
応釜21の熱により直ちに気化して反応釜21を冷却す
る。冷却により気化した蒸気と、気化しきれなかった冷
却水は、それぞれ排気用真空ポンプ23と排液用真空ポ
ンプ22に吸引される。蒸気も冷却水も共に吸引される
ことにより、ジャケット部5の減圧度合は安定したもの
となり、減圧度合の低下に伴う冷却ムラは生じない。
When cooling the reactor 21, the drainage vacuum pump 22 and the exhaust vacuum pump 23 are driven,
The automatic valves 52 and 58 are opened to maintain the inside of the jacket portion 5 at a predetermined vacuum state. Next, the automatic valve 26 is opened to supply the cooling water to the jacket portion 5. The supplied cooling water is immediately vaporized by the heat of the reaction vessel 21 to cool the reaction vessel 21. The vapor that has been vaporized by cooling and the cooling water that has not been completely vaporized are sucked by the exhaust vacuum pump 23 and the drain vacuum pump 22, respectively. Since both the steam and the cooling water are sucked, the degree of decompression of the jacket portion 5 becomes stable, and no cooling unevenness due to the decrease in the degree of decompression occurs.

【0016】排液用真空ポンプ22に吸引された冷却水
は、エゼクタ32を経てタンク31に至る。タンク31
の水位が所定量になると、水位センサ―42aにより自
動弁71が開弁して余剰水として系外に排除する。排液
用真空ポンプ22の真空度すなわちエゼクタ32の減圧
度合は、ノズル33を通過する流体の温度に対する飽和
圧力となるために、タンク31内の水の温度を冷却水を
供給することにより調節すればほぼ任意にコントロ―ル
できる。
The cooling water sucked by the drainage vacuum pump 22 reaches the tank 31 via the ejector 32. Tank 31
When the water level reaches a predetermined level, the automatic valve 71 is opened by the water level sensor 42a and is discharged out of the system as surplus water. The degree of vacuum of the drainage vacuum pump 22, that is, the degree of pressure reduction of the ejector 32, is adjusted by supplying cooling water to the temperature of the water in the tank 31 in order to reach a saturation pressure with respect to the temperature of the fluid passing through the nozzle 33. It can be controlled almost arbitrarily.

【0017】図3は第2の実施例を示すもので、第1の
実施例と同一部材には同一符号を付し、減圧気化冷却装
置としての詳細な説明は省略する。本実施例は、排気用
真空ポンプ23として蒸気エゼクタ60を用いたもの
で、加熱用蒸気供給管27を弁62を介して連通し、ノ
ズル61から蒸気を供給することによりジャケット部5
内の気化蒸気あるいは一部残留空気等の気体を吸引する
ものである。図3においては、蒸気エゼクタ60を1段
用いたものを示したが、2段、3段等複数段用いること
もできる。蒸気エゼクタ60により、ジャケット部5内
を効率良く且つ比較的高真空に吸引することができる。
FIG. 3 shows a second embodiment, in which the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description of the reduced-pressure evaporative cooling device is omitted. In this embodiment, a steam ejector 60 is used as the evacuation vacuum pump 23, and the heating steam supply pipe 27 is connected via a valve 62, and steam is supplied from a nozzle 61 so that the jacket portion 5 is supplied.
This is for sucking gas such as vaporized vapor or some residual air inside. FIG. 3 shows a case where the steam ejector 60 is used in one stage, but a plurality of stages such as two stages or three stages may be used. By the steam ejector 60, the inside of the jacket portion 5 can be efficiently sucked into a relatively high vacuum.

【0018】図4は第3の実施例を示すもので、第1の
実施例と同一部材には同一の符号を付し、詳細な説明は
省略する。本実施例は、排気用真空ポンプ23として、
複数段の蒸気エゼクタ63,64を用いると共に、最終
段の蒸気エゼクタ64に水エゼクタ65を接続したもの
である。冷却水供給管28を分岐し、弁66を介して水
エゼクタ65のノズルと接続したもので、ジャケット部
5から排気管57を経て気化蒸気を蒸気エゼクタ63,
64で吸引し、水エゼクタ65でこれらの蒸気を吸引す
るものである。最終段に水エゼクタ65を用いることに
より、駆動蒸気のみならず気化蒸気も効果的に吸引する
ことができる。
FIG. 4 shows a third embodiment, in which the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. In the present embodiment, as the evacuation vacuum pump 23,
A plurality of steam ejectors 63 and 64 are used, and a water ejector 65 is connected to the last-stage steam ejector 64. The cooling water supply pipe 28 is branched and connected to a nozzle of a water ejector 65 via a valve 66.
The suction is performed at 64 and the vapor is suctioned at the water ejector 65. By using the water ejector 65 in the last stage, not only the driving steam but also the vaporized steam can be effectively sucked.

【0019】図5は他の実施例を示すもので、排気用真
空ポンプ23として、複数段の蒸気エゼクタ63,64
を用いると共に、最終段の蒸気エゼクタ64を、連通管
67を介して排液用真空ポンプ22のエゼクタ32と接
続したものである。蒸気エゼクタ63,64で気化蒸気
を効率良く吸引し、排液用真空ポンプ22でこれらの蒸
気と共に冷却水をも吸引するものである。
FIG. 5 shows another embodiment, in which a plurality of stages of steam ejectors 63 and 64 are used as an exhaust vacuum pump 23.
, And the last-stage steam ejector 64 is connected to the ejector 32 of the drainage vacuum pump 22 via the communication pipe 67. Vaporized steam is efficiently sucked by the steam ejectors 63 and 64, and cooling water is sucked by the drainage vacuum pump 22 together with the steam.

【0020】本実施例においては、排液用の真空ポンプ
22と排気用の真空ポンプ23をそれぞれ別の管路5
0,57で接続したが、図示していないが気液分離器を
介することにより共通の管路で接続することもできる。
In this embodiment, a vacuum pump 22 for drainage and a vacuum pump 23 for exhaust are connected to separate pipes 5 respectively.
Although they were connected at 0 and 57, they can be connected by a common pipe line via a gas-liquid separator (not shown).

【0021】本実施例においては、気化冷却装置として
反応釜のものを示したが、その他の蒸溜装置や濃縮装置
や殺菌装置等であっても同様に実施することができる。
In this embodiment, the reactor is used as the evaporative cooling device. However, other distilling devices, concentrating devices, sterilizing devices and the like can be used in the same manner.

【0022】[0022]

【発明の効果】本発明によれば、気化冷却室の液体も気
体もそれぞれ滞留することなく吸引することができ、気
化冷却室の減圧度合が低下することを防止することがで
きる。従って、冷却ムラを生じることがなく、被冷却物
の製品品質を一定に維持することができる。
According to the present invention, the liquid and the gas in the evaporative cooling chamber can be sucked without stagnation, and the degree of pressure reduction in the evaporative cooling chamber can be prevented from lowering. Therefore, it is possible to keep the product quality of the object to be cooled constant without causing cooling unevenness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の減圧気化冷却装置の実施例の構成図で
ある。
FIG. 1 is a configuration diagram of an embodiment of a reduced-pressure evaporative cooling device of the present invention.

【図2】従来の気化冷却装置の構成図である。FIG. 2 is a configuration diagram of a conventional evaporative cooling device.

【図3】本発明の減圧気化冷却装置の第2実施例を示す
部分構成図である。
FIG. 3 is a partial configuration diagram showing a second embodiment of the reduced-pressure evaporative cooling device of the present invention.

【図4】本発明の減圧気化冷却装置の第3実施例を示す
部分構成図である。
FIG. 4 is a partial configuration diagram showing a third embodiment of the reduced-pressure evaporative cooling device of the present invention.

【図5】本発明の減圧気化冷却装置の他の実施例を示す
部分構成図である。
FIG. 5 is a partial configuration diagram showing another embodiment of the reduced pressure evaporative cooling device of the present invention.

【符号の説明】[Explanation of symbols]

5 ジャケット部 6a,6b 冷却水供給口 21 反応釜 22 排液用真空ポンプ 23 排気用真空ポンプ 28 冷却水供給管 30 ポンプ 31 タンク 32 エゼクタ 5 Jacket section 6a, 6b Cooling water supply port 21 Reactor 22 Vacuum pump for drainage 23 Vacuum pump for exhaustion 28 Cooling water supply pipe 30 Pump 31 Tank 32 Ejector

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エゼクタとポンプを組合せた排液用真空
ポンプと、該排液用真空ポンプと気化冷却室の下方を接
続し、該気化冷却室に冷却水を供給して、被冷却物を気
化冷却するものにおいて、気化冷却室の上方に排気用真
空ポンプを接続すると共に、当該排気用真空ポンプを水
封式真空ポンプ、又は複数段の蒸気エゼクタと水エゼク
タを組合せた真空ポンプ、又は最終段の蒸気エゼクタを
上記排液用真空ポンプと接続した複数段の蒸気エゼク
タ、で形成したことを特徴とする減圧気化冷却装置。
A vacuum for drainage combining an ejector and a pump.
The pump, the drainage vacuum pump and the lower part of the evaporative cooling chamber are connected.
Subsequently , a cooling water is supplied to the evaporative cooling chamber to evaporate and cool the object to be cooled. An evacuation vacuum pump is connected above the evaporative cooling chamber , and the evacuation vacuum pump is connected with water.
Sealed vacuum pump or multistage steam ejector and water ejector
A vacuum pump or a final-stage steam ejector
Multi-stage steam ejector connected to the above-mentioned drainage vacuum pump
A reduced pressure evaporative cooling device characterized by being formed by:
JP3262832A 1991-04-15 1991-09-13 Decompression evaporative cooling equipment Expired - Fee Related JP2729421B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP3262832A JP2729421B2 (en) 1991-04-15 1991-09-13 Decompression evaporative cooling equipment
AU11427/92A AU635457B2 (en) 1991-04-15 1992-03-05 Reduced pressure heat treating device
US07/848,286 US5209284A (en) 1991-04-15 1992-03-09 Reduced pressure heat treating device
DK92302380.8T DK0509646T3 (en) 1991-04-15 1992-03-19 Heat treatment device with reduced pressure
EP92302380A EP0509646B1 (en) 1991-04-15 1992-03-19 Reduced pressure heat treating device
ES92302380T ES2052404T3 (en) 1991-04-15 1992-03-19 HEAT TREATMENT DEVICE.
DE69200056T DE69200056T2 (en) 1991-04-15 1992-03-19 Heat treatment device with reduced pressure.
KR1019920005277A KR960010656B1 (en) 1991-04-15 1992-03-30 Reduced pressure heat treating device
CN92102343A CN1034633C (en) 1991-04-15 1992-04-02 Reduced pressure heat treating device
CA002065507A CA2065507C (en) 1991-04-15 1992-04-07 Reduced pressure heat treating device
NO921469A NO301188B1 (en) 1991-04-15 1992-04-13 Device for heat treatment under reduced pressure
BR929201370A BR9201370A (en) 1991-04-15 1992-04-14 REDUCED PRESSURE THERMAL TREATMENT APPLIANCE
HK98100785A HK1001825A1 (en) 1991-05-15 1998-02-04 Reduced pressure heat treating device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-110880 1991-04-15
JP11088091 1991-04-15
JP3262832A JP2729421B2 (en) 1991-04-15 1991-09-13 Decompression evaporative cooling equipment

Publications (2)

Publication Number Publication Date
JPH051871A JPH051871A (en) 1993-01-08
JP2729421B2 true JP2729421B2 (en) 1998-03-18

Family

ID=14547038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3262832A Expired - Fee Related JP2729421B2 (en) 1991-04-15 1991-09-13 Decompression evaporative cooling equipment

Country Status (2)

Country Link
JP (1) JP2729421B2 (en)
ZA (1) ZA921663B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4021184B2 (en) 2001-12-06 2007-12-12 スガツネ工業株式会社 Hinge with catch
JP4949965B2 (en) * 2007-08-10 2012-06-13 株式会社テイエルブイ Evaporative cooling device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822000B2 (en) * 1977-09-05 1983-05-06 三菱電機株式会社 Cone-shaped honeycomb diaphragm
JPH01315336A (en) * 1988-06-15 1989-12-20 Tlv Co Ltd Heating and cooling device for reactor

Also Published As

Publication number Publication date
JPH051871A (en) 1993-01-08
ZA921663B (en) 1992-11-25

Similar Documents

Publication Publication Date Title
JP2729421B2 (en) Decompression evaporative cooling equipment
JP2764226B2 (en) Decompression evaporative cooling equipment
JP4260996B2 (en) Evaporative cooling device
JP2729417B2 (en) Decompression evaporative cooling equipment
JP3593406B2 (en) Decompression heating and cooling equipment
JP2821958B2 (en) Decompression evaporative cooling equipment
JP2724774B2 (en) Decompression evaporative cooling equipment
JP2840910B2 (en) Steam heating device
JP2665835B2 (en) Heating and cooling device
JP2942854B2 (en) Decompression evaporative cooling equipment
JP2665838B2 (en) Heating and cooling device
JP2684266B2 (en) Decompression evaporative cooling equipment
JP2546583Y2 (en) Decompression evaporative cooling equipment
JP3282005B2 (en) Steam heating device
JP4249325B2 (en) Evaporative cooling device
KR100601350B1 (en) vacuum evaporator
JP3188990B2 (en) Steam heating evaporative cooling system
JPH0517572Y2 (en)
JP2840909B2 (en) Steam heating device
JP2724776B2 (en) Heating and cooling device
JPH09137799A (en) Ejector vacuum pump
KR200364144Y1 (en) vacuum evaporator
JP3256794B2 (en) Mold heating or cooling device
JP2709531B2 (en) Steam trap device
JP3484528B2 (en) Decompression evaporative cooling system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees