JP2726018B2 - Multi-tube heat exchanger - Google Patents
Multi-tube heat exchangerInfo
- Publication number
- JP2726018B2 JP2726018B2 JP17210195A JP17210195A JP2726018B2 JP 2726018 B2 JP2726018 B2 JP 2726018B2 JP 17210195 A JP17210195 A JP 17210195A JP 17210195 A JP17210195 A JP 17210195A JP 2726018 B2 JP2726018 B2 JP 2726018B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- fluid flow
- heat exchanger
- rows
- staggered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Details Of Heat-Exchange And Heat-Transfer (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は管巣を構成する多数
本の伝熱管が流体流れ方向に等間隔を存し且つ流体流れ
直交方向に等ピッチで平行に配置される多管式熱交換器
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-tube heat exchanger in which a large number of heat transfer tubes constituting a tube nest are arranged at equal intervals in a fluid flow direction and in parallel at an equal pitch in a direction perpendicular to the fluid flow. About.
【0002】[0002]
【従来の技術】図3及び図4は従来の多管式熱交換器に
おける伝熱管の配置例を示す要部断面図であって、図3
は多数本の伝熱管1が流体の流れ方向イに対して碁盤目
状に配置された碁盤目配列の多管式熱交換器を示し、図
4は多数本の伝熱管1が流体流れ方向イに対して千鳥状
に配置された千鳥配列の多管式熱交換器を示している。2. Description of the Related Art FIGS. 3 and 4 are cross-sectional views showing the arrangement of heat transfer tubes in a conventional multi-tube heat exchanger.
FIG. 4 shows a multi-tubular heat exchanger having a grid arrangement in which a number of heat transfer tubes 1 are arranged in a grid pattern with respect to the flow direction of the fluid, and FIG. 2 shows a staggered multi-tube heat exchanger arranged in a staggered pattern.
【0003】[0003]
【発明が解決しようとする課題】前記従来の図3に示す
碁盤目配列の多管式熱交換器は、流体流れの圧力損失は
低いが、流体流れ方向イに対し各列の伝熱管1が重なっ
た構造であるため、各管が互いの死水域に入り、流体が
各伝熱管1の間を真っ直ぐに吹き抜けることになるの
で、管周囲の熱伝達率が低下し、熱交換器としての性能
が悪いという問題があった。In the conventional multi-tube heat exchanger having a grid pattern shown in FIG. 3, the pressure loss of the fluid flow is low, but the heat transfer tubes 1 of each row are arranged in the fluid flow direction a. Because of the overlapping structure, the tubes enter each other's dead water area, and the fluid blows straight through between the heat transfer tubes 1, so that the heat transfer coefficient around the tubes decreases, and the performance as a heat exchanger There was a problem that was bad.
【0004】また、図4に示す千鳥配列の多管式熱交換
器は、流体流れ方向イに位置する奇数列の伝熱管1と偶
数列の伝熱管1が流体流れ方向に1列おきに重なる構造
であるため、熱交換器としての性能がやはり低下し、ま
た流体流れの流線が1列ごとに細かく曲げられるために
圧力損失が大きくなるという問題があった。Further, in the staggered multi-tube heat exchanger shown in FIG. 4, the odd-numbered rows of heat transfer tubes 1 and the even-numbered rows of heat transfer tubes 1 located in the fluid flow direction a overlap each other in the fluid flow direction. Due to the structure, the performance as a heat exchanger also deteriorates, and the streamlines of the fluid flow are finely bent for each row, so that the pressure loss increases.
【0005】本発明は前記従来の問題を解消するために
なされたもので、その目的は管巣を流れる流体の圧力損
失の上昇を抑えつつ熱伝達率の向上を図ることができる
管配列とした多管式の熱交換器を提供することにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a tube array capable of improving a heat transfer coefficient while suppressing an increase in pressure loss of a fluid flowing through a tube nest. It is to provide a multi-tube heat exchanger.
【0006】[0006]
【課題を解決するための手段】前記の目的を達成するた
めに本発明は、管巣を構成する多数本の伝熱管1が流体
流れ方向イに等間隔を存し且つ流体流れ直交方向に等ピ
ッチPで平行に配置される多管式の熱交換器において、
流体流れ方向イに位置する多数列の管列1a,1b,1
c…のうち隣接する奇数列の管列と偶数列の管列の流体
流れ直交方向に対するピッチPのずれを1/2とした千
鳥配列を基本とし、第1列目の管列1aと第2列目の管
列1bで構成される第1の千鳥配列管群Xに対して、第
3列目の管列1cと第4列目1dの管列で構成される第
2の千鳥配列管群Yを流体流れ直交方向となる右側又は
左側に1/8〜3/8ピッチ(望ましくは2/8ピッ
チ)に相当する変位距離S1をもってずらし、第5列目
及び第6列目の管列1e,1fは第1列目及び第2列目
の管列1a,1bと同じ千鳥配列位置に戻り、以下同じ
パターンを繰り返す配列をもって構成したことを特徴と
する。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is directed to a heat exchanger in which a plurality of heat transfer tubes constituting a tube nest are arranged at regular intervals in a fluid flow direction and in a direction orthogonal to the fluid flow. In a multi-tube heat exchanger arranged in parallel with a pitch P,
Multiple rows of pipes 1a, 1b, 1 located in the fluid flow direction a
.. of the adjacent odd-numbered pipe rows and even-numbered pipe rows in the staggered arrangement in which the pitch P is shifted by half in the direction perpendicular to the fluid flow. For the first staggered tube group X constituted by the tube lines 1b of the second line, the second staggered tube group constituted by the tube lines of the third line 1c and the fourth line 1d. Y is shifted rightward or leftward in the direction perpendicular to the fluid flow by a displacement distance S1 corresponding to 1/8 to 3/8 pitch (preferably 2/8 pitch), and the fifth and sixth tube rows 1e are arranged. , 1f return to the same staggered array position as the first and second tube rows 1a, 1b, and are configured to have an array that repeats the same pattern.
【0007】[0007]
【発明の実施の形態】以下、本発明の第1の実施例を図
1に従い説明する。この第1の実施例は、管巣を構成す
る多数本の伝熱管1が流体流れ方向イに等間隔(例えば
16mmの間隔)を存し且つ流体流れ直交方向に等ピッチ
P(例えば32mmのピッチ間隔とした同一の配列ピッ
チ)で平行に配置される多管式の熱交換器において、流
体流れ方向イに位置する多数列の管列1a,1b,1c
…のうち隣接する奇数列の管列と偶数列の管列(第1列
目の管列1aと第2列目の管列1b、第3列目の管列1
cと第4列目1d、…)の流体流れ直交方向に対するピ
ッチPのずれを1/2とした千鳥配列を基本としてい
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG. In the first embodiment, a large number of heat transfer tubes 1 constituting a tube nest have an equal interval (for example, an interval of 16 mm) in the direction of fluid flow and an equal pitch P (for example, a pitch of 32 mm) in the direction perpendicular to the fluid flow. In a multi-tube heat exchanger arranged in parallel with the same arrangement pitch at intervals), a large number of tube rows 1a, 1b, 1c located in the fluid flow direction a
.. Among the adjacent odd-numbered tube rows and even-numbered tube lines (the first tube line 1a and the second tube line 1b, the third tube line 1
..) in the direction perpendicular to the fluid flow.
【0008】そして、第1列目の管列1aと第2列目の
管列1bで構成される第1の千鳥配列管群Xに対して、
第3列目の管列1cと第4列目1dの管列で構成される
第2の千鳥配列管群Yを流体流れ直交方向の右側に1/
8〜3/8ピッチ(実施例では2/8ピッチ)に相当す
る変位距離S1をもってずらし、第5列目及び第6列目
の管列1e,1fは第1列目及び第2列目の管列1a,
1bと同じ千鳥配列位置に戻り、以下同じパターンを繰
り返す配列をもって管巣を構成している。The first staggered tube group X composed of the first tube line 1a and the second tube line 1b is:
The second staggered tube group Y composed of the third tube line 1c and the fourth line 1d is moved to the right in the direction perpendicular to the fluid flow by 1 /
The tube rows 1e and 1f of the fifth and sixth rows are shifted by a displacement distance S1 corresponding to 8 to 3/8 pitch (2/8 pitch in the embodiment). Tube row 1a,
Returning to the same staggered arrangement position as in 1b, the tube nest is constituted by an arrangement in which the same pattern is repeated thereafter.
【0009】図2は本発明の第2の実施例を示す。この
第2の実施例は、第3列目の管列1cと第4列目1dの
管列で構成される第2の千鳥配列管群Yを第1列目の管
列1aと第2列目の管列1bで構成される第1の千鳥配
列管群Xに対して流体流れ直交方向の左側に1/8〜3
/8ピッチ(実施例では2/8ピッチ)に相当する変位
距離S1をもってずらしている点が前述した第1の実施
例と相違している。その他の構成は前記第1実施例と同
様であるから、同一部分に同符号を付して詳細な説明は
省略する。FIG. 2 shows a second embodiment of the present invention. In the second embodiment, the second zigzag array tube group Y composed of the third tube row 1c and the fourth row 1d is arranged in the first row 1a and the second row. With respect to the first staggered tube group X constituted by the eye tube row 1b, 1/8 to 3
This embodiment differs from the first embodiment in that it is shifted by a displacement distance S1 corresponding to / 8 pitch (2/8 pitch in the embodiment). The other configuration is the same as that of the first embodiment, and the same parts are denoted by the same reference numerals and detailed description will be omitted.
【0010】なお、第2千鳥配列管群Yの第1千鳥配列
管群Xに対する流体流れ直交方向の変位距離S1を1/
8〜3/8ピッチの範囲に限定した理由は、奇数列の管
列と偶数列の管列の流体流れ直交方向に対するピッチの
ずれを1/2(4/8)とした千鳥配列を基本としてい
るので、変位距離S1を1/8ピッチ以下又は3/8ピ
ッチ以上にすると、各列の伝熱管1が流体流れ方向イに
対して重なる方向に変位し、熱伝達率等の性能が低下す
るからである。Note that the displacement distance S1 of the second staggered array tube group Y with respect to the first staggered array tube group X in the direction orthogonal to the fluid flow is 1 /.
The reason that the pitch is limited to the range of 8 to 3/8 pitch is based on a staggered arrangement in which the pitch difference between the odd-numbered row of rows and the even-numbered row of rows in the direction perpendicular to the fluid flow is 1/2 (4/8). Therefore, if the displacement distance S1 is less than or equal to 1/8 pitch or greater than or equal to 3/8 pitch, the heat transfer tubes 1 in each row are displaced in a direction overlapping with the fluid flow direction a, and the performance such as the heat transfer coefficient is reduced. Because.
【0011】図5は管配列パターンの変化による従来と
本発明の比較図を示す。この図5の比較図は、従来の多
管式熱交換器と本発明の多管式熱交換器を性能試験して
得られた数値に基いて作成したもので、本発明の管変位
配列による多管式熱交換器は、従来の碁盤目配列及び千
鳥配列による多管式熱交換器に比べて熱伝達率が良く、
また圧力損失は従来の碁盤目配列による多管式熱交換器
よりも大きいが、従来の千鳥配列による多管式熱交換器
よりも低いという結果が得られている。FIG. 5 shows a comparison diagram of the prior art and the present invention due to a change in the tube arrangement pattern. The comparison diagram of FIG. 5 is made based on numerical values obtained by performing a performance test on the conventional multitubular heat exchanger and the multitubular heat exchanger of the present invention, and is based on the tube displacement arrangement of the present invention. The multi-tubular heat exchanger has a better heat transfer coefficient than the conventional multi-tubular heat exchanger with a grid and staggered arrangement,
In addition, the result is that the pressure loss is larger than that of the conventional multi-tube heat exchanger of the grid pattern, but lower than that of the conventional multi-tube heat exchanger of the staggered arrangement.
【0012】[0012]
【発明の効果】本発明の多管式熱交換器によれば、各伝
熱管の後流の死水域の影響が少なくなる4列目まで前面
伝熱管(第1列目の伝熱管)の裏側に下流の管(第2列
目から第4列目までの伝熱管)が入ることがなく、従っ
て管周囲の熱伝達率は第1列目と同様に高く保たれる。According to the multi-tube heat exchanger of the present invention, the back side of the front heat transfer tubes (the first row heat transfer tubes) up to the fourth row where the influence of the dead water area downstream of each heat transfer pipe is reduced. No downstream pipes (heat transfer pipes from the second row to the fourth row) enter the pipe, so that the heat transfer coefficient around the pipes is kept high as in the first row.
【0013】熱交換器における重要項目は、各伝熱管上
の温度分布を等分布に近づけて熱伝達率の向上を図るこ
とと、管配列により発生する流体流れの圧力損失を低く
保つことの2点である。The important items in the heat exchanger are to improve the heat transfer coefficient by making the temperature distribution on each heat transfer tube closer to an equal distribution, and to keep the pressure loss of the fluid flow generated by the tube arrangement low. Is a point.
【0014】本発明の多管式熱交換器では、各管の配置
分布を適性に保っているため、各管が互いの死水域に入
ることがなく、各伝熱管上の温度分布は比較的等分布に
保たれ、図5に示すように高レベルの熱伝達率が確保さ
れ、多数本の伝熱管で構成する管巣を持つ熱交換器にお
いても高い性能が得られる。また、熱交換器を通過する
流体流れは大きな波状流れとなり、線流が細かく曲げら
れることもないため、流体流れの圧力損失が図5に示す
ように千鳥配列の熱交換器よりも低く保たれるというメ
リットがある。In the multi-tube heat exchanger of the present invention, since the arrangement distribution of the tubes is kept appropriate, the tubes do not enter each other's dead water area, and the temperature distribution on the heat transfer tubes is relatively small. Even distribution is maintained, a high level of heat transfer coefficient is secured as shown in FIG. 5, and high performance can be obtained even in a heat exchanger having a tube nest composed of many heat transfer tubes. Further, since the fluid flow passing through the heat exchanger becomes a large wavy flow and the linear flow is not bent finely, the pressure loss of the fluid flow is kept lower than that of the staggered heat exchanger as shown in FIG. There is a merit that it is.
【図1】本発明の第1の実施例による多管式熱交換器に
おける伝熱管の配列構成を示す要部断面図。FIG. 1 is a cross-sectional view of a main part showing an arrangement of heat transfer tubes in a multi-tube heat exchanger according to a first embodiment of the present invention.
【図2】本発明の第2の実施例による多管式熱交換器に
おける伝熱管の配列構成を示す要部断面図。FIG. 2 is an essential part cross-sectional view showing an arrangement configuration of heat transfer tubes in a multi-tube heat exchanger according to a second embodiment of the present invention.
【図3】従来の多管式熱交換器における伝熱管の碁盤目
配列による構成を示した要部の断面図。FIG. 3 is a cross-sectional view of a main part showing a configuration of a heat transfer tube in a conventional multi-tube heat exchanger in a grid pattern.
【図4】従来の多管式熱交換器における伝熱管の千鳥配
列による構成を示した要部の断面図。FIG. 4 is a cross-sectional view of a main part showing a configuration in a staggered arrangement of heat transfer tubes in a conventional multi-tube heat exchanger.
【図5】管配列パターンの変化による従来と本発明の比
較図。FIG. 5 is a diagram showing a comparison between the conventional and the present invention due to a change in the tube arrangement pattern.
1…伝熱管、イ…流体流れ方向、P…伝熱管の流体流れ
直交方向に対する配列ピッチ、1a…第1列目の管列、
1b…第2列目の管列、X…第1の千鳥配列管群、1c
…第3列目の管列、1d…第4列目の管列、Y…第2の
千鳥配列管群、1e…第5列目の管列、1f…第6列目
の管列、S1…変位距離。Reference numeral 1 denotes a heat transfer tube, a denotes a fluid flow direction, P denotes an arrangement pitch of the heat transfer tubes in a direction perpendicular to the fluid flow, 1a denotes a first tube row,
1b: second row of rows, X: first staggered pipe group, 1c
... Third row of rows, 1d Fourth row of rows, Y. Second staggered pipe group, 1e fifth row of rows, 1f sixth row of rows, S1 ... Displacement distance.
Claims (2)
れ方向に等間隔を存し且つ流体流れ直交方向に等ピッチ
で平行に配置される多管式の熱交換器において、流体流
れ方向に位置する多数列の管列のうち隣接する奇数列の
管列と偶数列の管列の流体流れ直交方向に対するピッチ
のずれを1/2とした千鳥配列を基本とし、第1列目の
管列と第2列目の管列で構成される第1の千鳥配列管群
に対して、第3列目の管列と第4列目の管列で構成され
る第2の千鳥配列管群を流体流れ直交方向となる右側又
は左側に1/8〜3/8ピッチに相当する変位距離をも
ってずらし、第5列目及び第6列目の管列は第1列目及
び第2列目の管列と同じ千鳥配列位置に戻り、以下同じ
パターンを繰り返す配列をもって構成したことを特徴と
する多管式熱交換器。1. A multi-tube heat exchanger in which a plurality of heat transfer tubes constituting a tube nest are arranged at equal intervals in a fluid flow direction and in parallel at an equal pitch in a direction orthogonal to the fluid flow. Of the odd rows and the even rows of adjacent rows of pipes in a staggered arrangement in which the pitch shift in the direction perpendicular to the fluid flow is halved. For a first staggered tube group consisting of a tube line and a second tube line, a second staggered tube line composed of a third line line and a fourth line line The groups are shifted to the right or to the left, which is in the direction perpendicular to the fluid flow, with a displacement distance corresponding to 1/8 to 3/8 pitch, and the fifth and sixth rows of tube rows are the first and second rows. A multi-tubular heat exchanger comprising an array that returns to the same staggered array position as the row of tubes and repeats the same pattern below .
群に対する流体流れ直交方向の変位距離が2/8(1/
4)ピッチに設定されていることを特徴とする請求項1
に記載の多管式熱交換器。2. The displacement distance of the second staggered array tube group in the direction perpendicular to the fluid flow with respect to the first staggered array tube group is 2/8 (1/1).
(4) The pitch is set.
A multi-tube heat exchanger according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17210195A JP2726018B2 (en) | 1995-07-07 | 1995-07-07 | Multi-tube heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17210195A JP2726018B2 (en) | 1995-07-07 | 1995-07-07 | Multi-tube heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0926283A JPH0926283A (en) | 1997-01-28 |
JP2726018B2 true JP2726018B2 (en) | 1998-03-11 |
Family
ID=15935568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17210195A Expired - Fee Related JP2726018B2 (en) | 1995-07-07 | 1995-07-07 | Multi-tube heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2726018B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5553101B2 (en) * | 2012-10-15 | 2014-07-16 | 三菱電機株式会社 | Cooler and cooler |
US10946380B2 (en) | 2018-01-19 | 2021-03-16 | International Business Machines Corporation | Microfluidic chips for particle purification and fractionation |
US20190226953A1 (en) * | 2018-01-19 | 2019-07-25 | International Business Machines Corporation | Microscale and mesoscale condenser devices |
US11458474B2 (en) | 2018-01-19 | 2022-10-04 | International Business Machines Corporation | Microfluidic chips with one or more vias |
WO2022044523A1 (en) * | 2020-08-24 | 2022-03-03 | 富士電機株式会社 | Fin tube heat exchanger |
-
1995
- 1995-07-07 JP JP17210195A patent/JP2726018B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0926283A (en) | 1997-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6523606B1 (en) | Heat exchanger tube block with multichamber flat tubes | |
JP4989979B2 (en) | Heat exchanger | |
KR970028422A (en) | Finned Heat Exchanger | |
JP2020094791A5 (en) | ||
US5148598A (en) | Method of fabricating exchanger U-bend tube support | |
JP2726018B2 (en) | Multi-tube heat exchanger | |
WO2014119942A9 (en) | Heat exchange system | |
US20050205244A1 (en) | Heat exchanger | |
JPH11294973A (en) | Heat exchanger of absorption water cooler/heater | |
JPH0539335Y2 (en) | ||
JPS62194194A (en) | Heat exchanger | |
JP2602788Y2 (en) | Stacked evaporator elements | |
JPH09159386A (en) | Multiple pipe heat exchanger | |
JP4184110B2 (en) | Finned tube heat exchanger | |
JPH0631284Y2 (en) | Square multi-tube once-through boiler | |
JPH07248196A (en) | Heat exchanger | |
JPH07310988A (en) | Multi-tubular heat exchanger | |
JPH0626777A (en) | Heat exchanger | |
JPS63131993A (en) | Heat exchanger | |
JPH0740158Y2 (en) | Air-heated multi-tube liquefied gas evaporator | |
JPH03169482A (en) | Manufacture of heat exchanger | |
JPH07310992A (en) | Multi-pipe type heat exchanger | |
JPH0620054Y2 (en) | Heat exchanger | |
JP2003302190A (en) | Corrugated fin type heat exchanger | |
JPH0692874B2 (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071205 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081205 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091205 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101205 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101205 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111205 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121205 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131205 Year of fee payment: 16 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |