JP2723710B2 - Multilayer glass ceramic substrate and method of manufacturing the same - Google Patents

Multilayer glass ceramic substrate and method of manufacturing the same

Info

Publication number
JP2723710B2
JP2723710B2 JP3242307A JP24230791A JP2723710B2 JP 2723710 B2 JP2723710 B2 JP 2723710B2 JP 3242307 A JP3242307 A JP 3242307A JP 24230791 A JP24230791 A JP 24230791A JP 2723710 B2 JP2723710 B2 JP 2723710B2
Authority
JP
Japan
Prior art keywords
weight
oxide
glass
group
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3242307A
Other languages
Japanese (ja)
Other versions
JPH0558720A (en
Inventor
勇三 嶋田
一洋 生稲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17087278&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2723710(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3242307A priority Critical patent/JP2723710B2/en
Publication of JPH0558720A publication Critical patent/JPH0558720A/en
Application granted granted Critical
Publication of JP2723710B2 publication Critical patent/JP2723710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LSI素子を実装する
ための多層ガラスセラミック基板及びその製造方法に関
し、特に低温焼結できる多層ガラスセラミック基板及び
その製造方法に関するものである。
The present invention relates to a function to <br/> the multilayer glass ceramic substrate and a manufacturing method thereof for mounting an LSI device, a multilayer glass ceramic substrate and in particular low-temperature sintering
The present invention relates to the manufacturing method .

【0002】[0002]

【従来の技術】半導体技術の発展に伴い、電子装置、シ
ステムの小型化、高速化が増々要求されている。半導体
素子においては、VLSI、ULSIと高密度化、高集
積化され、これらをアセンブリするための実装技術は極
めて高密度微細化が必要とされている。特に半導体素子
を搭載するための実装基板は、配線密度の増大による微
細配線化とともに、配線抵抗の低減化、高速化に対応し
た基板材料の低誘電率化、および高密度配線化が要求さ
れる。基板材料として従来から使用されているものにア
ルミナ多層基板がある。この基板の製造方法としては、
厚膜印刷多層法およびグリ―ンシ―ト積層法があるが、
高密度化の要求に対しては、グリ―ンシ―ト積層法が有
利である。グリ―ンシ―ト積層法は、薄いセラミックグ
リ―ンシ―ト各層に配線を印刷形成し、一体に積層して
得られるため、配線層数を任意に多くすることができ、
その結果、厚膜印刷多層よりも配線密度を高くすること
ができる。しかし、アルミナセラミックは焼結温度が1
500℃以上と高く、配線導体に電気抵抗の比較的高い
Mo,W金属を使わなければならず、配線の微細化が困
難であった。
2. Description of the Related Art With the development of semiconductor technology, there is an increasing demand for smaller and faster electronic devices and systems. Semiconductor devices are becoming higher in density and higher in integration with VLSIs and ULSIs, and mounting technologies for assembling them are required to be extremely dense and fine. In particular, a mounting substrate for mounting a semiconductor element is required to have fine wiring due to an increase in wiring density, a reduction in wiring resistance, a low dielectric constant of a substrate material corresponding to high speed, and a high density wiring. . Alumina multilayer substrates are conventionally used as substrate materials. As a method of manufacturing this substrate,
There are thick film printing multilayer method and green sheet lamination method,
The green sheet lamination method is advantageous for the demand for high density. The green sheet lamination method is obtained by printing and forming wiring on each thin ceramic green sheet layer and laminating them together, so that the number of wiring layers can be increased arbitrarily.
As a result, the wiring density can be higher than that of the thick-film printing multilayer. However, alumina ceramic has a sintering temperature of 1
Mo, W metal having a relatively high electric resistance must be used for the wiring conductor, which is as high as 500 ° C. or more, and it has been difficult to miniaturize the wiring.

【0003】一方、最近、低抵抗導体のAu,Ag−P
d,Ag,Cu等を用いる低温焼結型のセラミック材料
が開発されている。例えば、アルミナとホウケイ酸鉛系
ガラスの複合材料の場合、1000℃以下の低温で焼結
が可能で、Au,Ag−Pd,Agを配線導体に用いた
多層基板が開発されている。しかしながら、この材料は
鉛を含んでいるため、卑金属であるCuを配線に用いる
ことは困難であり、更に誘電率においても7.5以上に
しか低減することができない。また、低誘電率化と10
00℃以下の還元雰囲気焼成をねらったホウケイ酸系ガ
ラスを用いたガラスセラミック材料も開発されている。
これは誘電率が5.5程度と低く抑えられ、Cu配線に
よる多層化が、ガラスセラミックと導体との同時焼結法
により実現されているが、焼結時に結晶化を起こしてお
らず、機械的強度が著しく低くなる欠点があった。
On the other hand, recently, low-resistance conductors such as Au and Ag-P
A low-temperature sintering type ceramic material using d, Ag, Cu or the like has been developed. For example, in the case of a composite material of alumina and lead borosilicate glass, sintering can be performed at a low temperature of 1000 ° C. or less, and a multilayer substrate using Au, Ag—Pd, and Ag as a wiring conductor has been developed. However, since this material contains lead, it is difficult to use Cu as a base metal for wiring, and the dielectric constant can be reduced to only 7.5 or more. In addition, low dielectric constant and 10
A glass ceramic material using borosilicate glass aimed at firing in a reducing atmosphere at a temperature of 00 ° C. or lower has also been developed.
This has a dielectric constant as low as about 5.5, and multilayering by Cu wiring has been realized by a simultaneous sintering method of glass ceramic and a conductor. There was a drawback that the target strength was significantly reduced.

【0004】[0004]

【発明が解決しようとする課題】従来のアルミナ多層基
板では、高温でしか焼結できないため電気抵抗の高いM
o,Wしか導体に利用できないため、配線抵抗が高くな
ったり、微細配線が不可能であった。またアルミナの誘
電率は約10と高く、信号の高速化には不利であった。
アルミナとホウケイ酸鉛系ガラスの複合材料は、低温焼
結化ができ、低抵抗導体を配線に使えるが、還元雰囲気
焼成や卑金属導体配線の実現が困難であった。更にホウ
ケイ酸系ガラスを用いたガラスセラミック基板では、C
u多層配線および低誘電率化は可能であるが、機械的強
度が著しく低くなった。基板の機械的強度は、極めて重
要な特性であり、特に基板上に多数の半導体素子が実装
されるマルチチップ実装基板においては、基板サイズが
大面積化するとともに入出力端子またはピンが多数接続
されるため、アセンブリ―工程ばかりでなく製品の状態
で基板破損や金属との接合不良等の問題が発生する。本
発明の目的は、このような従来の実装基板の課題を解決
することにより、1000℃以下の低温で、しかも酸化
性ばかりでなく中性および還元雰囲気で焼成でき、誘電
率の低い、機械的強度のすぐれた多層ガラスセラミック
基板を提供することにある。
The conventional alumina multilayer substrate can be sintered only at a high temperature, and therefore has a high electric resistance.
Since only o and W can be used for the conductor, the wiring resistance is increased and fine wiring is impossible. Also, the dielectric constant of alumina is as high as about 10, which is disadvantageous for increasing the signal speed.
A composite material of alumina and lead borosilicate glass can be sintered at a low temperature and a low-resistance conductor can be used for wiring, but it has been difficult to realize firing in a reducing atmosphere or base metal conductor wiring. Further, in a glass ceramic substrate using borosilicate glass, C
Although u multilayer wiring and low dielectric constant are possible, the mechanical strength is significantly reduced. The mechanical strength of a board is a very important characteristic, especially in a multi-chip mounting board in which a large number of semiconductor elements are mounted on the board, the board size becomes large and many input / output terminals or pins are connected. Therefore, not only the assembly process, but also problems such as substrate damage and poor bonding with metal occur in a product state. An object of the present invention is to solve the problems of the conventional mounting board by firing at a low temperature of 1000 ° C. or lower, and in a neutral and reducing atmosphere as well as an oxidizing environment, and having a low dielectric constant, An object of the present invention is to provide a multilayer glass ceramic substrate having excellent strength.

【0005】本発明は、ガラスセラミック層がアルミナ
結晶とガラス質との界面に生成されたアノーサイト結晶
を含み、かつ酸化物換算表記に従ったとき、酸化アルミ
ニウム30〜60重量%、二酸化ケイ素20〜50重量
%、酸化カルシウム4.5〜15重量%、酸化ホウ素3
〜15重量%、I族元素酸化物0〜5重量%、II族元素
(但し、カルシウムは除く。)酸化物0〜5重量%、IV
族元素(但し、炭素、ケイ素、鉛は除く。)酸化物0〜
5重量%の組成範囲で、I族元素酸化物、II族元素酸化
物、IV族元素酸化物のうち少なくともいずれか1つを含
み、総量100%となるように選んだ組成物で構成さ
れ、複数の導体層を前記ガラスセラミック層を介して積
層したことを特徴とする多層ガラスセラミック基板であ
る。
According to the present invention, the glass ceramic layer is made of alumina.
An anorthite crystal formed at the interface between the crystal and the vitreous , and according to oxide notation, 30 to 60% by weight of aluminum oxide, 20 to 50% by weight of silicon dioxide, and calcium oxide 4 0.5 to 15% by weight, boron oxide 3
-15% by weight, Group I element oxide 0-5% by weight, Group II element (excluding calcium) oxide 0-5% by weight, IV
Group element (excluding carbon, silicon and lead) oxides
A composition selected from the group consisting of a group I element oxide, a group II element oxide, and at least one of a group IV element oxide in a composition range of 5% by weight, and a total amount of 100%; A multilayer glass-ceramic substrate comprising a plurality of conductor layers laminated via the glass-ceramic layer.

【0006】本発明のガラスセラミック基板は、100
0℃以下の温度で焼結可能となるため、所望のグリーン
シート積層法によって容易に多層化ができ、また導体と
してAu,Ag,Pd,Pt等の元素ばかりでなく、中
性または還元雰囲気で焼成するCu,Ni等の卑金属の
元素を含め、それぞれ1種およびこれらの2種類以上を
含む合金が安心して使用できるようになり、実装密度が
高く機械的強度に優れた多層ガラスセラミック基板を実
用に供することが可能となる。ここで本発明による基板
の機械的強度は、抗折強度で2000kg/cm以上
を有しており、十分な強度を有している。本発明による
ガラスセラミック基板の製造方法は、ガラスセラミック
層がアノーサイト結晶を含み、かつ酸化物換算表記に従
ったとき、酸化アルミニウム30〜60重量%、二酸化
ケイ素20〜50重量%、酸化カルシウム4.5〜15
重量%、酸化ホウ素3〜15重量%、I族元素酸化物0
〜5重量%、II族元素(但し、カルシウムは除く。)
酸化物0〜5重量%、IV族元素(但し、炭素、ケイ
素、鉛は除く。)酸化物0〜5重量%の組成範囲で総量
100%となるように選んだ組成物で構成された多層ガ
ラスセラミック基板の製造方法であって、酸化アルミニ
ウムを除く原料粉末を1400℃以上の温度で加熱・溶
融してガラス化し、該ガラス化物を急冷し粉砕したガラ
ス微粉末と、酸化アルミニウムとを混合して得られるガ
ラスセラミック原料粉末を用いてガラスセラミック層を
形成することを特徴とする。
The glass-ceramic substrate of the present invention has a thickness of 100
Since sintering can be performed at a temperature of 0 ° C. or less, multilayering can be easily performed by a desired green sheet laminating method, and not only elements such as Au, Ag, Pd, and Pt as conductors but also in a neutral or reducing atmosphere. One kind and an alloy containing two or more of these elements, including elements of base metals such as Cu and Ni to be fired, can be used with confidence, and a multilayer glass ceramic substrate having a high mounting density and excellent mechanical strength can be practically used. It becomes possible to be offered to. Here, the mechanical strength of the substrate according to the present invention is 2000 kg / cm 2 or more in terms of bending strength, and has a sufficient strength. According to the invention
The manufacturing method of the glass ceramic substrate is glass ceramic
The layer contains anorthite crystals and conforms to oxide notation.
30-60% by weight of aluminum oxide,
20 to 50% by weight of silicon, 4.5 to 15 of calcium oxide
Wt%, boron oxide 3 to 15 wt%, Group I element oxide 0
~ 5% by weight, Group II element (excluding calcium)
Oxide 0 to 5% by weight, group IV element (however, carbon, silicon
Excluding element and lead. ) Total amount in the composition range of 0 to 5% by weight of oxide
Multilayer gas composed of a composition selected to be 100%
A method for manufacturing a glass ceramic substrate, comprising:
Heat and melt the raw material powder except for
Melted and vitrified, quenched and pulverized glass
Gas obtained by mixing fine powder and aluminum oxide
A glass ceramic layer is formed using raw ceramic powder.
It is characterized by forming.

【0007】次に、本発明の各構成成分を限定した理由
について記す。 アルミニウムが酸化物換算で30重量%未満の場合、
抗折強度が2000kg/cm未満となり不充分であ
り、60重量%を越えると1000℃以下の温度では焼
結が不充分となり、その結果、絶縁抵抗が低下するとと
もに抗折強度も2000kg/cm未満となる。また
誘電率も7を越え高くなるため、高速化に不利である。
したがって実用的な多層ガラスセラミック基板が得られ
ない。 ケイ素が二酸化物換算で20重量%未満では、ガラス
セラミックが焼結しにくくなり、50重量%を越えると
抗折強度が2000kg/cmより小さくなるので好
ましくない。 カルシウムが酸化物換算で4.5重量%未満では、ア
ノーサイト結晶の生成が起こらず、抗折強度は著しく低
下し、2000kg/cmを下まわる。15重量%を
越えると誘電率が7より高くなり、かつ焼結しにくくな
り好ましくない。 ホウ素が酸化物換算で重量%未満ではガラスセラミ
ック中のボイドや空隙が多くなり、15重量%を越える
と絶縁抵抗を劣化させるので好ましくない。 I族元素が酸化物換算で5重量%を越えた場合、耐水
性が劣化し、絶縁抵抗を低下させるので好ましくない。 II族元素が酸化物換算で5重量%を越えると、焼結
時にクラックを生じ、基板の信頼性が低下するので好ま
しくない。 IV族元素が酸化物換算で5重量%を越えると、誘電
率が7を越え高くなり、かつ導体金属とガラスセラミッ
クとの密着性が悪くなるので実用的な多層ガラスセラミ
ック基板が得られない。I族元素酸化物、II族元素酸化物、IV族元素酸化
物のうち少なくともいずれも含まないと、アルミナ以外
の成分をガラス化する際、ガラス分相などの不均一が発
生しやすくなり、ガラスとして均一な組成物が得られに
くくなるため、いずれか1種の酸化物が含まれているこ
とが必要である。
Next, the reasons for limiting the components of the present invention will be described. When aluminum is less than 30% by weight in terms of oxide,
When the flexural strength is less than 2000 kg / cm 2 , which is insufficient, and when it exceeds 60% by weight, sintering becomes insufficient at a temperature of 1000 ° C. or less. As a result, the insulation resistance is lowered and the flexural strength is also 2000 kg / cm 2. It becomes less than 2 . In addition, the dielectric constant is higher than 7, which is disadvantageous for high speed operation.
Therefore, a practical multilayer glass ceramic substrate cannot be obtained. If silicon is less than 20% by weight in terms of dioxide, the glass ceramic is difficult to sinter, and if it exceeds 50% by weight, the transverse rupture strength is less than 2000 kg / cm 2 , which is not preferable. When calcium is less than 4.5% by weight in terms of oxide, formation of anorthite crystals does not occur, and the transverse rupture strength is remarkably reduced, to less than 2000 kg / cm 2 . If it exceeds 15% by weight, the dielectric constant becomes higher than 7, and sintering becomes difficult. If boron is less than the weight percentage in terms of oxide, voids and voids in the glass ceramic increase, and if it exceeds 15 weight%, the insulation resistance is deteriorated, which is not preferable. When the group I element exceeds 5% by weight in terms of oxide, water resistance is deteriorated and insulation resistance is lowered, which is not preferable. If the group II element exceeds 5% by weight in terms of oxide, cracks occur during sintering, and the reliability of the substrate is undesirably reduced. When the group IV element exceeds 5% by weight in terms of oxide, the dielectric constant exceeds 7 and becomes high, and the adhesion between the conductive metal and the glass ceramic deteriorates, so that a practical multilayer glass ceramic substrate cannot be obtained. Group I element oxide, Group II element oxide, Group IV element oxidation
Other than alumina if at least none of the
When vitrifying the components, non-uniformity such as glass phase separation occurs.
Easy to grow and obtain a uniform composition as glass
Must contain at least one oxide
Is necessary.

【0008】[0008]

【作用】本発明の多層ガラスセラミック基板の組成は、
1000℃以下の温度で焼結できるがその理由を次に示
す。本組成物においては、焼成の際、ガラス質の部分が
約700℃以上の温度で軟化を開始する。この時点でガ
ラス質の部分が液相として働きセラミック粉末間の空隙
を埋めることになり、緻密化が進行する。緻密化が進む
につれガラス質およびセラミック質の界面が活性になり
微結晶の生成が起こる。こうして800〜1000℃の
温度領域で十分緻密なガラスセラミック体が形成され、
焼結を完了する。以上の焼結反応が1000℃以下の温
度で起こるのは、すべて基板を構成している本組成物に
よるのである。次に還元雰囲気で焼結できる理由は、本
組成物がこの条件下で酸化物状態から還元され、金属元
素に変化することが抑えられる元素を用いているためで
ある。例えば酸化鉛を含んだ組成物の場合、還元雰囲気
下では金属鉛に変化し、ガラスセラミック体の絶縁性が
著しく劣化する。機械的強度は多層ガラスセラミック基
板において重要な特性の一つであり、本発明は特にこの
特性に対して効果が大である。強度を2000kg/c
2以上に実現できる理由は、焼結時の微結晶の生成に
起因する。本発明は、この微結晶としてアノ―サイトが
生成するように設計されているところに最大の特徴をも
っている。つまりセラミック粒子間にガラス質が存在し
ているだけの構造では従来のガラスセラミック体のごと
く2000kg/cm2未満の不十分な強度しか得られ
ないが、本発明の場合、セラミック粒子とガラス質との
界面にアノ―サイトの微結晶が生成しセラミックとガラ
スとを強固に結合させる作用が働き、その結果基板とし
て抗折強度の十分な特性が得られることになる。
The composition of the multilayer glass ceramic substrate of the present invention is as follows:
Sintering can be performed at a temperature of 1000 ° C. or less, for the following reasons. In the present composition, upon firing, the vitreous portion starts softening at a temperature of about 700 ° C. or higher. At this point, the vitreous portion acts as a liquid phase to fill the gaps between the ceramic powders, and the densification proceeds. As densification proceeds, the vitreous and ceramic interfaces become active and microcrystals form. Thus, a sufficiently dense glass ceramic body is formed in a temperature range of 800 to 1000 ° C.,
Complete sintering. All of the above sintering reactions occur at a temperature of 1000 ° C. or lower because of the present composition constituting the substrate. Next, the reason why the composition can be sintered in a reducing atmosphere is that the present composition uses an element which is reduced from an oxide state under these conditions and is suppressed from changing to a metal element. For example, in the case of a composition containing lead oxide, the composition changes to metallic lead under a reducing atmosphere, and the insulating property of the glass ceramic body is significantly deteriorated. Mechanical strength is one of the important characteristics in a multilayer glass ceramic substrate, and the present invention is particularly effective for this characteristic. 2000kg / c strength
reason why can be realized in m 2 or more, due to the generation of fine crystals during sintering. The present invention has the greatest feature in that the anorthite is designed to be generated as the crystallite. In other words, a structure in which vitreous material only exists between ceramic particles can provide an insufficient strength of less than 2000 kg / cm 2 as in a conventional glass-ceramic body. Microcrystals of anorthite are generated at the interface of, and the action of firmly bonding the ceramic and the glass works. As a result, sufficient characteristics of the transverse rupture strength can be obtained as a substrate.

【0009】[0009]

【実施例】以下、本発明の実施例について詳細に説明す
る。 実施例1 ガラスセラミック層を形成する組成物を酸化物に換算し
て、表1〜表3に示すような組成の粉末状のものとして
用意する。該粉末の作製方法として次に示す。Al
を除く他の組成物をガラスとして調製する。即ち、ガ
ラスの目標組成となるように各成分の原料を秤量し、次
に1400℃以上の高温で2〜4時間加熱、溶融しガラ
ス化させる。溶融ガラスを水冷あるいは厚い鉄板上に流
してフレーク状に成形し、得られたガラス片をアルミナ
ボールミル等で微粉砕し、平均粒径0.5〜3μmのガ
ラス粉末を得る。次に平均粒径0.5〜3μmにコント
ロールされたAl粉末と粉砕されたガラス粉末を
目標組成になるように秤量し、アルミナボールミル等に
より均一に混合し、表1〜表3に示す組成物の粉末とし
て準備する。
Embodiments of the present invention will be described below in detail. Example 1 A composition for forming a glass ceramic layer is converted into an oxide and is prepared as a powder having a composition as shown in Tables 1 to 3. The method for producing the powder is described below. Al 2 O
Other compositions except for 3 are prepared as glass. That is, the raw materials of each component are weighed so as to have a target composition of glass, and then heated and melted at a high temperature of 1400 ° C. or more for 2 to 4 hours to vitrify. The molten glass is cooled with water or poured on a thick iron plate to form flakes, and the obtained glass pieces are finely pulverized by an alumina ball mill or the like to obtain glass powder having an average particle size of 0.5 to 3 μm. Next, the Al 2 O 3 powder controlled to have an average particle size of 0.5 to 3 μm and the crushed glass powder are weighed so as to have a target composition, and uniformly mixed by an alumina ball mill or the like. Prepare as a powder of the indicated composition.

【0010】前記によって得られた混合された無機粉末
は、例えばグリ―ンシ―ト積層法によってシ―ト状に成
形される。即ち、粉末をポリビニルブチラ―ル、ポリビ
ニルアルコ―ルあるいはポリアクリル系樹脂などの有機
バインダとともに溶媒中に分散し泥漿にする。この泥漿
をドクタ―ブレ―ド法やロ―ル法等のスリップキャステ
ィング法により絶縁層を形成するのに適した膜厚のグリ
―ンシ―トとする。グリ―ンシ―ト厚みは、10μm〜
400μmの範囲で、均一にしかも自由にコントロ―ル
することが可能である。次に上下導体を接続するための
ビアホ―ルを打抜き装置によりグリ―ンシ―トに形成す
る。該ビアホ―ルに電気的接続を行うための導体ペ―ス
トの埋込みおよび配線パタ―ン印刷を行う。ここで用い
た導体としては、Au,Ag,Ag−Pd,Cu,N
i,Ag−At等を主成分とする導体ペ―ストであり、
スクリ―ン印刷法によって所定の位置に印刷される。導
体パタ―ンが印刷されビアフィルされたグリ―ンシ―ト
を所定の層数になるように積層し、熱圧着する。成形時
に添加された有機バインダおよび溶剤を400〜700
℃の温度の脱バインダ工程により除去した後、800〜
1000℃の温度範囲で焼成し、多層ガラスセラミック
基板を得た。表1〜表3に示した組成の無機粉末を用い
て多層ガラスセラミック基板を作製した時の焼成条件、
配線仕様および特性を表4〜表9に示す。なお、無機粉
末の試料番号は、それぞれ表1〜表3で示す基板の試料
番号に対応している。
The mixed inorganic powder obtained as described above is formed into a sheet by, for example, a green sheet laminating method. That is, the powder is dispersed in a solvent together with an organic binder such as polyvinyl butyral, polyvinyl alcohol or polyacrylic resin to form a slurry. The slurry is formed into a green sheet having a thickness suitable for forming an insulating layer by a slip casting method such as a doctor blade method or a roll method. Green sheet thickness is 10μm ~
It is possible to control uniformly and freely in the range of 400 μm. Next, a via hole for connecting the upper and lower conductors is formed in a green sheet by a punching device. Embedding of a conductor paste for making an electrical connection to the via hole and printing of a wiring pattern are performed. The conductors used here are Au, Ag, Ag-Pd, Cu, N
a conductor paste mainly composed of i, Ag-At, etc.
It is printed at a predetermined position by a screen printing method. A green sheet on which a conductor pattern is printed and filled with vias is laminated so as to have a predetermined number of layers, and thermocompression-bonded. The organic binder and the solvent added at the time of molding are 400 to 700.
After removal by a binder removal process at a temperature of
It was fired in a temperature range of 1000 ° C. to obtain a multilayer glass ceramic substrate. Firing conditions when a multilayer glass ceramic substrate was produced using the inorganic powders having the compositions shown in Tables 1 to 3,
Tables 4 to 9 show the wiring specifications and characteristics. Note that the sample numbers of the inorganic powders correspond to the sample numbers of the substrates shown in Tables 1 to 3, respectively.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【表4】 [Table 4]

【0015】[0015]

【表5】 [Table 5]

【0016】[0016]

【表6】 [Table 6]

【0017】[0017]

【表7】 [Table 7]

【0018】[0018]

【表8】 [Table 8]

【0019】[0019]

【表9】 [Table 9]

【0020】表4〜表9からも明らかなように、本発明
の組成物を使用することにより、容易に高密度で微細な
配線が形成されるばかりでなく、特性上もすぐれ、かつ
実用に供されるために必要な機械的強度も十分満足する
多層ガラスセラミック基板を得ることができる。なお、
ガラスセラミック層の組成を酸化物に換算して表現した
が、これは酸化物を出発原料として使用することを制約
するものではない。
As is clear from Tables 4 to 9, the use of the composition of the present invention not only facilitates formation of high-density and fine wiring, but also provides excellent characteristics and practical use. It is possible to obtain a multilayer glass-ceramic substrate that sufficiently satisfies the mechanical strength required for being provided. In addition,
Although the composition of the glass-ceramic layer is expressed in terms of oxide, this does not restrict the use of oxide as a starting material.

【0021】[0021]

【発明の効果】以上説明したように、本発明の多層ガラ
スセラミック基板は、1000℃以下の低温で、酸化性
あるいは還元雰囲気を問わず焼成できると共に、誘電率
が十分に低く、機械的強度の優れたものである。従って
配線導体として低抵抗のAu,Ag,Cu,Ag−Pd
等を用いることが可能となり、高密度微細配線で、しか
も高速化が期待できる実装基板を提供できる。
As described above, the multilayer glass ceramic substrate of the present invention can be fired at a low temperature of 1000 ° C. or lower regardless of the oxidizing or reducing atmosphere, has a sufficiently low dielectric constant, and has a low mechanical strength. It is excellent. Therefore, Au, Ag, Cu, Ag-Pd having low resistance as a wiring conductor
And the like can be used, and a mounting substrate with high-density fine wiring and high speed can be provided.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラスセラミック層がアルミナ結晶とガラ
ス質との界面に生成されたアノーサイト結晶を含み、か
つ酸化物換算表記に従ったとき、酸化アルミニウム30
〜60重量%、二酸化ケイ素20〜50重量%、酸化カ
ルシウム4.5〜15重量%、酸化ホウ素3〜15重量
%、I族元素酸化物0〜5重量%、II族元素(但し、カ
ルシウムは除く。)酸化物0〜5重量%、IV族元素(但
し、炭素、ケイ素、鉛は除く。)酸化物0〜5重量%の
組成範囲で、I族元素酸化物、II族元素酸化物、IV族元
素酸化物のうち少なくともいずれか1つを含み、総量1
00%となるように選んだ組成物で構成され、複数の導
体層を前記ガラスセラミック層を介して積層したことを
特徴とする多層ガラスセラミック基板。
1. A glass ceramic layer comprising alumina crystals and glass.
Containing anorthite crystals formed at the interface with the substrate and according to the oxide conversion notation, aluminum oxide 30
-60% by weight, silicon dioxide 20-50% by weight, calcium oxide 4.5-15% by weight, boron oxide 3-15% by weight, Group I element oxide 0-5% by weight, Group II element (however, calcium is 0-5% by weight of oxides, Group IV element oxides (excluding carbon, silicon and lead), and 0 to 5% by weight of oxides. Contains at least one of Group IV element oxides, total amount is 1
A multilayer glass-ceramic substrate comprising a composition selected so as to have a composition of 00% and a plurality of conductor layers laminated via the glass-ceramic layer.
【請求項2】ガラスセラミック層がアノーサイト結晶を
含み、かつ酸化物換算表記に従ったとき、酸化アルミニ
ウム30〜60重量%、二酸化ケイ素20〜50重量
%、酸化カルシウム4.5〜15重量%、酸化ホウ素3
〜15重量%、I族元素酸化物0〜5重量%、II族元素
(但し、カルシウムは除く。)酸化物0〜5重量%、IV
族元素(但し、炭素、ケイ素、鉛は除く。)酸化物0〜
5重量%の組成範囲で総量100%となるように選んだ
組成物で構成された多層ガラスセラミック基板の製造方
法であって、酸化アルミニウムを除く原料粉末を140
0℃以上の温度で加熱・溶融してガラス化し、該ガラス
化物を急冷し粉砕したガラス微粉末と、酸化アルミニウ
ムとを混合して得られるガラスセラミック原料粉末を用
いてガラスセラミック層を形成することを特徴とする多
層ガラスセラミック基板の製造方法。
2. The glass-ceramic layer contains anorthite crystals, and according to oxide notation, 30 to 60% by weight of aluminum oxide, 20 to 50% by weight of silicon dioxide, 4.5 to 15% by weight of calcium oxide. , Boron oxide 3
-15% by weight, Group I element oxide 0-5% by weight, Group II element (excluding calcium) oxide 0-5% by weight, IV
Group element (excluding carbon, silicon and lead) oxides
A method for producing a multilayer glass-ceramic substrate comprising a composition selected to have a total amount of 100% in a composition range of 5% by weight, wherein the raw material powder excluding aluminum oxide is 140%.
Forming a glass-ceramic layer using glass-ceramic raw material powder obtained by heating and melting at a temperature of 0 ° C. or more to vitrify, rapidly cooling and pulverizing the vitrified glass, and mixing with aluminum oxide. A method for producing a multi-layer glass ceramic substrate, characterized in that:
JP3242307A 1991-08-29 1991-08-29 Multilayer glass ceramic substrate and method of manufacturing the same Expired - Lifetime JP2723710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3242307A JP2723710B2 (en) 1991-08-29 1991-08-29 Multilayer glass ceramic substrate and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3242307A JP2723710B2 (en) 1991-08-29 1991-08-29 Multilayer glass ceramic substrate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0558720A JPH0558720A (en) 1993-03-09
JP2723710B2 true JP2723710B2 (en) 1998-03-09

Family

ID=17087278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3242307A Expired - Lifetime JP2723710B2 (en) 1991-08-29 1991-08-29 Multilayer glass ceramic substrate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2723710B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170926A (en) * 2013-02-08 2014-09-18 Canon Inc Vibration body, manufacturing method thereof, and vibration type drive device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606891B2 (en) * 1988-08-04 1997-05-07 株式会社トクヤマ Method for producing anorthite-based sintered body

Also Published As

Publication number Publication date
JPH0558720A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
US4861646A (en) Co-fired metal-ceramic package
US6017642A (en) Low dielectric loss glasses
EP0378989B1 (en) Doped titanate glass-ceramic for grain boundary barrier layer capacitors
US5714112A (en) Process for producing a silica sintered product for a multi-layer wiring substrate
EP0552522B1 (en) Low dielectric, low temperature fired glass ceramics
JP3528037B2 (en) Manufacturing method of glass ceramic substrate
CA2050095A1 (en) Dielectric composition containing cordierite and glass
US5989484A (en) Multilayer glass ceramic substrate and process for producing the same
JPH06305770A (en) Multilayered glass-ceramic substrate and its production
JPH06206772A (en) Aluminum nitride sintered compact and ceramic circuit substrate
WO2001044143A1 (en) Joint body of glass-ceramic and aluminum nitride sintered compact and method for producing the same
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
JPH06345530A (en) Multilayreed glass-ceramic substrate and production thereof
JP2723710B2 (en) Multilayer glass ceramic substrate and method of manufacturing the same
JPH0723252B2 (en) Low temperature sinterable low dielectric constant inorganic composition
JP2500692B2 (en) Low temperature sinterable low dielectric constant inorganic composition
JPH0758454A (en) Glass ceramic multilayered substrate
JPH0457627B2 (en)
JP2712930B2 (en) Multilayer glass ceramic substrate and manufacturing method thereof
JP2513382B2 (en) Method for manufacturing multilayer glass ceramic substrate
JPH06199541A (en) Glass-ceramic composition
JPH0636473B2 (en) Multilayer ceramic board
JP2500691B2 (en) Low temperature sinterable low dielectric constant inorganic composition
JP2504351B2 (en) Multi-layer glass ceramic substrate and manufacturing method thereof
JP2504350B2 (en) Multi-layer glass ceramic substrate and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 14