JP2723200B2 - Manufacturing method of organic microcrystal for nonlinear optics - Google Patents

Manufacturing method of organic microcrystal for nonlinear optics

Info

Publication number
JP2723200B2
JP2723200B2 JP23816092A JP23816092A JP2723200B2 JP 2723200 B2 JP2723200 B2 JP 2723200B2 JP 23816092 A JP23816092 A JP 23816092A JP 23816092 A JP23816092 A JP 23816092A JP 2723200 B2 JP2723200 B2 JP 2723200B2
Authority
JP
Japan
Prior art keywords
organic
solvent
nonlinear optics
particle size
organic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23816092A
Other languages
Japanese (ja)
Other versions
JPH0679168A (en
Inventor
均 笠井
英俊 及川
勝道 小野
八郎 中西
修司 岡田
宏雄 松田
信次 南
シング ナルワ ハリ
角田  敦
昭夫 向尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Hitachi Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP23816092A priority Critical patent/JP2723200B2/en
Publication of JPH0679168A publication Critical patent/JPH0679168A/en
Application granted granted Critical
Publication of JP2723200B2 publication Critical patent/JP2723200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種エレクトロニク
適用できる非線形光学用有機微結晶の製法に関する。
BACKGROUND OF THE INVENTION The present invention, various types of electronics
The present invention relates to a method for producing an organic microcrystal for non-linear optics applicable to a method.

【0002】[0002]

【従来の技術】近年のマイクロエレクトロニクスの進歩
により、従来のバルクまたは分子サイズの中間領域を構
成するナノメーター(nm)スケールの超微粒子の材料
に対する要求が急増している。上記の微結晶は、特異な
表面構造に基づく触媒効果、サイズ効果による光物性、
非線形光学特性等の極めて興味深い様々な性質を発現す
る。これまで、エレクトロニクス、触媒及び非線形光学
の分野への適用を意図して、無機半導体、金属及びセラ
ミックスの微結晶の製法が検討されてきた。
2. Description of the Related Art Advances in microelectronics in recent years have sharply increased the demand for conventional nanometer (nm) scale ultrafine particles constituting an intermediate region of a bulk or molecular size. The above microcrystals have a catalytic effect based on a unique surface structure, optical properties due to size effects,
It exhibits various interesting properties such as nonlinear optical properties. Heretofore, methods for producing microcrystals of inorganic semiconductors, metals and ceramics have been studied for the purpose of application to the fields of electronics, catalysts and nonlinear optics.

【0003】無機材料の微結晶は、一般に電気炉法、プ
ラズマ法等の気相法またはフリーズドライ法、スプレー
ドライ法等の液相法で調製されてきた。しかし、より高
機能が期待される有機材料の微結晶は、これまで不活性
ガス中で蒸発させる気相法が数例あるに留まっていた。
Microcrystals of inorganic materials have been generally prepared by a gas phase method such as an electric furnace method or a plasma method, or a liquid phase method such as a freeze drying method or a spray drying method. However, only a few examples of the vapor phase method of evaporating in an inert gas have been used for microcrystals of organic materials expected to have higher functions.

【0004】例えば、豊玉著、機能材料 第7巻 6号
44〜49頁(1987年6月号)には、アントラセ
ン、ピレン、フタロシアニン等の低分子量有機化合物、
ポリメチルメタクリレート、ポリスチレン等のポリマ微
粒子の気相成長法が記載されている。また、八瀬ほか
著、表面科学 第8巻 5号 434〜439頁(19
87年)には、ステアリン酸カルシウムの気相法による
微粒子作成の記載がある。
For example, Toyotama, Functional Materials, Vol. 7, No. 6, pp. 44-49 (June 1987) discloses low molecular weight organic compounds such as anthracene, pyrene, and phthalocyanine;
A vapor phase growth method of polymer fine particles such as polymethyl methacrylate and polystyrene is described. Also, Yase et al., Surface Science Vol. 8, No. 5, pp. 434-439 (19
1987) describes the preparation of fine particles of calcium stearate by a gas phase method.

【0005】しかし、気相成長法には、(1)高温を要
すること、(2)分子量10,000以下程度の低分子
量化合物に限られること、等の本質的な制約がある。一
般に有機材料は耐熱性が低く劣化し易いため、この方法
の適用には限度があり、また、気相法では結晶化度、分
子量等を特定の範囲に規定することが難しく、応用する
上で問題を生じ易い。そのため、より効果的な製法が望
まれていた。
[0005] However, the vapor phase growth method has essential restrictions such as (1) high temperature is required, and (2) it is limited to low molecular weight compounds having a molecular weight of about 10,000 or less. In general, organic materials have low heat resistance and are easily deteriorated, so there is a limit to the application of this method.In addition, it is difficult to regulate the crystallinity, molecular weight, and the like in a specific range by a gas phase method, so that it is difficult to apply the method. Prone to problems. Therefore, a more effective manufacturing method has been desired.

【0006】一方、有機物を含め各種材料の微粒子の製
法としては、化学的凝縮法が知られており、例えば、
B.ヤーゲンスほか著、玉虫訳、「コロイド化学」 2
0頁及び256頁(1967年培風館出版)には、イオ
ウを無水アルコールに溶解後、水中に注ぎ入れる方法、
カロチンをアセトンに溶解後同様に水中に注ぐ方法等が
開示されている。しかし、上記を除く大半は無機材料に
関するもので、実用上、有意義な機能性有機材料、特
に、その結晶性微粒子については何らの報告もなされて
いなかった。
On the other hand, as a method for producing fine particles of various materials including organic substances, a chemical condensation method is known.
B. Jagens et al., Translated by Iridescent, "Colloid Chemistry" 2
On pages 0 and 256 (published by Baifukan in 1967), a method of dissolving sulfur in anhydrous alcohol and pouring it into water,
A method is disclosed in which carotene is dissolved in acetone and then poured into water. However, most of the materials except the above are related to inorganic materials, and practically significant functional organic materials, in particular, no crystalline fine particles have been reported.

【0007】また、高分子微粒子を界面活性剤の存在下
で重合して得る乳化重合と称される方法があるが、機能
性の点で特長の少ないアクリル樹脂、スチレン樹脂等の
非晶質汎用高分子類に限定され、同時に製造時の制約か
ら少量の乳化剤の内部への混入が避けられず、均一良質
の微粒子は得られなかった。
Further, there is a method called emulsion polymerization obtained by polymerizing polymer fine particles in the presence of a surfactant. However, there is a method called amorphous resin such as acrylic resin and styrene resin which has few features in terms of functionality. It was limited to polymers, and at the same time, a small amount of emulsifier was inevitably mixed into the interior due to restrictions during production, and uniform fine particles of high quality could not be obtained.

【0008】他方、通常の溶媒に溶解しないフタロシア
ニン顔料等の有機顔料を半ば反応させつゝ硫酸に溶解
後、水中に分散,混練して微小粒子を得るアシドペース
ティング法が、例えば、F.H.モーザ(Moser)ほか
著「ザ フタロシアニンズ(The Phthlocyanines)第I
I巻」35〜37頁(1983年CRCプレス出版)に
開示されている。これは、多晶質の顔料微粒子を得る特
殊方法であり、強酸を用いるために適用できる材料の種
類が限定され、かつ、一般に純度が低下するため機能性
の点で有為な殆どの有機材料には用いることができなか
った。
[0008] On the other hand, an acid pasting method in which an organic pigment such as a phthalocyanine pigment which is not dissolved in a usual solvent is partially reacted and dissolved in sulfuric acid, and then dispersed and kneaded in water to obtain fine particles is disclosed in, for example, F.I. H. Moser et al., The Phthlocyanines I
Volume I, pp. 35-37 (1983 CRC Press Publishing). This is a special method for obtaining polycrystalline pigment fine particles, which limits the types of materials that can be used to use a strong acid, and generally reduces the purity of most organic materials that are significant in terms of functionality. Could not be used.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、分
量、結晶化度、粒径を制御した非線形光学用有機微結晶
の製法を提供することにある。
OBJECTS OF THE INVENTION It is an object of the present invention, molecular <br/> weight, crystallinity, to provide a non-linear optical organic microcrystals <br/> production method of controlling the particle size It is in.

【0010】[0010]

【0011】更に、本発明の他の目的は、粒径が500
nm以下の非線形光学用有機微結晶の製法を提供するこ
とにある。
Still another object of the present invention is to provide a powder having a particle size of 500
It is an object of the present invention to provide a method for producing an organic microcrystal for nonlinear optics having a diameter of less than nm.

【0012】[0012]

【課題を解決するための手段】前記課題を解決する本発
明の要旨は次のとおりである。
The gist of the present invention for solving the above problems is as follows.

【0013】(1) 良溶媒に溶解した非線形光学用
機材料を、該溶媒と相溶する前記有機材料の貧溶媒中に
混入し、粒径500nm以下の結晶または会合体とする
非線形光学用有機微結晶の製法。
(1) An organic material for non-linear optics dissolved in a good solvent is mixed into a poor solvent of the organic material compatible with the solvent, and is mixed with a crystal or an aggregate having a particle size of 500 nm or less. Do
Manufacturing method of organic microcrystals for nonlinear optics .

【0014】(2) 良溶媒に溶解した非線形光学用
機材料を、該溶媒と相溶する前記有機材料の貧溶媒中に
混入し、ガンマ線、電子線、X線または光線を照射して
粒径500nm以下の結晶または会合体とする非線形光
学用有機微結晶の製法。
(2) An organic material for non-linear optics dissolved in a good solvent is mixed into a poor solvent of the organic material compatible with the solvent, and gamma rays, electron beams, X-rays or light rays are emitted. Irradiate
Non-linear light with a crystal or an aggregate having a particle size of 500 nm or less
Production method of organic microcrystals for academic use .

【0015】重合または会合可能な有機高分子モノマま
たはその溶液を、該有機高分子モノマの貧溶媒中に分散
後、活性電子線、X線または紫外線等の光を照射あるい
はアミン等の酸性度変化剤の配合により、必要とされる
重合または会合形成を行う方法も含まれる。
After dispersing the polymerizable or associable organic polymer monomer or its solution in a poor solvent for the organic polymer monomer, it is irradiated with light such as active electron beam, X-ray or ultraviolet light or changes in acidity such as amine. A method of performing required polymerization or association formation by blending the agent is also included.

【0016】また、前記有機材料の溶媒中に界面活性剤
等の荷電調整剤を添加して酸性度を変化することにより
必要とされる重合または会合形成を行うことにより非線
形光学用有機微結晶を得る方法も含まれる。
Further, by adding a charge controlling agent such as a surfactant to the solvent of the organic material and changing the acidity, required polymerization or association formation is carried out, thereby obtaining non-linearity.
A method for obtaining an organic microcrystal for shape optics is also included.

【0017】前記有機材料がπ電子共役系を有する分子
中に2個以上の2重結合または3重結合を有する分子か
らなる非線形光学用有機微結晶であってもよい。
[0017] The organic material may be an organic microcrystal for nonlinear optics comprising a molecule having two or more double bonds or triple bonds in a molecule having a π-electron conjugated system.

【0018】次に、本発明において用いられる化合物の
例を以下に示す。これらは、非線形光学の分野で有用な
化合物である。なお、本発明はこれらの材料に限定され
るものではない。
Next, examples of the compounds used in the present invention are shown below. These are useful compounds in the field of nonlinear optical science. Note that the present invention is not limited to these materials.

【0019】(1)次式で示されるジアセチレン系化合
物、及びそれらを重合して得られるポリジアセチレン系
化合物
(1) Diacetylene compounds represented by the following formula, and polydiacetylene compounds obtained by polymerizing them

【0020】[0020]

【化1】 Embedded image

【0021】(2)次式で示されるジエン系化合物、及
びそれらを固相重合して得られる高分子化合物
(2) A diene compound represented by the following formula, and a polymer compound obtained by solid-phase polymerization of the diene compound:

【0022】[0022]

【化2】 Embedded image

【0023】(3)次式で示される多環芳香族化合物(3) Polycyclic aromatic compound represented by the following formula

【0024】[0024]

【化3】 Embedded image

【0025】(4)次式で示される長鎖化合物(4) Long chain compound represented by the following formula

【0026】[0026]

【化4】 Embedded image

【0027】(5)次式で示される色素化合物(5) Dye compound represented by the following formula

【0028】[0028]

【化5】 Embedded image

【0029】本発明の製法としては様々な手法が適用で
きる。典型的なものに下記のエタノール法、溶融法など
があるが、本発明には溶媒変化等容易に類推できる多様
な変形があり、これらは全て本発明に包含される。
Various methods can be applied to the production method of the present invention. Typical examples include the following ethanol method and melting method, and the present invention has various modifications that can be easily analogized, such as a change in solvent, and these are all included in the present invention.

【0030】エタノール法では、目的とする試料化合物
のエタノール溶液をシリンジ、注射器等の注入手段によ
り撹拌している水中に滴下し、必要に応じ界面活性剤を
添加して以下の処理を行う。例えば、ジアセチレンモノ
マ及びその誘導体を試料化合物とする場合は、紫外線
(UV)を照射して重合し、対応するポリジアセチレン
及びその誘導体高分子の微結晶粒子を得る。
In the ethanol method, an ethanol solution of the target sample compound is dropped into stirring water by an injection means such as a syringe or a syringe, and a surfactant is added as necessary to perform the following treatment. For example, when a diacetylene monomer or a derivative thereof is used as a sample compound, polymerization is performed by irradiating ultraviolet light (UV) to obtain microcrystalline particles of a corresponding polydiacetylene or a derivative thereof.

【0031】また、シアニン色素分子を試料化合物とす
る場合は、アミンによる処理を行い、対応する色素のJ
−会合体の微結晶粒子を得る。ここで、望ましい性状の
微結晶を得るには、溶液の濃度、滴下の条件、水温、撹
拌速度、界面活性剤の種類、その滴下後の安定性、紫外
線強度及び照射時間、アミン処理時間等の処理条件を最
適範囲に選定する必要がある。
When a cyanine dye molecule is used as a sample compound, the sample is treated with an amine and the corresponding dye J
-Obtaining microcrystalline particles of aggregates. Where the desired properties
In order to obtain microcrystals , processing conditions such as solution concentration, dropping conditions, water temperature, stirring speed, type of surfactant, stability after dropping, ultraviolet intensity and irradiation time, amine processing time, etc. are within the optimal range. It is necessary to select.

【0032】有機材料の濃度としては、飽和濃度乃至こ
れの1/100程度の範囲が望ましい。水に対するエタ
ノール溶液の量としては、飽和溶解量乃至これの1/1
5程度が望ましい。滴下時の撹拌速度としては、50
0〜1000rpm程度が望ましい。上記より低速では
マイクロエマルジョン化もしくは凝集を生じ易く、ま
た、高速では液中に複雑な流れを生じて好ましくない。
The concentration of the organic material is desirably in the range from the saturation concentration to about 1/100 of the saturation concentration. The amount of the ethanol solution with respect to water may be a saturated dissolution amount to 1/1 of this amount.
0 5 about is desirable. The stirring speed at the time of dropping is 50
About 0 to 1000 rpm is desirable. If the speed is lower than the above, microemulsification or aggregation is liable to occur, and if the speed is high, a complicated flow is generated in the liquid, which is not preferable.

【0033】特に限定されるものではないが、ジアセチ
レンモノマ誘導体等の場合を例述すると、溶液濃度は1
0~1〜10~3M(モル濃度)の範囲で、濃度が増すに伴
い粒径も増す傾向がある。アントラセン等の多環芳香族
化合物、シアニン色素等の色素化合物及び長鎖化合物で
は、最適濃度は10~2〜10~5Mといくぶん低濃度側に
存在する傾向がある。
Although not particularly limited, in the case of a diacetylene monomer derivative or the like, the solution concentration is 1
In the range of 0 to 1 to 3 M (molar concentration), the particle size tends to increase as the concentration increases. Polycyclic aromatic compounds such as anthracene, a dye compound and a long chain compounds such as cyanine dye, the optimum concentration tends to exist somewhat lower density side and 10 ~ 2 ~10 ~ 5 M.

【0034】水温は0〜90℃の範囲であり、最小粒径
を与える最適温度は室温付近に存在する。低温側では、
結晶成長の速度が大きくなって粒径が増大し、高温側で
は粒径のコントロールが困難となり易い。
The water temperature is in the range of 0 to 90 ° C., and the optimum temperature that gives the minimum particle size is around room temperature. On the cold side,
The crystal growth rate increases and the grain size increases, and it is easy to control the grain size on the high temperature side.

【0035】紫外光照射は1〜90分の範囲であるが、
材料及び粒径によっては、著しく短時間の方が好適な場
合もある。
The ultraviolet light irradiation is in the range of 1 to 90 minutes,
Depending on the material and particle size, a significantly shorter time may be preferred.

【0036】界面活性剤はSDS(ラウリル硫酸ナトリ
ウム)等が好適であるが使用しなくてもよい。
The surfactant is preferably SDS (sodium lauryl sulfate), but need not be used.

【0037】注入滴下の条件として、液滴形状もしくは
ジェット流類似の噴出形状とする方法があるが、ジェッ
ト流の場合の方が粒径は小さい。但し、過度に流速を増
しても、水の粘性のために効果は減少する。
As a condition for the injection and dropping, there is a method of forming a droplet shape or a jet shape similar to a jet flow, but the particle size is smaller in the case of the jet flow. However, if the flow rate is increased excessively, the effect is reduced due to the viscosity of the water.

【0038】本発明における溶媒としては、水、アルコ
ール類、ケトン類、エステル類、芳香族、ハロゲン系化
合物等様々なものが使用できる。有機材料を有機溶剤に
溶解し水中に注入する方法、有機溶剤の溶液を有機溶剤
中に注入する方法がある。注入の方法としては、シリン
ジによるのが簡便で好ましいが、注入速度、溶解性、温
度、撹拌状態を満足する方法であれば特に限定しない。
分散後の処理としては、紫外線、電子線等による光重
合、熱重合、またはアミン等による酸性度制御等の公知
の技術が適用できる。
Various solvents such as water, alcohols, ketones, esters, aromatic compounds and halogen compounds can be used as the solvent in the present invention. There are a method of dissolving an organic material in an organic solvent and injecting it into water, and a method of injecting a solution of the organic solvent into the organic solvent. The method of injection is preferably simple and preferable using a syringe, but is not particularly limited as long as the injection speed, solubility, temperature, and stirring state are satisfied.
As the treatment after the dispersion, known techniques such as photopolymerization using ultraviolet rays, electron beams, or the like, thermal polymerization, or acidity control using amines or the like can be applied.

【0039】一方、溶融法では、試料化合物の結晶粒子
を水中で撹拌、超音波振動を加えながら分散した状態で
加温を行い、次いで冷却することにより超微結晶粒子を
得る。この時、水温、保持時間、超音波振動の有無、撹
拌速度、冷却速度等の最適範囲を選定する。
On the other hand, in the melting method, the crystal particles of the sample compound are heated in a state where they are stirred in water and dispersed while applying ultrasonic vibration, and then cooled to obtain ultrafine crystal particles. At this time, optimal ranges such as water temperature, holding time, presence / absence of ultrasonic vibration, stirring speed, cooling speed, etc. are selected.

【0040】本発明の有機微結晶は、それ自身、液中ま
たは固体中に分散、他の材料との混合、他の材料の被覆
等様々な形状にて利用することができる。また、分散の
マトリックスとしては高分子材料が用いられる。
The organic microcrystal of the present invention can be used in various forms, such as dispersion in a liquid or solid, mixing with another material, and coating with another material. A polymer material is used as a matrix for dispersion.

【0041】本発明により、π(パイ)電子共役系高分
子の粒径、分子量の整った単分散の有機微結晶が得られ
る。また、粒径の揃った多環芳香族分子結晶を用いるこ
とにより、励起子(エキシトン)形成を詳細に解析する
ことが可能となる。更に、色素分子の微結晶の粒径とJ
−会合体形成の関連性に関し、定量的な検討が可能とな
る。
According to the present invention, monodispersed organic microcrystals having a uniform particle size and molecular weight of a π (pi) electron conjugated polymer can be obtained. In addition, by using a polycyclic aromatic molecular crystal having a uniform particle size, exciton (exciton) formation can be analyzed in detail. Further, the particle diameter of the crystallite of the dye molecule and J
-Quantitative examination of the relevance of aggregate formation is possible.

【0042】[0042]

【作用】本発明により、有機微晶が得られる理由は未
だ判明していないが、概略次のように推定される。
By the present invention, although the reason for chromatic sensitive crystal is obtained has not yet been found, it is estimated as outlined below.

【0043】試料化合物を溶解させたエタノール溶液
は、水中に混入後液滴(ドロップレット)として分散
し、次第に蒸発もしくはエタノールの水相へ溶出によ
り、該液滴は溶媒を失って過飽和状態となり、終には微
結晶を析出するものと考える。水中に界面活性剤等が存
在すると該液滴が水中で安定化し、溶媒消失及び過飽和
状態への移行が阻害されることがある。
The ethanol solution in which the sample compound is dissolved is mixed into water and dispersed as droplets, and gradually evaporates or elutes into the aqueous phase of ethanol, so that the droplets lose solvent and become supersaturated. It is considered that microcrystals are finally deposited. When a surfactant or the like is present in water, the droplets are stabilized in water, and the disappearance of the solvent and the transition to a supersaturated state may be inhibited.

【0044】[0044]

【実施例】以下実施例を用いて、本発明を更に詳細に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0045】〔実施例1〕下記〔化6〕で示す構造の4
−BCMU〔5,7−(ビス−1,12−n−ブチルカル
ボキシメチレン−ウレタン)ドデカジイン〕80mgを
5mlのエタノール中に溶解し、3.2×10~2Mの溶
液とした。
Example 1 4 of the structure shown in the following [Chemical Formula 6]
80 mg of -BCMU [5,7- (bis-1,12-n-butylcarboxymethylene-urethane) dodecadine] was dissolved in 5 ml of ethanol to prepare a 3.2 × 10 to 2 M solution.

【0046】[0046]

【化6】R−C≡C−C≡C−R 〔但し、Rは(CH2)4OCONHCH2COOC49
示す〕次に、室温で10mlの純水をビーカー中にて激
しく撹拌し、これに50μlの上記4−BCMU溶液を
マイクロシリンジを用いて滴下した。滴下開始直後から
白色の沈殿が形成するが、更に、撹拌しつゝ数分で全量
を滴下し分散液とする。少量の該分散液を石英のセルに
移し、高圧水銀灯を照射して光重合した。照射時間は、
1、3、5、20分の4種類である。
## STR6 ## RC—C—C—C—R (where R represents (CH 2 ) 4 OCONHCH 2 COOC 4 H 9 ) Then, at room temperature, 10 ml of pure water is vigorously stirred in a beaker. Then, 50 μl of the 4-BCMU solution was added dropwise using a microsyringe. Immediately after the start of the dropwise addition, a white precipitate is formed, and the whole amount is further dropped in a few minutes with stirring to obtain a dispersion. A small amount of the dispersion was transferred to a quartz cell and photopolymerized by irradiation with a high-pressure mercury lamp. The irradiation time is
There are four types: 1, 3, 5, and 20.

【0047】得られたポリジアセチレン微粒子の吸収ス
ペクトルを図1に示す。627及び573nmに吸収極
大を示し、ポリ−4−BCMU高分子であることが確認
できた。627nmの極大は、照射時間と共に増加する
するものゝ3分の時を最大として、以降低下した。3分
照射後のものを走査電子顕微鏡(SEM)で観察したと
ころ、図2に示すように、一辺が約100〜200nm
のサイズの立方体ないし直方体形状の良好な微結晶粒子
1が形成されていることを確認した。なお、図3は図2
のSEM写真の模写図である。
FIG. 1 shows the absorption spectrum of the obtained polydiacetylene fine particles. It showed absorption maxima at 627 and 573 nm, confirming that it was a poly-4-BCMU polymer. The maximum at 627 nm increased with the irradiation time, and then decreased from the maximum at the time of 3 minutes. Observation with a scanning electron microscope (SEM) after irradiation for 3 minutes showed that one side was about 100 to 200 nm as shown in FIG.
It was confirmed that fine crystal grains 1 having a cubic or rectangular parallelepiped shape having a good size were formed. Note that FIG.
It is a mimetic diagram of the SEM photograph of.

【0048】なお、照射時間20分の場合のSEMによ
る粒子形状の観察結果では、3分の場合に比べその形状
はやゝ不明瞭となる、これは、過剰な紫外線照射によっ
て重合終了後の高分子粒子の表面層が一部解離したもの
と見受けられる。
Observation of the particle shape by SEM when the irradiation time was 20 minutes showed that the shape was slightly unclear as compared with the case where the irradiation time was 3 minutes. It seems that the surface layer of the molecular particles was partially dissociated.

【0049】〔実施例2〕前記、実施例1と同様にして
4−BCMUの溶液を作製し、ジェット流状に急激に純
水中に噴射して、紫外線照射したところ、粒径約20n
mのポリ−4−BCMU微結晶粒子を得た。得られた高
分子微粒子のSEMで観察したところ、粒径約20nm
のサイズの立方体ないし直方体形状の良好な微結晶が形
成されていることを確認した。
Example 2 A 4-BCMU solution was prepared in the same manner as in Example 1 and rapidly jetted into pure water in the form of a jet stream, and irradiated with ultraviolet light.
m of poly-4-BCMU microcrystalline particles were obtained. Observation of the obtained polymer fine particles with a SEM revealed that the particle size was about 20 nm.
It was confirmed that cubic or rectangular parallelepiped fine crystallites having the above-mentioned size were formed.

【0050】〔実施例3〕下記〔化7〕で示すメロシア
ニン色素MCSe−C18[3−カルボキシメチル−5
〔2−(3−オクタデシル−2−ベンゾセレナゾリニリ
デン−エチリデン−ローダニン)〕]をエタノール溶液
から水中に分散し、アミン処理してJ−会合体の微粒子
分散体を製造した。
Example 3 A merocyanine dye MCSe-C18 [3-carboxymethyl-5 represented by the following chemical formula 7]
[2- (3-Octadecyl-2-benzoselenazolinylidene-ethylidene-rhodanine)]] was dispersed in water from an ethanol solution and treated with an amine to produce a fine particle dispersion of a J-aggregate.

【0051】[0051]

【化7】 Embedded image

【0052】図4はアミンの処理時間を0、100、2
00及び1000分と変化した時の吸収スペクトルの変
化を示すグラフである。アミン添加により、明瞭なJ−
会合体の鋭い吸収極大が出現する。ところが、その分散
液の性状は色素溶液と殆ど変わらず、SEMによる観察
の結果、極めて超微粒子に分散し、粒径約20nmのサ
イズの立方体ないし直方体形状の良好な微結晶が形成さ
れていることを確認した。
FIG. 4 shows that the treatment times of the amines were 0, 100, 2
It is a graph which shows the change of an absorption spectrum when it changes to 00 and 1000 minutes. By adding amine, clear J-
A sharp absorption maximum of the aggregate appears. However, the properties of the dispersion were almost the same as those of the dye solution, and as a result of observation by SEM, the dispersion was extremely dispersed in ultrafine particles, and favorable microcrystals having a cubic or rectangular parallelepiped shape with a particle size of about 20 nm were formed. It was confirmed.

【0053】〔実施例4〕 下記〔化8〕で示す長鎖化合物PNA−C18(N−オ
クタデシル−4−ニトロアニリン)を実施例3と同様に
して超微粒子化した。得られた微粒子のSEMによる観
察の結果、極めて超微粒子に分散し、約100〜300
nmのサイズの直方体形状の良好な微結晶が形成されて
いることを確認した。
Example 4 A long-chain compound PNA-C18 (N-octadecyl-4-nitroaniline) represented by the following [Chemical Formula 8] was converted into ultrafine particles in the same manner as in Example 3. Observation of the obtained fine particles by SEM revealed that the fine particles were extremely dispersed in
It was confirmed that good fine crystals having a rectangular parallelepiped shape with a size of nm were formed.

【0054】[0054]

【化8】 Embedded image

【0055】[0055]

【発明の効果】本発明により、各種エレクトロニクス
分野に適用できる500nm以下の非線形光学用有機
結晶を得ることができる。
According to the present invention, 500 nm following nonlinear optical organic fine applicable to <br/> field of various electronics
Crystals can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の有機微結晶粒子のUV吸収スペクト
ルである。
FIG. 1 is a UV absorption spectrum of the organic microcrystalline particles of Example 1.

【図2】実施例1の有機微結晶粒子のSEM写真であ
る。
FIG. 2 is a SEM photograph of the organic microcrystalline particles of Example 1.

【図3】図2の有機微結晶粒子のSEM写真の模写図で
ある。
FIG. 3 is a schematic view of an SEM photograph of the organic microcrystalline particles of FIG.

【図4】実施例3の有機微結晶粒子のUV吸収スペクト
ルである。
FIG. 4 is a UV absorption spectrum of the organic microcrystalline particles of Example 3.

【符号の説明】[Explanation of symbols]

1…微結晶粒子、2…ガラス基板 1: microcrystalline particles, 2: glass substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08F 6/00 C08F 6/00 38/00 38/00 特許法第30条第1項適用申請有り 平成4年5月26日〜 29日 パシフィコ横浜会議センターにおいて開催された 社団法人高分子学会主催の「第41回(1992年)高分子学 会年次大会」において文書をもって発表 特許法第30条第1項適用申請有り 平成4年6月17日〜 18日 東京霞ヶ関国立教育会館において開催された社団 法人繊維学会主催の「宮崎国際シンポジウム」において 文書をもって発表 (74)上記5名の代理人 弁理士 高橋 明夫 (外1名 ) (73)特許権者 000001144 工業技術院長 東京都千代田区霞が関1丁目3番1号 (74)上記1名の指定代理人 工業技術院物質工学工業技 術研究所長 (外2名) (72)発明者 笠井 均 宮城県仙台市青葉区川内山屋敷67 (72)発明者 及川 英俊 宮城県仙台市若林区南小泉3−7−10− 508 (72)発明者 小野 勝道 宮城県仙台市泉区将監2−17−14 (72)発明者 中西 八郎 宮城県仙台市宮城野区苦竹2−3−20− 404 (72)発明者 岡田 修司 茨城県つくば市東1丁目1番4 工業技 術院 繊維高分子材料研究所内 (72)発明者 松田 宏雄 茨城県つくば市東1丁目1番4 工業技 術院 繊維高分子材料研究所内 (72)発明者 南 信次 茨城県つくば市東1丁目1番4 工業技 術院 繊維高分子材料研究所内 (72)発明者 ハリ シング ナルワ 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 角田 敦 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 (72)発明者 向尾 昭夫 茨城県日立市久慈町4026番地 株式会社 日立製作所日立研究所内 審査官 森 健一 (56)参考文献 国際公開92/3380(WO,A)──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location C08F 6/00 C08F 6/00 38/00 38/00 Application for Patent Law Article 30 Paragraph 1 applies. May 26 to 29, 1992 Documented at the 41st (1992) Annual Meeting of the Society of Polymer Science held by the Society of Polymer Science, Japan held at the Pacifico Yokohama Conference Center Article 30 of the Patent Act Article 1 Application for application June 17-18, 1992 Documentary presentation at "Miyazaki International Symposium" hosted by The Institute of Textile Science, held at Kasumigaseki National Education Hall, Tokyo (74) Attorney of the above five agents Akio Takahashi (one outsider) (73) Patentee 000001144 Director of Industrial Technology 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (1) Designated representative of the above-mentioned one Director of the Institute of Materials Technology, National Institute of Industrial Science (2) (72) Inventor Hitoshi Kasai 67, Kawauchiyamayashiki, Aoba-ku, Sendai, Miyagi Prefecture (72) Inventor Hidetoshi Oikawa Sendai, Miyagi Prefecture 3-7-10- 508 Minami Koizumi, Wakabayashi-ku, City (72) Inventor Katsumichi 2-17-14, Inspector General, Izumi Ward, Sendai City, Miyagi Prefecture (72) Inventor Hachiro Nakanishi 2-3-3 Kutake, Miyagino Ward, Sendai City, Miyagi Prefecture 20-404 (72) Inventor Shuji Okada 1-1-4 Higashi, Tsukuba, Ibaraki Pref., Institute of Industrial Science and Technology (72) Inventor Hiroo Matsuda 1-4-1 Higashi, Tsukuba, Ibaraki, Textile In the Polymer Materials Research Laboratory (72) Inventor Shinji Minami 1-1-4 Higashi, Tsukuba City, Ibaraki Industrial Technology Institute In the Textile Polymer Materials Research Laboratory (72) Inventor Hari Sing Narwa 4026 Kuji-cho, Hitachi City, Ibaraki Co., Ltd. Hitachi, Ltd.Hitachi Laboratory (72) Inventor Atsushi Tsunoda 4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. The laboratory (72) inventor towards the tail Akio Hitachi City, Ibaraki Prefecture Kuji-cho, Hitachi, Ltd. Hitachi Research Laboratory within the examiner Kenichi Mori address 4026 (56) references WO 92/3380 (WO, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 良溶媒に溶解した非線形光学用有機材料
を、該溶媒と相溶する前記有機材料の貧溶媒中に混入
し、粒径500nm以下の結晶または会合体とすること
を特徴とする非線形光学用有機微結晶の製法。
An organic material for nonlinear optics dissolved in a good solvent is mixed into a poor solvent of the organic material compatible with the solvent to form a crystal or an aggregate having a particle size of 500 nm or less. Manufacturing method of organic microcrystals for nonlinear optics .
【請求項2】 良溶媒に溶解した非線形光学用有機材料
を、該溶媒と相溶する前記有機材料の貧溶媒中に混入
し、ガンマ線、電子線、X線または光線を照射して粒径
500nm以下の結晶または会合体とすることを特徴と
る非線形光学用有機微結晶の製法。
2. An organic material for nonlinear optics dissolved in a good solvent is mixed into a poor solvent of the organic material which is compatible with the solvent, and irradiated with a gamma ray, an electron beam, an X-ray or a light beam to obtain a particle size.
Preparation of the nonlinear optical organic microcrystalline you <br/> characterized in that the following crystalline or aggregates 500 nm.
JP23816092A 1992-09-07 1992-09-07 Manufacturing method of organic microcrystal for nonlinear optics Expired - Lifetime JP2723200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23816092A JP2723200B2 (en) 1992-09-07 1992-09-07 Manufacturing method of organic microcrystal for nonlinear optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23816092A JP2723200B2 (en) 1992-09-07 1992-09-07 Manufacturing method of organic microcrystal for nonlinear optics

Publications (2)

Publication Number Publication Date
JPH0679168A JPH0679168A (en) 1994-03-22
JP2723200B2 true JP2723200B2 (en) 1998-03-09

Family

ID=17026083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23816092A Expired - Lifetime JP2723200B2 (en) 1992-09-07 1992-09-07 Manufacturing method of organic microcrystal for nonlinear optics

Country Status (1)

Country Link
JP (1) JP2723200B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102280843B1 (en) 2020-02-24 2021-07-22 인하대학교 산학협력단 Method for adjusting full width at half maximum in photoluminescence spectrum of rubrene nano particle

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9619419D0 (en) * 1996-09-18 1996-10-30 Univ Bradford Polymeric material
WO2002092700A1 (en) * 2001-05-15 2002-11-21 Japan Science And Technology Corporation Process for producing quinacridone pigment microcrystals
JP4326197B2 (en) * 2002-08-30 2009-09-02 独立行政法人科学技術振興機構 Novel process for producing pigment nanoparticles
EP1688169A4 (en) * 2003-11-28 2008-10-01 Mitsubishi Chem Corp Method for producing fine organic compound particles
JP4933726B2 (en) * 2004-10-29 2012-05-16 独立行政法人産業技術総合研究所 A method for producing a hydrophobic organic dye fine particle dispersion or hydrophobic organic dye fine particles, and a sprayer, a spraying device, and a particle-restricted hood suitable for use in the method.
JP2006193681A (en) * 2005-01-17 2006-07-27 Dainippon Ink & Chem Inc Method for producing organic pigment particulate
JP4765060B2 (en) * 2005-02-22 2011-09-07 国立大学法人山口大学 Manufacturing method of organic nonlinear optical material
WO2006121170A1 (en) 2005-05-06 2006-11-16 Fujifilm Corporation Method of concentrating nanoparticles and method of deaggregating aggregated nanoparticles
US20090045535A1 (en) * 2005-05-09 2009-02-19 Yousuke Miyashita Method of producing organic particles and production apparatus usable for the same
KR101266569B1 (en) 2005-05-09 2013-05-22 후지필름 가부시키가이샤 Method for producing organic particle dispersion liquid
JP2007008924A (en) * 2005-05-31 2007-01-18 Kao Corp Method for producing organic compound fine particle, organic fine particle prepared by the same and method for controlling particle diameter
JP4684190B2 (en) 2005-09-06 2011-05-18 富士フイルム株式会社 Method for producing metal complex pigment fine particles and dispersion containing metal complex pigment fine particles obtained thereby
JP2007084851A (en) * 2005-09-20 2007-04-05 Japan Science & Technology Agency Method for producing organic crystal coated with metal
KR101399832B1 (en) 2006-01-23 2014-05-26 후지필름 가부시키가이샤 Process for producing organic nanoparticle, organic nanoparticle obtained by the same, ink-jet ink for color filter containing the same, colored photosensitive resin composition, photosensitive resin transfer material, and color filter, liquid-crystal display, and ccd device each produced with these
JP2008000654A (en) * 2006-06-21 2008-01-10 3R Corp Manufacturing method of nanoparticle with a particle size of 200 nm or less
JP2008285432A (en) 2007-05-16 2008-11-27 Fujifilm Corp External preparation for skin
JP2008297241A (en) 2007-05-31 2008-12-11 Fujifilm Corp Anti-acne skin agent for external use
JP2009269844A (en) 2008-05-02 2009-11-19 Fujifilm Corp Composition for hair
JP2010180310A (en) * 2009-02-04 2010-08-19 Fujifilm Corp Method for producing organic pigment particles and method for producing pigment dispersion
CN103068404B (en) * 2010-06-11 2015-11-25 独立行政法人科学技术振兴机构 Medicine polymer microgranule and manufacture method thereof
JP6995695B2 (en) * 2018-05-25 2022-01-17 信越化学工業株式会社 Amino Acid N-Carboxy Anhydride Purification Method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102280843B1 (en) 2020-02-24 2021-07-22 인하대학교 산학협력단 Method for adjusting full width at half maximum in photoluminescence spectrum of rubrene nano particle

Also Published As

Publication number Publication date
JPH0679168A (en) 1994-03-22

Similar Documents

Publication Publication Date Title
JP2723200B2 (en) Manufacturing method of organic microcrystal for nonlinear optics
Yu et al. Controllable synthesis of nanocrystalline CdS with different morphologies and particle sizes by a novel solvothermal process
JP4411078B2 (en) Semiconductor liquid crystal composition and method for producing the same
US20060099135A1 (en) Carbon nanotubes: high solids dispersions and nematic gels thereof
Qiao et al. Synthesis of lead sulfide/(polyvinyl acetate) nanocomposites with controllable morphology
Nakanishi et al. Microcrystals of polydiacetylene derivatives and their linear and nonlinear optical properties
Shen et al. Amphiphilicity Regulation of AgI Nanoclusters: Self‐Assembly and Its Application as a Luminescent Probe
Sanz et al. Organic nanocrystals embedded in sol–gel glasses for optical applications
Fateminia et al. Nanocrystallization: an effective approach to enhance the performance of organic molecules
Nakayama et al. Bioinspired selective synthesis of liquid-crystalline nanocomposites: formation of calcium carbonate-based composite nanodisks and nanorods
JP4961323B2 (en) Carbon nanotubes having a surface coated with a surfactant and method for producing the same
US11753424B2 (en) Crystalline form of phenyl bis (2,4,6-trimethylbenzoyl) phosphine oxide with large particle size and crystallization method for making same
Kang et al. A novel sonication route to prepare anthracene nanoparticles
Nakanishi et al. Reprecipitation method for organic nanocrystals
Oshikiri et al. Fabrication of polydiacetylene fibrous microcrystals by the reprecipitation method
JP3584266B2 (en) Method for producing organic microcrystal for optoelectronic function
Shi et al. C 60 based nanoparticles: self-assembly of a novel fullerene derivative
Vandegaer Latex growth
Akperov et al. Synthesis and characterization of CdS nanocrystals in Maleic anhydride–Octene-1–Vinylbutyl Ether terpolymer matrix
CN109097837B (en) Universal synthesis method of nano organic crystal
Schmidhammer et al. Femtochemistry of guest molecules hosted in colloidal zeolites
Ghamari et al. The impact of morphology control on the microhardness of PMMA/Boehmite hybrid nanoparticles prepared via facile aqueous one-pot process
Su et al. A new crystal modification of gutta percha
US20240034845A1 (en) Polymer particles
US20090061228A1 (en) Method of preparing solid particulates and solid particulates prepared using same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081128

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081128

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term